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Simply stated, we are what we eat. Our genetics, 
coupled with environmental influences, dictate 
how we metabolize the nutrients that we con-
sume and how this shapes our growth, function, 
and overall health. The same principles hold 
true at the cellular level. Just as a track runner 
quickly engages their muscles to propel them-
selves from rest to sprint in response to a starting 
gun, pathogen-derived or inflammatory signals 
drive T cells out of quiescence, resulting in rapid 
modulation of gene expression and the acquisi-
tion of new functions. These changes range from 
increased production of cytokines and cytolytic 
molecules to the ability to undergo cell division 
and migration. Intimately integrated into this 
program of activation is the regulation of cellu-
lar metabolism.

The engagement of specific metabolic path-
ways profoundly affects cell differentiation and 
function. Metabolic reprogramming is controlled 
by key receptor signaling events and growth fac-
tor cytokines, as well as availability of nutrients. 
In addition, metabolic products provide sub-
strates that can alter the functional fate of a cell 
through posttranslational modifications (PTMs) 
or epigenetic remodeling. Several recent articles 
have covered these and other emerging topics 
in T cell metabolism (Chapman and Chi, 2014; 
Bird, 2015; Lochner et al., 2015; O’Sullivan and 
Pearce, 2015; Palmer et al., 2015; Ramsay and 
Cantrell, 2015; Ron-Harel et al., 2015). In this 

review, we provide a general but comprehensive 
overview of lymphocyte metabolism integrated 
with current research. Our focus will be on data 
and concepts derived primarily from T cell stud-
ies, with tie-ins from other fields when relevant.

T cell development and quiescence
Although the bulk of T cell metabolism research 
centers on mature T cells, even at their incep-
tion and throughout their development, T cells 
cycle through states of metabolic quiescence and 
activation. Hematopoietic stem cell progenitors 
that are double negative (DN) for CD4 and CD8 
co-receptors migrate from the bone marrow and 
seed the thymus where they rearrange their an-
tigen receptor gene loci to produce a functional 
TCR. Signals from the receptor Notch1 maintain 
cell survival and promote T cell lineage com-
mitment (Pui et al., 1999; Radtke et al., 1999; 
Maillard et al., 2006). Induced deletion of Notch1 
during neonatal development results in arrest at 
the most immature DN1 (CD44+CD25) stage 
(Radtke et al., 1999), whereas enforced expression 
of constitutively active Notch1 in bone marrow 
cells blocks B cell differentiation and instead 
causes the ectopic development of CD4+CD8+ 
double-positive (DP) T cells (Pui et al., 1999).

Successful expression of TCR with pT 
and CD3 forms the pre-TCR, which signals with 
Notch1 to drive cells out of quiescence as they 
enter  selection (Saint-Ruf et al., 1994; Ciofani 
et al., 2004; Ciofani and Zúñiga-Pflücker, 2005). 
RAG recombinase expression declines and ex-
pression of the transferrin receptor CD71 and 
other nutrient transporters are induced as the 
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Lymphocytes must adapt to a wide array of environmental stressors as part of their normal 
development, during which they undergo a dramatic metabolic remodeling process. Re-
search in this area has yielded surprising findings on the roles of diverse metabolic path-
ways and metabolites, which have been found to regulate lymphocyte signaling and 
influence differentiation, function and fate. In this review, we integrate the latest findings 
in the field to provide an up-to-date resource on lymphocyte metabolism.
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“Part of the secret of success in life is to  
eat what you like and let the food �ght it out 
inside.” 
– Mark Twain
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and Bevan, 1999; Muranski et al., 2000). However, unrestrained 
Akt activation, or deletion of negative regulators of TCR stimu-
lation, leads to loss of quiescence (Yang et al., 2011). T cells 
defective in tuberous sclerosis complex 1 (TSC1), a negative 
regulator of mTOR signaling, prematurely exit from quies-
cence and have increased rates of apoptosis and hyperactive 
responses to TCR stimulation (Yang et al., 2011). In addition, 
TCR-mediated PI3K-Akt activation down-regulates IL-7R 
(Cekic et al., 2013), but, as discussed in the previous para-
graph, IL-7 signaling is essential to prevent apoptosis and  
ensure survival of the naive T cell pool (Rathmell et al., 2001; 
Surh and Sprent, 2008). A recent study showed that the me-
tabolite adenosine, which is a byproduct of metabolic activity, 
suppresses TCR signaling in a dose dependent manner (Cekic 
et al., 2013). The G-protein–coupled adenosine receptor sub-
type A2AR is predominantly expressed in T cells. Binding 
with adenosine activates cAMP-dependent protein kinase A 
(PKA), which suppresses TCR-mediated activation of the 
PI3K pathway and prevents IL-7R down-regulation (Cekic 
et al., 2013).

Activation and effector T cell differentiation
Metabolic reprogramming during T cell activation. Once 
in the periphery, a mature naive T cell is like a bomb, lying 
dormant in the lymphoid organs and circulation until it is 
triggered to activate and explode in a proliferative chain reac-
tion. T cell activation stimulated by TCR ligation and binding 
with costimulatory molecules induces metabolic remodeling 
of the naive T cell to a program of anabolic growth and bio-
mass accumulation; this is marked by the engagement of aerobic 
glycolysis, a process in which glucose is converted into lactate 
even though sufficient oxygen is present to support glucose ca-
tabolism via the tricarboxylic acid (TCA) cycle and OXPHOS 
(Fig. 1; Vander Heiden et al., 2009; MacIver et al., 2013). Al-
though aerobic glycolysis is less efficient than OXPHOS at 
yielding an abundance of ATP per molecule of glucose, aero-
bic glycolysis can generate metabolic intermediates impor-
tant for cell growth and proliferation, and provides a way to 
maintain redox balance (NAD+/NADH) in the cell (Fig. 2; 
Vander Heiden et al., 2009; Anastasiou et al., 2011; Macintyre 
and Rathmell, 2013). For example, glucose-6-phosphate and 
3-phosphoglycerate (3PG) produced during glycolysis can be 
metabolized in the pentose phosphate and serine biosynthesis 
pathways, respectively, donating important precursors for nu-
cleotide and amino acid synthesis (Wang et al., 2011; Pearce 
et al., 2013). Glucose can also enter the mitochondria as py-
ruvate, where it is converted to acetyl-CoA and joins the TCA 
cycle by condensing with oxaloacetate to form citrate. Break-
down of substrates in the TCA cycle not only provides reducing 
equivalents for OXPHOS, but also precursors for biosynthe-
sis. Glucose-derived citrate can be exported into the cytosol 
to generate acetyl-CoA by ATP citrate lyase (ACL) for use in 
lipid synthesis (Bauer et al., 2005; Hatzivassiliou et al., 2005; 
DeBerardinis et al., 2008). Similarly, oxaloacetate can be used 
to produce aspartate, an additional precursor for generating 
nucleotides (Fig. 2; DeBerardinis et al., 2007).

cells proliferate (Ciofani and Zúñiga-Pflücker, 2005; Kelly et al., 
2007). Signaling from the pre-TCR, Notch1, and the chemo-
kine receptor CXCR4 converge to activate phosphatidylino-
sitol 3-kinase (PI3K); this stimulates the switch to anabolic 
metabolism (metabolic pathways that create biomass from 
smaller molecules; Ciofani and Zúñiga-Pflücker, 2005; Janas 
et al., 2010). Increased expression of the glucose transporter 
Glut1 is required during this stage, and its expression is de-
pendent on activation of the kinase Akt by PI3K (Swainson et al., 
2005; Juntilla et al., 2007; Wieman et al., 2007). PI3K–Akt 
signaling also activates the mechanistic target of rapamycin 
(mTOR), and signals from this kinase augment the glycolytic 
metabolism used to support cell growth and proliferation 
(MacIver et al., 2013).

Disruptions in PI3K signaling also affect the transition of 
DP thymocytes to single-positive CD4 and CD8 T cells and the 
development of NKT cells, which require sustained signaling to 
join tcra V to distal J gene segments that define their invariant 
TCR (D’Cruz et al., 2010; Rodríguez-Borlado et al., 2003). 
PTEN (phosphatase and tensin homologue) is the principal 
negative regulator of the PI3K pathway. Thymocytes from mice 
that lack the microRNA cluster miR-181a1b1 have altered cel-
lular metabolism caused by a significant increase in PTEN ex-
pression (Henao-Mejia et al., 2013). Glucose uptake, measured 
by acquisition of the fluorescent glucose analogue 2-NBDG, 
and glycolytic rate are reduced in these cells, and nutrient trans-
porter expression is diminished. As a result of dysregulated PI3K 
signals, these mice have deficiencies in DP cells and completely 
lack NKT cells (Henao-Mejia et al., 2013).

The cytokine IL-7 has a pivotal role in ensuring the sur-
vival of developing and quiescent naive T cells by increasing 
expression of the antiapoptotic factor Bcl-2 (B cell lymphoma 2; 
Akashi et al., 1997; Maraskovsky et al., 1997; Tan et al., 2001; 
Yu et al., 2003). Mice deficient in IL-7 or the IL-7R chain 
have defects in T cell development (Peschon et al., 1994; von 
Freeden-Jeffry et al., 1995). IL-7 signals through the JAK3–
STAT5 pathway but can also activate PI3K (Pallard et al., 1999; 
Wofford et al., 2008). A recent study suggests that in addition 
to maintaining the survival of developing lymphocytes, IL-7 
signaling promotes the growth and proliferation of DN4 cells 
by increasing levels of trophic receptors, such as CD71 and 
the amino acid transporter CD98 (Pearson et al., 2012; Boudil 
et al., 2015), activities that were previously attributed mainly 
to Notch1 signaling. However, Notch1 can induce IL-7R ex-
pression and therefore its effects could be downstream of IL-7 
signals (González-García et al., 2009; Magri et al., 2009).

Mature naive T cells exit from the thymus into the periph-
ery. As quiescent cells, they primarily oxidize glucose-derived 
pyruvate in their mitochondria via oxidative phosphorylation 
(OXPHOS), or they use fatty acid oxidation (FAO) to generate 
ATP (Fig. 1; Fox et al., 2005; Wang et al., 2011; van der Windt 
and Pearce, 2012; Pearce and Pearce, 2013; Pearce et al., 2013). 
A balance between tonic TCR signals and IL-7 is needed to 
sustain naive T cells. Homeostatic proliferation of naive T cells 
is supported by TCR ligation with self-peptides presented on 
MHC molecules in the periphery (Ernst et al., 1999; Goldrath 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/212/9/1345/1163424/jem
_20151159.pdf by guest on 22 O

ctober 2020



JEM Vol. 212, No. 9 1347

Review

activity (Miyamoto et al., 2008; John et al., 2011). mTORC1 
activation increases protein translation via phosphorylation of 
4E-BP1 and p70S6 kinase (Laplante and Sabatini, 2012) and 
promotes lipid synthesis by activating SREBP2 (sterol regula-
tory element-binding protein 2; Porstmann et al., 2008).

The up-regulation of transcription factors c-Myc, estrogen-
related receptor  (ERR), and hypoxia inducible factor-1 
(HIF-1) coordinately drives the expression of genes involved 
in intermediary metabolism that fuel the rapid proliferation 
of effector T cells during clonal expansion (Michalek et al., 
2011b; Wang et al., 2011; Doedens et al., 2013). First discov-
ered as an oncogene important for cell growth and prolifera-
tion (Sheiness et al., 1978; Cole, 1986), c-Myc has been shown 
to be a critical regulator of metabolic reprogramming after  
T cell activation (Wang et al., 2011). c-Myc drives the expres-
sion of enzymes that promote aerobic glycolysis and glutami-
nolysis and coordinates these metabolic pathways with lipid, 
amino acid, and nucleic acid synthesis. However, c-Myc ex-
pression is not continually sustained after T cell activation (Nie 
et al., 2012; Best et al., 2013). A recent study suggests that c-Myc 
induces the transcription factor AP4, which maintains the 

Several transcription factors and signaling pathways coor-
dinately support and regulate this change in T cell metabolic 
programs after activation. Growth factor cytokines such as IL-2 
and ligation of costimulatory molecules promote the switch 
to glycolysis through the enhancement of nutrient transporter 
expression and activation of the key metabolic regulator mTOR 
(Fig. 1; Frauwirth et al., 2002; Jones and Thompson, 2007; 
Wieman et al., 2007; Kolev et al., 2015). mTOR exists as two 
complexes, mTORC1 and mTORC2, and integrates extrinsic 
and intrinsic signals related to nutrient levels, energy status, 
and stress to induce changes in cellular metabolism, growth, 
and proliferation (Laplante and Sabatini, 2012). CD28 ligation 
enhances PI3K activity, which recruits 3-phosphoinositide–
dependent protein kinase-1 (PDPK1) and Akt. PDPK1, to-
gether with mTORC2, phosphorylates Akt, which in turn 
activates mTORC1. Both Akt and mTOR promote aerobic 
glycolysis and support effector T cell differentiation, growth, 
and function (Delgoffe et al., 2011; Pollizzi et al., 2015). Akt 
regulates nutrient transporter expression and can phosphory-
late the glycolytic enzyme hexokinase II, promoting its local-
ization to the mitochondria and augmenting its enzymatic 

Figure 1.  Metabolism drives the life cycle of T cells. 
T cells engage specific metabolic pathways during  
development that underpin their differentiation and 
function. Naive T cells mature and exit from the thymus 
primarily relying on OXPHOS for their metabolic needs, 
although they augment with glycolytic metabolism dur-
ing times of proliferation that follow TCR gene rear-
rangements. In secondary lymphoid organs, TCR ligation, 
costimulation, and growth factor cytokine signals induce 
clonal expansion and metabolic reprogramming of an 
antigen-specific T cell. This conversion to an activated 
effector T cell is marked by the engagement of aerobic 
glycolysis and increased OXPHOS activity. Glycolytic  
metabolism differentiates CD4 Th1, Th2, and Th17 effec-
tor cells (and possibly Tfh cells) from T reg cells. Promot-
ing FAO and catabolic metabolism enhances T reg and 
memory T cell development (blue arrow). Memory  
T cells are a quiescent population of cells that primarily 
use OXPHOS, but both OXPHOS and glycolysis increase 
rapidly after antigen rechallenge and facilitate their 
recall responses.
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group identified mice with enhanced CD8 T cell responses to 
viral and tumor challenge (Okoye et al., 2015). The source of 
the heightened immunity gained after germline mutagenesis 
was the increased expression of an orphan protein, identified 
as lymphocyte expansion molecule (LEM). Interestingly, aug-
mented OXPHOS and mitochondrial ROS levels were de-
tected in CD8 T cells isolated from LEM-deficient mice after 
infection, whereas heterozygous LEM-deficient CD8 T cells 
had reduced OXPHOS and mitochondrial ROS levels. LEM 
helps stabilize a protein involved in inserting ETC complex 
proteins in the mitochondrial membrane, which may account 
for the increased ROS and enhanced proliferation evident in 
CD8 T cells from these mice (Okoye et al., 2015).

Although ROS is produced as a general byproduct of mi-
tochondrial metabolism, new studies have specifically linked 
the metabolite succinate to both the generation of ROS and 
activation of HIF-1 in settings of inflammation or injury 
(Tannahill et al., 2013; Chouchani et al., 2014). Innate im-
mune receptor activation increases intracellular succinate 
from glutamine via glutamine-dependent anerplerosis and the 
-aminobutyric acid shunt pathway, and this leads to HIF-1 
stabilization and activation (Tannahill et al., 2013). During 

glycolytic transcriptional program initiated by c-Myc to sup-
port T cell population expansion (Chou et al., 2014; Karmaus 
and Chi, 2014). HIF-1, a transcription factor that responds 
to oxygen levels, also increases glucose uptake and catabolism 
through glycolysis (Kim et al., 2006; Finlay et al., 2012). Dele-
tion of its negative regulator, von Hippel-Lindau (VHL), en-
hances HIF-1–mediated CD8 T cell glycolysis and effector 
responses to persistent viral infection (Doedens et al., 2013).

ROS signaling. Although much of the attention on metabolic 
reprogramming in activated T cells has focused on the engage-
ment of aerobic glycolysis, recent research has revealed the 
importance of mitochondrial-driven activities in this process. 
In addition to energy production, the electron transport chain 
(ETC) is a major source of reactive oxygen species (ROS; 
Turrens, 2003), which are important for T cell responses (Fig. 2; 
Chaudhri et al., 1988; Devadas et al., 2002; Jones et al., 2007). 
T cells deficient for Rieske iron sulfur protein (RISP), a sub-
unit of mitochondrial complex III, have impaired activation 
and antigen-specific T cell expansion in vitro and in vivo due 
to defects in mitochondrial-derived ROS signaling (Sena et al., 
2013). More recently, using a forward genetic screen, another 

Figure 2.  Metabolic pathways that support T cells. 
ATP is the molecular currency of energy in the cell. It can 
be derived from glucose through two integrated path-
ways. The first of these, glycolysis (green), involves the 
enzymatic breakdown of glucose to pyruvate in the cyto-
plasm. The TCA cycle (orange) encompasses the second 
pathway, where pyruvate is converted to acetyl-CoA in 
the mitochondria and shuttled through several enzy-
matic reactions to generate reducing equivalents to fuel 
OXPHOS (brown). Other substrates can also be metabo-
lized in the TCA cycle, such as glutamine via glutaminoly-
sis (purple) or fatty acids via -oxidation (FAO; gray). 
These connected biochemical pathways can also provide 
metabolic precursors for biosynthesis. Intermediates 
from glucose catabolism during glycolysis can shuttle 
through the pentose phosphate (dark blue) and serine 
biosynthesis pathways (red) to fuel nucleotide and amino 
acid production. Oxaloacetate from the TCA cycle can 
similarly be used to generate aspartate for use in nucleo-
tide synthesis. Precursors for amino acid and nucleotide 
biosynthesis can be obtained from glutamine. Citrate 
from the TCA cycle can be exported from the mitochon-
dria and converted to acetyl-CoA for FAS (light blue). 
ROS generated from the ETC during OXPHOS can also act 
as secondary signaling molecules.
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markers and increasing cell size (Jacobs et al., 2008). Consis-
tent with these observations, T cell specific deletion of Glut1 
impairs CD4 T cell activation, clonal expansion, and survival 
(Macintyre et al., 2014). When deprived of glucose, CD8 T cells 
display defects in functional capacity with reduced IFN-, 
granzyme, and perforin production (Cham and Gajewski, 
2005; Cham et al., 2008; Jacobs et al., 2008). More recently, it 
was shown that T cells can become activated and proliferate 
when glucose catabolism through aerobic glycolysis is lim-
ited, as they can rely on OXPHOS (Chang et al., 2013; 
Sena et al., 2013). However, in this case, effector function is 
compromised, with impaired cytokine production caused 
by posttranscriptional regulation by the glycolytic enzyme 
GAPDH. When disengaged from glycolysis, GAPDH can func
tion as a RNA-binding protein (RBP) and prevent the trans-
lation of cytokine messenger RNAs containing AU-rich elements 
in their 3-UTRs (Chang et al., 2013). Therefore, in addition 
to providing precursors for biomass, augmenting aerobic gly-
colysis in activated T cells allows for the acquisition of full  
effector function.

Amino acids. Although glucose is a critical substrate for T cells, 
glutamine is also essential during T cell activation (Frauwirth 
et al., 2002; Carr et al., 2010; Wang et al., 2011). T cells increase 
the expression of glutamine transporters, and their deletion im-
pairs the transition to an effector T cell (Carr et al., 2010; Sinclair 
et al., 2013). Clear differences in concentrations of other amino 
acids also exist in quiescent compared with activated T cells, 
corresponding to their distinct metabolic requirements (Pearson 
et al., 2012; Ananieva et al., 2014). New research has begun to 
uncover the vast array of additional amino acid transporters and 
catabolizing enzymes that regulate amino acid levels, reveal-
ing previously unappreciated roles for amino acids in T cell 
metabolism and function.

Deficiency in the neutral amino acid transporter Slc7a5 
(LAT1), which transports leucine, prevents the metabolic repro-
gramming, clonal expansion, and/or effector function of both 
CD4 and CD8 T cells (Hayashi et al., 2013; Sinclair et al., 2013). 
These cells had impaired mTORC1 activation and were unable 
to induce key metabolic processes, such as enhancing gluta-
mine and glucose uptake (Sinclair et al., 2013). This deficiency, 
however, did not impair the ability of CD4 T cells to differenti-
ate into T reg cells. Leucine can activate mTOR via leucyl-
tRNA synthetase, and thus it is not surprising that reduced 
leucine uptake impairs mTOR activation (Han et al., 2012). 
However, the effects of Slc7a5 deficiency were more severe 
than those induced by mTOR inhibition using rapamycin 
(Sinclair et al., 2013), suggesting either that rapamycin may not 
have completely blocked mTOR activation, or that leucine 
deficiency has effects over and above limiting mTOR activation 
(Thoreen et al., 2009; Powell, 2013). Additionally, although no 
overt decrease in global protein expression occurred in Slc7a5-
deficient cells, protein expression of the key metabolic tran-
scription factor, c-Myc, was diminished, despite its increased 
mRNA expression upon activation (Sinclair et al., 2013). This 
raises the intriguing question of whether leucine deficiency 

ischemia reperfusion injury, which happens when blood supply 
to a tissue is disrupted and then restored, succinate accumu-
lates from reverse activity of the enzyme succinate dehydrog
enase (SDH) and is rapidly oxidized upon reperfusion. This 
leads to overreduction of the electron carrier coenzyme Q, 
causing reverse electron transport through mitochondrial com-
plex I and, subsequently, excessive ROS production (Chouchani 
et al., 2014; O’Neill, 2014). Given that mitochondrial ROS 
and HIF-1 activity are important for the metabolic repro-
gramming of naive T cells after activation, it is interesting to 
speculate that the metabolite succinate may also support the 
transition from a naive to an activated effector T cell.

Metabolic programming of T helper cell differentiation. 
Activation of T cells is intimately tied to the engagement of 
specific metabolic pathways, so it is no surprise that distinct 
metabolic programs also support the differentiation of CD4 
T helper (Th) cells into their separate lineages. Initial studies found 
that suppression of mTOR with rapamycin promoted the gen-
eration of FoxP3+ regulatory T (T reg) cells even in the pres-
ence of Th17-polarizing cytokines in vitro (Kopf et al., 2007), 
and genetic deletion of mTOR in T cells augmented produc-
tion of T reg cells upon activation, but not Th1, Th2, or Th17 
cells (Delgoffe et al., 2009). These results are consistent with 
the metabolic profiles of these cells: Th1, Th2, and Th17 cells 
strongly engage glycolysis via mTOR signaling, whereas T reg 
cells depend more on the oxidation of lipids (Fig. 1; Michalek 
et al., 2011a). Th17 cells in particular have been found to 
heavily rely on glycolysis for their development and mainte-
nance, stimulated by HIF-1 activity downstream of mTOR. 
Mice deficient in HIF-1 have increased generation of T reg 
cells, and blocking glycolysis with 2-Deoxy-d-glucose (2-DG) 
inhibits Th17 cell differentiation (Dang et al., 2011; Shi et al., 
2011). T reg cell homeostasis and survival depends on the 
delicate balance between mTORC1 activation from PI3K-
Akt and regulation from PTEN (Zeng et al., 2013; Huynh et al., 
2015; Shrestha et al., 2015). Signaling through mTORC1 versus 
mTORC2 also selectively differentiates CD4 T cells into the 
Th1 and Th2 lineages, respectively (Lee et al., 2010; Delgoffe 
et al., 2011), although activation of mTORC1 and its compo-
nent Raptor is still required for T cell exit from quiescence to 
begin the transition into Th2 cells (Yang et al., 2013). Less is 
known about T follicular helper (Tfh) cell metabolism com-
pared with other T cell subsets, but their lineage-defining 
transcription factor Bcl6 has been shown to suppress glycoly-
sis potentiated by c-Myc and HIF-1 (Johnston et al., 2009; 
Nurieva et al., 2009; Oestreich et al., 2014).

Substrate utilization in activated T cells
Glucose is a key metabolic substrate for T cells. Upon T cell 
activation, Glut1 traffics to the cell surface from intracellular 
vesicles (Rathmell et al., 2000; Frauwirth et al., 2002; Wieman 
et al., 2007). Overexpression of Glut1 in mice results in larger 
naive T cells and an increased number of CD44hi T cells,  
suggesting that glucose acquisition mediates early steps in  
T cell activation, such as promoting the expression of activation 
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