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An autonomous adaptive model predictive control (MPC) architecture is presented for
control of heating, ventilation, and air condition (HVAC) systems to maintain indoor tem-
perature while reducing energy use. Although equipment use and occupant changes with
time, existing MPC methods are not capable of automatically relearning models and com-
puting control decisions reliably for extended periods without intervention from a human
expert. We seek to address this weakness. Two major features are embedded in the proposed
architecture to enable autonomy: (i) a system identification algorithm from our prior work
that periodically re-learns building dynamics and unmeasured internal heat loads from
data without requiring re-tuning by experts. The estimated model is guaranteed to be
stable and has desirable physical properties irrespective of the data; (ii) an MPC
planner with a convex approximation of the original nonconvex problem. The planner
uses a descent and convergent method, with the underlying optimization problem being fea-
sible and convex. A yearlong simulation with a realistic plant shows that both of the features
of the proposed architecture—periodic model and disturbance update and convexification
of the planning problem—are essential to get performance improvement over a commonly
used baseline controller. Without these features, long-term energy savings from MPC can
be small while with them, the savings from MPC become substantial.
[DOI: 10.1115/1.4051482]
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1 Introduction
Heating, ventilation, and air conditioning (HVAC) systems are

responsible for approximately 40% of the total energy consump-
tion of buildings in USA [1]. It has been recognized by many
researchers that instead of the traditional rule-based control
systems, an optimization-based controller—especially model pre-
dictive control (MPC)—is a highly promising approach to reduce
energy use; see, for instance, the review paper [2].
In spite of extensive studies and even successful demonstration

projects, e.g., Refs. [3–5], MPC has not been widely adopted in
practice. The bottlenecks—which have been discussed extensively
as well—can be summarized into lack of autonomy of existing
control architectures that use MPC. By autonomous MPC, we
mean an MPC scheme capable of reliably computing high-quality
control decisions at all times without the need for human interven-
tion. A building’s and its equipment’s behavior are quite complex
and uncertain, so the models needed by MPC need to be learned
from data. Since the building’s behavior also changes with
time—albeit slowly—the models need to be updated over time.
The overall architecture thus needs to be adaptive.
Although there is an extensive literature on identification of

HVAC system models from data, the vast majority of the existing
methods cannot be used for autonomous adaptation. These algo-
rithms fit model parameters by solving a non-convex optimization
problem, e.g., Refs. [6–9]. Depending on the type and quality of
data used, they require re-tuning of hyper-parameters by a human
expert. Clearly such an approach cannot lead to an autonomous
control system. Another issue is that although the unmeasurable

internal heat gains from occupants are substantial, most identifica-
tion methods still ignore them which can lead to poor model
quality. Works on model identification in the presence of large
unknown disturbance in a principled manner are limited [8–10].
The planning problem that MPC solves at every decision instant

to compute control commands should be feasible and convex. With
a nonconvex problem, the planner can fail to converge to a local
minimum within the allowed computation time. Infeasibility has
the same effect. In either case, a rule-based controller must be
used as back up when the non-convex planner cannot provide a
control command. Switching between controllers can cause poor
performance. The MPC planning problem is usually non-convex
due to bilinearities in models and cost functions [11–15]. Most
works on HVACMPC ignore the issue of reliability of the decisions
computed by a non-convex planner, especially over long periods of
operation.
In this paper, we propose an adaptive MPC architecture for

HVAC systems, shown in Fig. 1, that is capable of operating

Fig. 1 Structure of the desired building adaptive MPC
architecture
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autonomously for long periods of time without intervention of a
human expert.
The “ID + prediction” block uses an algorithm proposed in our

prior work [10] to identify the plant model and the unmeasured
internal disturbance from easily measured input-output data. This
algorithm involves solving an optimization problem that is always
feasible and convex, and the model it identifies (M̂) is guaranteed
to be stable and possess properties that are consistent with proper-
ties of a building HVAC system. The algorithm has one hyper
parameter that needs to be tuned only once. In short, the identifica-
tion algorithm does not need any human intervention when new
data is fed into it periodically, say, every week, to update the
model. The past disturbance identified by the algorithm is used to
forecast the future disturbance ( �̂w) that is in turn used by the
MPC planner.
The “MPC planner” block of the system uses the model and dis-

turbance forecasts to decide control commands so as to maintain
indoor climate while reducing energy use. We provide a convex
approximation algorithm to approximately solve the nominal non-
convex planning problem. We show that the algorithm is a feasible,
descent, and convergent algorithm. Thus, the MPC planner block
can compute decisions autonomously without human expert. We
also show that among the many ways of convexifying these types
of non-convex problems, the proposed approach is the only one
applicable to our specific problem structure.
The proposed convex planner and the associated analysis is the

first novel contribution of the paper. The second contribution is
the performance assessment of the closed-loop system for a year-
long period. Numerical results show that the proposed MPC
scheme is not only more energy efficient and better at indoor
climate control than a conventional baseline controller. More
importantly, these simulations show that both features of the pro-
posed design—periodic update of the model and disturbance and
convexified MPC planner—are necessary to get the performance
improvement over the baseline controller. These discoveries are
made possible only due to the long duration for which simulations
are conducted. While that is perhaps not surprising for the role of
periodic model update, the discovery on the role of convexification
also required the yearlong simulation. In particular, the non-convex
controller was seen to perform as well as the convex one in all but a
few rare instances. In these few rare cases, however, the perfor-
mance of the non-convex planner was catastrophic.
This study makes three additional contributions over the prelim-

inary version [16]. (i) We provide new analysis regarding the appro-
priate convexification method for the MPC planner, while Ref. [16]
did not have any such results. (ii) This study includes closed-loop
simulations for a yearlong period while the preliminary version
only included 3weeks of simulation. (iii) Comparison with three
additional architectures, each obtained by removing model update
or convexification or both, is provided. These comparisons reveal
which of these features of the proposal are useful or necessary (or
not).
The rest of this paper is organized as follows. Section 1.1 pro-

vides a review of relevant work on HVAC MPC. Section 2
describes the HVAC control problem. Sections 3 and 4 present
the components of “MPC planner” and “ID + prediction,” respec-
tively. The simulation is set up in Sec. 5, and the results are pre-
sented in Sec. 6. Finally Sec. 7 concludes this work.

1.1 Literature Review. Dynamic models of building HVAC
systems are typically nonlinear, which makes the planning
problem in MPC a non-convex optimization problem. The nonlin-
earity comes from the existence of the bilinear terms—products
between a state, temperature, and a control command, airflow
rate; we will see this in Eqs. (4) and (6) later in this paper. Some-
times, the dynamic model is linearized to obtain a convex
problem. Among works adopting this approach, some assume the
value for a certain control command is known so that the product
in which that command appears becomes linear in the remaining

decision variables [14,17]. This reduces a degree-of-freedom that
MPC can use. Others linearize around a trajectory, which requires
an optimal (or at least a near optimal) trajectory first [13,18]. The
quality of a linearized model is sensitive to the choice of the trajec-
tory, and determining such a trajectory is challenging. After all, if it
were easy, there would be little need for MPC. Identifying a linear
black box model directly from data is also not straightforward (we
discuss this later in Sec. 3). Recent progress in this direction is made
in Refs. [10,19], which identify a linear model in which the input is
the heat gain due to the HVAC system. However, the model is still
not linear with respect to the control commands such as air flowrate.
Convex relaxation of the MPC planning problem is thus far from
trivial.
There has been recent attempts at convexification of the non-

convex planning problems encountered in HVAC MPC
[12,15,20]. Reference [20] does not require constraints to be satis-
fied at all time, but only with a pre-defined probability. Therefore,
the resulting solution may not satisfy actuator constraints. In
Ref. [12], values of the Lagrange multipliers are required for refor-
mulation of the problem. The convexification approach using a
McCormick envelope considered in Ref. [15] requires feasibility
of the original problem (without slack) for all time. The original
problem is likely to be infeasible when disturbance is large, since
the actuator limits will prevent them from maintaining state
constraints.
Another particular challenge is that the internal disturbance is

also a large part of the heat load and hence a large part of the
energy consumption in buildings. Therefore, internal disturbance
prediction is needed to achieve the promised performance of
MPC. Some works ignore the effects of internal disturbance in
the MPC formulation altogether, e.g., Ref. [21]. Many leave the dis-
turbance forecast question aside, assuming that future disturbance is
somehow known to MPC, e.g., Refs. [12,15,22,23]. Some use sto-
chastic optimization to address uncertainty in disturbance forecasts,
e.g., Ref. [13]. A few works forecast internal disturbance from its
estimate, which is obtained from measuring its various surrogates
and modeling the relationship, such as plug loads [5] and occupancy
and CO2 [4].

2 Architecture
2.1 Problem Description. The focus of this study is the indoor

climate control of a single-zone HVAC system shown in Fig. 2.
In such a system, part of the air exhausted from the zone is recir-

culated and then mixed with outdoor air (OA) at a specified ratio.
This mixed air (MA) is usually warm and humid, especially for
hot-humid climates, and is therefore cooled and dehumidified by
passing through a cooling coil. Dehumidification requires that the
air is cooled enough for the water vapor to condense out of
the air stream, so the conditioned air (CA) temperature (after the
cooling coil), is usually too cold for a comfortable indoor climate.
It is reheated by the reheat coil up to supply air (SA) temperature
and then delivered into the zone.
The goal of the control system designed in this study is to decide

the control commands to maintain the zone temperature (Tz) within
time-varying pre-determined bounds, while keeping the energy use
as small as possible. The control commands are the setpoints for
total airflow rate (ṁ) and supply air temperature (Tsa). Lower
level PI controllers will maintain these setpoints by varying fan
speed and reheat valve position.
Although conditioned air temperature Tca and the outdoor air

ratio α (ratio of outdoor air flowrate to supply air flowrate) can
also be varied, in this study we assume they are fixed. The condi-
tioned air temperature is typically set to 12.8 °C in order to maintain
zone humidity, which is an important aspect of thermal comfort
[24]. Similarly, the outdoor air ratio α is pre-specified at a constant
value, and the minimum allowed value for the supply air flowrate ṁ
is computed so that the OA flowrate αṁ meets ventilation require-
ments [25].
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2.2 Control System Architecture. The control architecture
proposed in this study is shown in Fig. 1. It involves two main com-
ponents: (i) the ID and prediction block and (ii)MPC planner block
that uses the models and forecasts to compute control commands.
Model predictive control of a system xk+1= fk(xk, uk, vk), yk=

hk(xk, uk, vk), with x being the state, u being the control command
and v being the uncontrollable inputs, involves minimization of a
cost function Ji =

∑i+N−1
k=i ck(x̂k+1, uk , v̂k) over the planning

horizon N with ck(·) being the energy used during the interval
between k and k+ 1. At time index i, an optimization problem of
minimizing Ji subject to the system model and other constraints is
posed based on the current estimate x̂i of the state xi and forecasts
v̂ of uncontrollable inputs v. The solution to this problem yields
optimal commands ui, ui+1, …, ui+N−1. The first entry, ui, is imple-
mented. At the next time index i+ 1, the procedure is repeated.
In the adaptive architecture proposed here, the model is updated

periodically by the system identifier, although at a much slower
time scale than that of the control command update. In the numer-
ical studies later reported, the model is updated every week while
control commands are updated every 15min.

3 (Block II) Model Predictive Control Planner
We start with the second block (MPC planner) of Fig. 1, since it

is in charge of computing control commands, and the other blocks
are there merely to support it. The MPC planner needs models to
describe the energy consumption and the temperature dynamics,
which appear as part of the cost and constraints in the planning
problem. Energy is the integral of power, and the power consump-
tion of the HVAC system consists of fan power, cooling power, and
reheat power. The fan power is modeled as [26]

Pfan
k = af ṁ

2
k (1)

with ṁ being the total airflow rate (kg/s). The cooling power Pcc
k is

the electrical power consumed by the chiller to cool down the warm
mixed air as it passes through the cooling coil:

Pcc
k =

Cpaṁk (Tma
k −Tca)

COP Tma
k > Tca

0 otherwise

{
(2)

where Cpa is the specific heat of air at constant pressure, T
ca (°C) is

the conditioned air temperature, COP is the chiller performance
coefficient, and the mixed air temperature Tma

k (°C) is given by

Tma
k = αToa

k + (1 − α)Tz
k (3)

where α = ṁoa
k

ṁk

( )
is the outdoor air ratio, Toa

k is the outdoor air tem-

perature (°C), ṁoa
k is the outdoor airflow rate (kg/s), and Tz

k (°C)

is the indoor zone temperature. The power consumed by reheat
coil is modeled as the heat it adds to the conditioned air:

Prh
k = Cpaṁk(T

sa
k − Tca) (4)

where Tsa
k is the supply air temperature (°C).

Dynamics of zone temperature are modeled by the following
second-order linear system with one output (indoor zone tempera-
ture Tz), and four inputs (heat injected by the HVAC system
qhvac, outdoor temperature Toa (°C), solar irradiance ηsol (kW/m2),
transformed disturbance �w):

xk+1 = Axk + Bqhvack + Fvk

Tz
k = Cxk + Dqhvack + Gvk

(5)

where x ∈ R2 is the state and A ∈ R2×2, B ∈ R2×1, C ∈ R1×2,
D ∈ R, F ∈ R2×3, and G ∈ R1×3 are appropriate system matrices.
The four inputs are separated into the single controllable input
qhvack and three uncontrollable inputs vk :=[Toa

k , ηsolk , �wk]T ∈ R3,
where �w is the transformed version of the internal heat load qintk

(kW); see Ref. [10] for details. It captures the effect of qintk on the
zone temperature Tz

k . The quantity qhvack is related to the two actua-
tion commands (supply airflow rate ṁk and the deviation of supply
air temperature T sa

k ) via the bilinear relation:

qhvack = Cpaṁk(T
sa
k − Tz

k ) (6)

Remark 1. Although qhvac is considered the controllable input in
Eq. (5), it cannot be commanded directly. Only ṁ and Tsa can be
commanded. Treating qhvac as the controllable input helps in two
ways. First, it makes the model (5) linear, which aids model identi-
fication (discussed in Sec. 4). Second, the linear model is a convex
constraint in the optimization problem the planner has to solve. We
emphasize that a linearmodel structurewith ṁ andTsa as inputs, even
though conceptually possible, is not useful for eventual use in MPC.
The reason is that the sign of the DC gain (from ṁ to Tz) depends on
whether the control commands are having a cooling or heating effect
on the zone. If the supply air temperature Tsa is higher than the
zone temperature Tz, increasing ṁ will increase the zone tempera-
ture. So, the DC gain is positive in such a scenario. The opposite
happens when Tsa is lower than Tz. Now the DC gain has to be
negative. However, a-priori knowledge of whether the control
inputs will lead to heating or cooling is not available since that
depends on both the state an control command. ▪

3.1 Nominal Non-Convex Planner. The goal of the MPC
planner is to compute the control commands over the planning
horizon, supply airflow rate ṁ, and supply air temperature Tsa, to

Fig. 2 A schematic of a typical single-zone variable air volume HVAC system used in a
commercial building. Control commands (red) are ṁ and Tsa, and measured variables
are marked in blue.
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maintain thermal comfort while reducing energy use over that
horizon. A direct translation of this goal into an optimization
problem will be a non-convex problem, partly due to the bilinearity
in Eq. (6). We first present this problem below, and then use it as a
stepping stone to formulate a convex approximation that is actually
used in the proposed MPC planner.
For notational simplicity, the current time index i is assumed to

be 0 in this section. Define the decision variables as
zk := [ṁk , T sa

k , T
ma
k , Tz

k , q
hvac
k , xTk+1, ϵ

min
k , ϵmax

k ]T ∈ R9, in which x ∈
R2 is the state of the thermal model (5), ṁ and Tsa are the control
commands, and N is the planning horizon. Let x̂0 be the estimate
of the current state obtained from a state estimator, and let v̂k
(:=[T̂oa

k , η̂solk , �̂wk]T ) be the prediction of the uncontrollable inputs,
for k = 0, . . . , N − 1. Specifically, T̂oa and η̂sol are from weather
forecast, and �̂w is provided by a disturbance predictor which will
be discussed later in Sec. 4.3.
The nominal non-convex planning problem is

min
zk |N−1k=0

J, J :=
∑N−1
k=0

Δt(Prh
k + Pcc

k + Pfan
k ) + ρ(ϵmin

k + ϵmax
k )

( )
(7)

s. t. −qhvack +
1
2
zTk Pczk = 0 (7a)

−xk+1 + Axk + Bqhvack + Fv̂k = 02×1, x0 = x̂0 (7b)

−Tz
k + Cxk + Dqhvack + Gv̂k = 0 (7c)

−Tma
k + (1 − α)Tz

k + αToa
k = 0 (7d)

−ṁk ≤ −ṁmin, ṁk ≤ ṁmax (7e)

−ṁk+1 + ṁk ≤ ṁrateΔt (7f )

ṁk+1 − ṁk ≤ ṁrateΔt (7g)

−Tsa
k ≤ −T sa,min, Tsa

k ≤ T sa,max (7h)

−Tsa
k+1 + Tsa

k ≤ T sa,rateΔt (7i)

T sa
k+1 − T sa

k ≤ Tsa,rateΔt (7j)

−Tz
k − ϵmin

k ≤ −Tz,min (7k)

Tz
k − ϵmax

k ≤ Tz,max (7l)

−ϵmin
k ≤ 0, −ϵmax

k ≤ 0

k = 0, . . . , N − 1
(7m)

where

Pc =

0 Cpa 0 −Cpa 01×5

Cpa

0 08×8

−Cpa

05×1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

and is obtained by rewriting Eq. (6).
Actuator constraints [ṁmin, ṁmax] and [T sa,min, T sa,max] represent

the lower and upper bounds of the airflow rate and the supply air
temperature, respectively. The minimum supply airflow rate,
ṁmin, is computed based on ventilation requirements [25]. To

ensure reheat coil can only add heat, we require T sa,min = Tca.
Thermal comfort bounds are [Tz,min, Tz,max]. Slack variables ϵmin,
ϵmax are used to relax the thermal comfort bounds from a fixed
range [Tz,min, Tz,max] to a variable range [Tz,min − ϵmin, Tz,max +
ϵmax]. These slack variables help ensure that the problem is feasible.
A high penalty parameter ρ encourages the slacks variables to be
small so that temperature violation—when it occurs—is small.
For later convenience, we note that J can be compactly expressed

as

J =
∑N−1
k=0

1
2
zTk Pzk + qTzk

( )
(9)

where

P =

2αf Cpa
Cpa

COP
01×6

Cpa

Cpa

COP 08×8
06×1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
Δt (10)

q = −CpaTca 1 + COP

COP
Δt06×1ρρ

[ ]
(11)

by rewriting Eqs. (1)–(2) and (4).
PROPOSITION 1. Problem (7) is feasible.
The proof of Proposition 1 is provided in the Appendix.

3.2 Proposed Convex Planner. The optimization problem (7)
is non-convex since the equality constraint (7b) is bilinear, and the
quadratic term in the cost (9) involves the indefinite matrix P. The
goal now is to approximate the problem (7) with a convex problem,
so that the approximation is easy to solve and the obtained solution
provides good approximation to that of problem (7).
The algorithm we propose to this end is described in Algorithm 1.

It uses the convex-concave procedure (CCP) [27]. In Algorithm 1,
the following terminology is used. Let P=Q(Λ++Λ−)QT be the
eigen-decomposition of the real symmetric matrix P from
Eq. (10), where Λ+0 is the positive semi definite part and Λ− ≺ 0
is the negative definite part. Define P+ :=QΛ+QT and
P− :=QΛ−QT .

Algorithm 1 Convex planner

Input: Initial guess ζ(0).
n← 0.
repeat
Convexify: Form:

Ĵ =
∑N−1
k=0

1
2
zTk P

+zk + (P−ζk(n) + q)T zk − 1
2
ζk(n)TP−ζk(n)

( )
,

ĥ1,k: −qhvac + ζk(n)TPczk −
1
2
ζk(n)TPcζk(n) = 0.

(12)

Solve for z*:

z∗ = arg min
zk |N−1k=0

Ĵ (13)

s. t. equality constraints (12), (7b)− (7d)
inequality constraints (7e)−(7m)
k= 0,… N− 1

Update iteration: Set n ← n+ 1, ζ(n) ← z∗.
until ‖ζ(n) − ζ(n− 1)‖ ≤ δ;
Output: z∗ ← ζ(n)
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PROPOSITION 2. [16] Problem (13) is feasible and convex, and
Algorithm 1 is a descent and convergent algorithm.
Remark 2. Proposition 2 guarantees reliable performance of Algo-
rithm 1. Since problem (13) is feasible and convex, if the algorithm
converges within the allowable time, it converges to a local
minimum of the original non-convex problem. If the algorithm
must be stopped before convergence due to inadequate time, the
solution obtained has a lower cost than solutions from previous iter-
ates since it is a descent algorithm. ▪

3.2.1 Choice of Convex Approximation Method. Apart from
the convex-concave procedure we used, there are many approxi-
mation methods for non-convex optimization problems that
involve bilinearities. The commonly used methods are
(i) Branch-and-Bound (BnB) [28] and (ii) Alternate Convex
Search (ACS) [29]. Next, we show that these methods are not appli-
cable to our problem (7), leaving CCP as the only candidate. The
following two propositions will be needed for that discussion.
PROPOSITION 3. [16] The dual of problem (7) is unbounded from

below.
PROPOSITION 4. Every solution of Problem (7) is a boundary

solution.
The proof of Proposition 4 is provided in the Appendix.

3.2.1.1 Inapplicability of branch-and-bound (BnB). BnB
requires construction of a tight convex under-estimator of the
NLP within any given region of the space of the variables [28].
The most widely used under-estimators are Lagrangian relaxation
[30] or convex relaxation. However, Proposition 3 shows the dual
of our problem (7) is unbounded from below. Therefore, Lagrang-
ian relaxation cannot be applied. For convex relaxation, common
options are McCormick envelope [28] and reformulation lineariza-
tion technique (RLT) [31]. Both of them reformulate a problem
via the addition of certain nonlinear constraints that are generated
by using the products of the bounding constraints. However, con-
structing such products require knowledge of bounds on variables
that are involved. In our problem, thermal comfort limits do not
have known bounds because of the introduction of slack variables.
Hence, convex relaxation is also not applicable for our case.

3.2.1.2 Inapplicability of alternate convex search (ACS).
ACS [29] divides variable set into disjoint blocks and in every
step, only the variables of an active block are optimized while
those of the other blocks are fixed. Analyses and examples from
Refs. [32,33] show that this method will most likely fail to find a
local optimum for problem with boundary solutions (our case).
Only initial guesses that belong to a particular set will converge
to a local optimum. Because there is no guarantee on convergence
to local minima, we do not use ACS.

4 (Block I) Identification and Prediction
4.1 Identification. The job of the identification block of Fig. 1

is to use data to identify parameters of the zone temperature dynam-
ics model (5), along with the unmeasurable occupant-induced dis-
turbance. We rewrite the model in a different form to describe the
identification problem precisely:

xk+1 = Axk + Biduidk + Fid �wk

yk(=Tz
k ) = Cxk + Diduidk + Gid �wk

(14)

Here, the state xk ∈ R2, the output yk ∈ R, and the matrices A, C are
the same as in Eq. (5). But while the four inputs in Eq. (14) were
divided into controllable and not controllable; here, they are
divided into measurable and non-measurable. In particular, uidk : =
[qhvac, Toa, ηsol]k ∈ R3 consists of the measurable inputs to the
thermal dynamics and the transformed disturbance �wk ∈ R is the
non-measurable input. Other than the regrouping, the two models
are identical. Among the three components of uidk , q

hvac is computed
from measurements of ṁ and Tsa using Eq. (6), and the remaining
two inputs can be obtained from a weather station. The output Tz

is measured with a sensor.
The system identification algorithm used here is the SPDIR

method proposed in our earlier work [10]. Fix i as the current
time when system identification is to be carried out. Define
τi: = {i−N, i−N+ 1, …, i− 1} and (uid, y)j, j∈ τi be the mea-
sured input–output data for the model (14) over that time interval.
The algorithm SPDIR takes this data and produces an estimate of
the model parameters M : = (A, Bid , Fid , C, Did , Gid) and an esti-
mate of the transformed disturbance �wj, j ∈ τi. We denote these
estimates M̂i and �̂wj, j ∈ τi since they depend on i. The
SPDIR algorithm is executed at time instants i, i+Nad, i+
2Nad, …, with Nad large so that enough time has after the previ-
ous identification to warrant updating the estimates of the model
and disturbance.
The SPDIR algorithm comes with the following guarantees [10]:

(1) The computation involved in obtaining the estimates (model
and disturbance signal) is a feasible and convex optimization
problem with a strictly convex cost.

(2) The model M̂i is BIBO stable and has a positive DC gain
from each of the three measurable inputs (outdoor tempera-
ture, solar irradiance, and HVAC heat injection) to indoor
temperature.

(3) There is exactly one parameter that requires tuning by a
human expert. This tuning can be done once (one data set).
The two properties mentioned above hold irrespective of
the value of this parameter.

Remark 3. The first property ensures that the system identifica-
tion algorithm can be executed periodically without any human

Fig. 3 Time-varying parameters of the plant
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intervention, i.e., autonomously. Autonomy is also helped by the
third feature. The second feature helps in two ways. One, it
ensures that the model identified is consistent with the physics of
HVAC systems. Two, it helps in state estimation. At every decision
instant i, a Kalman filter is used to estimate the state of the thermal
model (5), which is then used as the initial state by the MPC planner
: x̂0 in Eq. (7b). The stability guarantee of the model mentioned
above ensures that the Kalman filter is stable [34]. ▪

4.2 Forecasts of Uncontrollable Inputs. Two types of
uncontrollable inputs appear in the thermal model (5), and thus
their forecasts over the planning horizon are needed by the MPC
planner: weather variables and transformed disturbance �w. These
forecasts are obtained as follows:

(1) Weather variables: Obtain forecast of [Toa, ηsol]Tk over the
next planning horizon from an online weather service.

(2) Transformed disturbance �w: If the prediction horizon does
not contain a holiday, assign the disturbance for the same
time interval from the previous week estimated by the
system identifier, as the forecast. If the prediction horizon
contains a holiday, use the disturbance estimate from the
same time interval of the previous Saturday as the forecast.
This method is similar to the one used in Ref. [5], except
for the holiday corrections.

4.3 Putting Them All Together. The components described
so far are now combined to form the proposed controller. The archi-
tecture is described in Algorithm 2. Recall that Fig. 1 shows the
complete closed loop system.

Algorithm 2 Proposed MPC architecture

Input: Planning horizon N ∈ Z+, control horizon Nc ∈ Z+, and model
updating interval Nad ∈ Z+.

Setup: Sc: = {Nc, 2Nc, . . .}, Sad : = {Nad, 2Nad, . . .}
for i = 1, 2, . . . do
if i ∈ Sad then

Measure: Input uid and output y of the model (14), over the time
interval [i − Nad : i − 1].
System ID: Estimate model M̂i and disturbance �̂w[i− Nad : i − 1]
using the SPDIR algorithm from [10].

end
Estimate state: Estimate current state x̂[i] of thermal model (5) using a
Kalman filter.
Predict disturbance: As described in Section 4.2
Optimize: Compute control decisions ṁ[i : i + N − 1] and Tsa[i :
i + N − 1] using Algorithm 1.
Implement: Apply ṁ[i : i + Nc − 1] and T sa[i : i + Nc − 1] to the
plant.

end

4.4 Baseline Controller for Comparison. The baseline con-
troller is chosen to be the single-maximum controller which is
widely used in practice [35]. The single-maximum controller oper-
ates the HVAC system in three modes depending on where the zone
temperature Tz is compared with the deadband [Tz,min, Tz,max].
When Tz exceeds the upper bound Tz,max, reheat is turned off and
the supply airflow rate ṁ is increased with the help of a PI control-
ler. When the zone temperature is below the lower bound Tz,min, the
airflow rate ṁ is kept at the minimum allowed value but the supply
air temperature is increased with the help of a PI controller. When
the zone temperature is in the deadband [Tz,min, Tz,max], the supply
air temperature is kept at Tca and the flowrate are both kept at the
minimum allowed value.

5 Simulation Setup
To assess performance of the proposed control system, we

perform closed loop simulations for nearly a yearlong period with

a realistic time varying plant. Simulations with the baseline control-
ler are also performed on the same plant for comparison. The plant
model on which the controller acts is calibrated to mimic a large
auditorium in a building in the University of Florida campus
(Pugh Hall). The auditorium in Pugh Hall is served by an air han-
dling unit, and it has the same HVAC system configuration as
shown in Fig. 2.

5.1 Plant Description. The plant is a time varying non-linear
ordinary differential equation, and with a large internal heat load qint

(kW).

Cz(t)Ṫ
z
(t) =

Tw(t) − Tz(t)
Rz(t)

+ qhvac(t) + Ae(t)η
sol(t) + qint(t)

Cw(t)Ṫ
w
(t) =

Toa(t) − Tw(t)
Rw(t)

+
Tz(t) − Tw(t)

Rz(t)

(15)

where Tw (°C) is the wall temperature, Cz(t), Cw(t), Rz(t), and Rw(t)
are the time-varying thermal capacitances and resistances of the
zone and wall, respectively, and Ae(t) is the effective area of the
building for incident solar radiation. One can view this model as
a time-varying version of the commonly used RC-network
models of building thermal dynamics.
The time-varying plant parameters are shown in Fig. 3, which are

chosen as follows. The average values of the time-varying parame-
ters are chosen to be the same as the values given in Ref. [9], which
contains the plant parameters estimated using data from an audito-
rium in Pugh Hall located in the University of Florida.

5.2 Closed Loop Parameters. The planning horizon for
MPC is 1 day and the control horizon is 15 min, with a sampling
time Δt= 5 min, so N = 288 and Nc = 3. These choices are inspired
by the study presented in Ref. [36]. The total time span for MPC is
50weeks. The number of decision variables for problems (7) and
(13) is 2592(=9N). The plant was simulated in MATLAB by discretiz-
ing the differential equation (13). Future work will explore using
publicly available MATLAB-based simulators such as Ref. [37].
Thermal comfort and flowrate constraints depend on whether the

building is in occupied or unoccupied mode [24]. The maximum
occupancy for Pugh Hall auditorium is 229 persons, and its occu-
pied mode (occ) is scheduled from 6:30 AM to 10:30 PM while
the remaining time is deemed unoccupied (unocc). We used these
parameters for the simulation. The thermal comfort bounds are
[21.9, 23.6]°C for occupied mode and [21.1, 24.4]°C for unoccu-
pied mode. The minimum allowed value for the supply airflow
rate ṁmin is computed based on the ventilation requirements speci-
fied in ASHRAE 62.1 [25]. More specifically, ṁmin,unocc is com-
puted assuming 0 occupancy for the unoccupied period with 31%
occupancy for the occupied period. Note for the baseline controller,
ṁmin,occ is kept as high as 1.90 kg/s; otherwise, the baseline control-
ler fails to maintain the zone temperature comfort satisfactorily. The
remaining parameters are listed in Table 1.
The uncontrollable input signals are chosen as follows: solar irra-

diance data ηsol is taken from NSRDB [38], and ambient tempera-
ture Toa is taken from online,1 both for Gainesville, FL, from the
year of 2013. The internal heat load (qint) is chosen by scaling
CO2 data collected from the auditorium in Pugh Hall during the
same year, which is shown in Fig. 4. The high-resolution and long-
term data collection was made possible by using a custom made
data logger [39]. The rationale is that occupancy is correlated to
the CO2 level. Note that the heat load is by design a large, time-
varying, and aperiodic signal.
All numerical results presented in this work are obtained through

MATLAB. Specifically, the plant is simulated in SIMULINK
©. The

system identification problem from Ref. [10] for estimating model
and disturbance is solved using CVX

© [40] package. For control

1http://weatherunderground.com
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computation, the nominal non-convex problem (7) is solved using
IPOPT

© [41] package, and the proposed convex problem (13) is
solved using CVX

© [40] package. We used a desktop computer
with a 3.60GHz × 8 CPU and 16 GB RAM, running Linux, for
the closed loop simulations.

6 Simulation Results
A total of five distinct controllers are tested through simulations

on the same plant:

• Baseline: the single-max controller described in Sec. 4.4.
• Proposed (Adapt-CVX): the proposed controller (Algorithm

2), with both model update and convex planner for control
computation.

• NAdapt-CVX: the proposed controller (Algorithm 2), but
without updating the dynamic model and the disturbance
estimates.

• Adapt-NCVX: the proposed controller (Algorithm 2), but
using the non-convex problem (7) instead of the convex
problem from Algorithm 1 to compute commands.

• NAdapt-NCVX:MPC with the nominal non-convex problem
(7) for computing control commands, and without updating the
dynamic model and the disturbance estimates. Note this the
MPC architecture generally described in the literature.

In all the controllers that uses a non-convex optimization, if the
NLP solver is unable to converge before the control update interval
is over, decisions computed by the baseline controller are sent to the
actuators.

6.1 Comparison With the Baseline Controller. The pro-
posed MPC scheme outperforms the baseline controller in both
maintaining zone temperature and reducing energy use, see
Table 2. Data on uncontrollable inputs, control command, and the
output (zone temperature) are shown in Fig. 5 for the full 50
weeks. Figure 6 zooms into one week: Aug. 26, 2013, to Sept. 1,
2013.
In particular, the proposed controller (Algorithm 2) reduces

energy use by 26.8% over the baseline controller, to EUI= 53.5
kBtu/(ft2 ·year), see Table 2. The baseline controller is already
more efficient than the average controller in the field: its site EUI
for the tested period is 72.9 kBtu/(ft2 ·year), which is lower than
the median site EUI= 84.3 kBtu/(ft2 ·year) for college buildings in
the United States [42].

The improvement in performance over the baseline controller is
consistent with results in the literature that have compared MPC
with baseline controllers. MPC’s ability to use disturbance forecasts
and prediction from the model allows it to make better decisions
than a purely output feedback controller.

6.2 Benefit and Necessity of the Design Features

6.2.1 Need for Model and Disturbance Ppdate. We tested the
role and/or value of adaptation by turning off the adaptation
block. A model and disturbance (for a week) are estimated from
data from the first week of 2013. They are used by the controller
for every week of the year. The resulting MPC controller is referred
to by the “NAdapt-” prefix, e.g., in Table 2. We see from the table
that adaptation reduces energy use by about 16% and reduces zone
temperature violation over the non-adaptation case.
Thus, adaptation—periodically updating models and distur-

bances from data—is both necessary (for indoor comfort) and ben-
eficial (improves energy use) for an MPC-based controller for
HVAC systems.

6.2.2 Need for Convexification of the MPC Planner. NLP
solvers such as IPOUT [41] are quite powerful. Thus, solving the non-
convex MPC planning problem (7) is usually not an issue. On
average it takes 2.7 s for IPOPT to find a local minimum of the non-
convex problem, failing to do so with the available 15min only
0.1% of the time. When this happens, decision from the baseline
controller is used as control commands. The resulting switching
control action can lead to large violation in the indoor temperature.
See Fig. 7 for an example of this phenomenon. The zone tempera-
ture exceeds the upper bound by 3.2 °C for an extended period of

Table 1 Parameters for baseline and MPC controllers

Unoccupied Occupied T sa,min 12.8 °C Tca 12.8 °C
Tz,min 21.1 21.9 °C T sa,max 37.8 °C COP 3.5 N/A
Tz,max 24.4 23.6 °C T sa,rate 0.56 °C/min α 0.3 N/A
ṁmin 0.95 1.47, 1.90a kg/s ṁmax 4.72 kg/s af 417.5 W/(kg/s)2

ṁrate 0.2 kg/s/min

aṁmin,occ = 1.47 is used for the MPC controllers and ṁmin,occ = 1.90 is used for the baseline controller.

Fig. 4 (Left) CO2 level measurements from the auditorium in Pugh Hall during the year
of 2013. (Right) The internal heat load qint.

Table 2 Performance comparison among various controllers

Controller

Site EUI
(kBtu/
(ft2 ·yr))

Planner
failure (%)

RMSE of Tz

violation
(°C)

Max Tz

violation
(°C)

Baseline 72.9 N/A 0.45 2.3
NAdapt-NCVX 63.4 0.4 0.46 4.0
NAdapt-CVX 63.9 0 0.41 1.7
Adapt-NCVX 53.7 0.1 0.22 3.2
Adapt-CVX
(Proposed)

53.5 0 0.23 1.1
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time. Thus, though a non-convex planner rarely fails, when it does it
leads a catastrophic loss of performance that will render the control
system unacceptable to the user.
In contrast to MPC with a non-convex planner, the proposed

MPC scheme with a convexified planner always finds a minimum
within the available 15min, taking 1.7 s on average to compute
the control decisions. Partially as a result of that, it is able to
provide the best performance in maintaining zone temperature
among all five controllers tested.
Therefore, even though solving the nominal non-convex problem

is rarely an issue, in those rare occasions the controller can cause
serious disruption to occupant’s thermal comfort. It is unlikely

such a control system will be acceptable to building owners and
occupants. In short, the convex approximation of the MPC
planner is necessary.
It should be noted that the NAdapt-NCVX controller is the MPC

scheme generally used in the literature, e.g., Refs. [20,22]. Without
the benefits from both of the designed features, this controller has a
maximum zone temperature violation of 4.0 °C, even though it
occurs rarely and does not perform as well as the proposed control-
ler in terms of energy use.
Remark 4. We remark here the performance delivered by the pro-
posed MPC scheme is obtained under strong plant-model mismatch
in the following aspects: (i) The plant is time-varying and nonlinear,

Fig. 5 Comparison of the simulation results for the proposed MPC scheme versus baseline controller,
during Aug. 26, 2013–Sept. 1, 2013

Fig. 6 Comparison of the simulation results for the proposed MPC scheme versus baseline controller

Fig. 7 Comparison of the simulation results of the zone temperature for the proposed
MPC scheme versus Adapt-NCVX controller, during Sept. 30, 2013–Oct. 6, 2013
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while the MPC planner uses a linear model. (ii) The proposed MPC
scheme assumes both the plant and the disturbance are the same as
that from the previous week, but the plant and the disturbance do
not satisfy those properties. ▪

7 Conclusion
This paper takes a first stab at designing an MPC-based control

system for HVAC systems that can operate autonomously for
long periods, without requiring intervention of human experts.
Autonomy is made possible by two features: (i) automated periodic
update of thermal model and internal disturbance signals and (ii) a
convex approximation of the MPC planner’s optimization problem.
The yearlong simulations shows that both of the features are essen-
tial to get the performance improvement over the simple baseline
controller over a long period. The need for periodic re-learning
the model and disturbance is easy to see in the context of buildings.
The need for convexity in the planning problem is less obvious at
the design stage, but was discovered from the simulation results.
Even though the nominal non-convex planning problem can be
used effectively nearly 100% of times, the rare instances it fails to
converge causes dramatic fluctuations in the indoor temperature
rendering the control system an unlikely contender for real-life
application. Without these features, though MPC can outperform
the baseline controller in certain scenarios, the benefits may not
be substantial enough to defray the additional cost of implementing
MPC.
At the current stage, the proposed MPC architecture uses argu-

ably one of the simplest schemes for forecasting of the internal dis-
turbance. It is envisioned that a more accurate prediction scheme,
possibly with the aid of technologies such as occupancy recognition
or CO2 level sensing, should further improve performance of the
MPC controller.
Many extensions of this work are possible. The most immediate

next step is extending the proposed control scheme to include
humidity dynamics and ventilation requirements, which will
require including as part of the control commands the outdoor
airflow and conditioned air temperature (downstream of the
cooling/dehumidification coil; see Fig. 2). These two have been
assumed fixed in this paper but in fact can be commanded
through the building automation system. It should reduce energy
use even more and provide better thermal comfort by including
outdoor airflow and conditioned air temperature into the list of
control commands. The challenge is to incorporate the nonlinear
humidity dynamics in zone thermal models and the nonlinear
process models of the cooling/dehumidification coil [22]. The
autonomy achieved by the control system proposed here is due to
the use of linear dynamic models. Other useful directions include
extension to multi-zone buildings, improvements in the forecasting
methodology for the internal disturbance, etc.
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Appendix

Proof of Proposition 1. It suffices to find one feasible solution to
Problem (7). Let ṁ∗

k = ṁmin and T sa
k
∗ = T sa,min, ∀k = 0, . . . , N − 1,

which satisfy the actuator constraints (7e)–(7j). Values of
Tma
k

∗, Tz
k
∗, qhvack

∗, xTk+1
∗ are dependent on (ṁk

∗, T sa
k
∗) and are

solved from the set of linear independent Eqs. (7a)–(7d),
∀k = 0, . . . , N − 1. Based on the resulting Tz

k
∗, where

k = 0, . . . , N − 1, it is straightforward to show that ϵmin
k

∗ =
max {0, Tz,min − Tz

k
∗} and ϵmax

k
∗ =max {0, Tz

k
∗ − Tz,max} are the

corresponding minimizers to Problem (7), which also satisfy con-
straints (7k)–(7m). Therefore, we found z∗ = [z∗0

T , . . . , z∗k
T , . . . ,

z∗N−1
T ]T , where z∗k = [ṁ∗

k , T
sa∗
k , Tma∗

k , Tz
k
∗, qhvack

∗, xTk+1
∗, ϵmin

k
∗,

ϵmax
k

∗]T ∈ R9, as one feasible solution to Problem (7). ▪

Proof of Proposition 4. We show this by contradiction. Assume
z∗ = [z∗0, . . . , z

∗
k , . . . , z

∗
N−1]

T is an interior optimal solution to
Problem (7), we show z* does not satisfy the KKT conditions.
The Lagrangian of (7) is

L(z, λ, υ) =
∑N−1
k=0

1
2
zTk Pzk + qTzk

(
+
∑5
p=1

λ p,kh p,k +
∑12
q=1

υq,kfq,k

)

where h1,k− h5,k denotes the equality constraints (7a)–(7d), and
f1,k − f12,k denotes the inequality constraints (7e)–(7m),
∀k = 0, . . . , N − 1, respectively.
For an interior point z*, inequality constraints are inactive at z*,

which implies υq,k= 0, ∀q = 1, . . . , 12, k = 0, . . . , N − 1. Since z*
is optimal, we have for Lagrangian (A1),

0 =
∂L
∂zk

|zk=z∗k , ∀k = 0, . . . , N − 1

⇒ 0 = Pz∗k + q +
∑
p

λ p,k
∂hp,k

∂zk
|zk=z∗k

= (P + λ1,kPc)z
∗
k + q +

0

0

−λ5,k
..
.

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(A1)

It suffices to find one contradiction that the set of equations (A1) is
not possible. Expand the second entry of Eq. (A1), one writes

Cpa(1 + λ1,k)ṁ
∗
k = 0λ1,k = −1 (A2)

because ṁ ≥ ṁmin > 0. Substitute λ1,k=−1 into the first entry from
Eq. (A1), we have

2αf ṁ
∗
k +

Cpa

COP
Tma
k

∗ + CpaT
z
k
∗ = −CpaT

ca 1 + COP

COP
(A3)

which cannot hold since LHS> 0 whereas RHS< 0. Therefore, we
show any interior point does not satisfy the KKT condition,
meaning Problem (7) only has boundary solutions. ▪
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