On June 13 the condition persisted and great
difficulty was experienced in the arm. This
state continued until about 2 p.m. when the soreness
suddenly abated and the arm felt normal. That
evening a thorough search of the body was con-
ducted by Mr. G. D. R. and the author and a male
tick was found firmly attached amongst the hairs
of the left axilla. The tick was removed and the
wound treated with iodine. The tick was sent on
June 16, as collection No. 1-33-40, to Dr. R. J.
Gibbons, Dominion Virological Laboratory, Kam-
loops, B. C., for examination as to its ability to
cause paralysis in experimental animals. No report
was received.

On June 15 the arm again became noticeably
sore and Mr. G. D. R. visited Dr. V. Swaenzky of
Lethbridge for an examination but nothing of im-
portance was found. During the night of June 15 he
became very ill with considerable stomach pain
accompanied by a sharp pain in the region of the left
diaphragm which caused difficulty in breathing.

On June 16 Mr. G. D. R. visited Dr. S. M.
Schmaltz of Lethbridge who gave him a thorough
examination and expressed the opinion that he had
suffered a mild attack of tick paralysis.

No further difficulty was experienced.

Conclusion.—It is believed that the tick became
attached to Mr. G. D. R. on June 10 and had been
feeding for approximately 48 hours before the left
arm became sore and difficult to manage. It is
assumed that the sudden cessation of pain on the
afternoon of June 13 coincided with the termination
of the feeding activities of the male tick. The
resumption of pain accompanied by illness on June
15 was probably in the nature of a relapse.

A search of the available literature fails to yield
any information on male ticks being associated with
human tick paralysis.

Effect of Naphthyl Acetic Acid
on Cherry Fruiting

H. M. Armitage, Sacramento, California

An attempt is being made by the California De-
partment of Agriculture to eradicate an incipient
infestation of the cherry fruit fly, Rhagoletis cingu-
lata, infesting domestic cherries in an isolated non-
commercial area in the northern part of the state.

An integral part of the program involves preventing
fruiting by any of the host cherry trees scattered
throughout the control area.

It was the consensus of opinion of those au-
thorities with whom the problem was first discussed
that this might best be accomplished through the
use of naphthyl acetic acid applied as a spray after
bloom had been complete. While no information
could be developed covering the use of this material
on cherries it had apparently been successfully used
as a thinner. The spray machine used in the exper-
ments reported here is a 1951 model having an air blast with
two side delivery of 48,800 cubic feet per minute at
90 miles per hour. The machine is mounted on a
truck which is equipped with a spectrometer. The
sprays were applied with the machine driven at 2.5
miles per hour and the nozzles adjusted to deliver
approximately 4 gallons per minute with the dilute, and
1.2 gallons with the concentrate per application. All
spraying was done during the day and each spray
was applied when due regardless of wind velocity.

Asquith (1950) obtained good control of plum cur-
culo using four times the standard spray concen-
tration and applying from one-fifth to one-fourth the
amount required for the dilute sprays. The data in
this paper deals primarily with the control of cur-
culo, oriental fruit moth and insects that cause cat-
facing on peaches, has given satisfactory results in most Mary-
land orchards since benzene hexachloride, DDT and para-
thon have been incorporated in the spray schedules. Other insecticides, such as TM-1, TM-2
and dieldrin, have given excellent control of some of
these pests when used either experimentally or com-
mercially. Even with the effectiveness of these new
insecticides, the constant increase in the cost of pro-
ducing high quality fruit has posed a serious prob-
lem to the fruit industry. Because of increased costs,
fruit growers are seeking ways of cutting down the
expense of spraying, and at the same time maintain-
ing a high degree control of pests. The industry in
general has shown increased interest in the new types of
spray machines, many of which are designed to
apply either dilute or concentrated sprays.

The spray machine used in the experiments reported
here is a 1951 model having an air blast with
two side delivery of 48,800 cubic feet per minute at
90 miles per hour. The machine is mounted on a
truck which is equipped with a spectrometer. The
sprays were applied with the machine driven at 2.5
miles per hour and the nozzles adjusted to deliver
approximately 4 gallons per minute with the dilute, and
1.2 gallons with the concentrate per application. All
spraying was done during the day and each spray
was applied when due regardless of wind velocity.

Asquith (1950) obtained good control of plum cur-
culo using four times the standard spray concen-
tration and applying from one-fifth to one-fourth the
amount required for the dilute sprays. The data in
this paper deals primarily with the control of cur-
culo, oriental fruit moth and insects that cause cat-
facing on peaches, has given satisfactory results in most Mary-
land orchards since benzene hexachloride, DDT and para-
thon have been incorporated in the spray schedules. Other insecticides, such as TM-1, TM-2
and dieldrin, have given excellent control of some of
these pests when used either experimentally or com-
mercially. Even with the effectiveness of these new
insecticides, the constant increase in the cost of pro-
ducing high quality fruit has posed a serious prob-
lem to the fruit industry. Because of increased costs,
fruit growers are seeking ways of cutting down the
expense of spraying, and at the same time maintain-
ing a high degree control of pests. The industry in
general has shown increased interest in the new types of
spray machines, many of which are designed to
apply either dilute or concentrated sprays.

The spray machine used in the experiments reported
here is a 1951 model having an air blast with
two side delivery of 48,800 cubic feet per minute at
90 miles per hour. The machine is mounted on a
truck which is equipped with a spectrometer. The
sprays were applied with the machine driven at 2.5
miles per hour and the nozzles adjusted to deliver
approximately 4 gallons per minute with the dilute, and
1.2 gallons with the concentrate per application. All
spraying was done during the day and each spray
was applied when due regardless of wind velocity.