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Mathematical modeling for solute transport in aquifer

Mritunjay Kumar Singh, Vijay P. Singh and Pintu Das
ABSTRACT
Groundwater pollution may occur due to human activities, industrial effluents, cemeteries, mine

spoils, etc. This paper deals with one-dimensional mathematical modeling of solute transport in finite

aquifers. The governing equation for solute transport by unsteady groundwater flow is solved

analytically by the Laplace transform technique. Initially, the aquifer is subjected to the spatially

dependent source concentration with zero-order production. One end of the aquifer receives the

source concentration and is represented by a mixed-type boundary condition in the splitting time

domain. The concentration gradient at the other end of the porous media is assumed to be zero. The

temporally dependent velocity and the dispersion coefficients are considered. A numerical solution

is obtained by using an explicit finite difference scheme and compared with the analytical result.

Accuracy of the solution is discussed by using the root mean square error method. Truncation error

is also explored for the parameters like numerical dispersion and velocity terms. The impact of Peclet

number is examined. For graphical interpretation, unsteady velocity expressions (i.e., such as

exponential, sinusoidal, asymptotic, and algebraic sigmoid) are considered. The work may be used as

a preliminary predictive tool for groundwater resource and management.
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INTRODUCTION
In India, many aquifers are being contaminated by a host of

human activities, such as sewage disposal, refuse dumps,

pesticides and chemical fertilizer contamination, industrial

effluent discharges, and toxic waste disposal (Rausch et al.

; Batu ). The traditional advection dispersion

equation is based on the conservation of mass and Fick’s

law of diffusion (Fried & Combarnous ; Bear & Verruijt

; Chrysikopolous et al. ) and constitutes the basis of

solute transport models that are used for predicting the

movement of contaminants in groundwater systems.

There has been some research on solute transport in

groundwater systems. Hunt () analyzed one-, two-, and

three-dimensional solutions for instantaneous, continuous,

and steady state pollution sources in uniform groundwater

flow. Freeze & Cherry () provided a relation between

dispersion and groundwater velocity in which the dispersion

is proportional to a power of the velocity and experimentally
observed that the power ranged between 1 and 2. van Gen-

uchten () explored derivations of analytical solutions

using the Laplace transform for the solute transport

equation with zero-order production and/or first-order

decay subjected to first and third type boundary conditions.

Zoppou & Knight () evaluated analytical solutions that

are still useful for validating numerical schemes for solving

the advection–diffusion equation with spatially variable

coefficients. Logan () obtained analytical solutions for

a scale-dependent dispersion coefficient increasing expo-

nentially with position up to some constant limiting

values. Hantush & Marino () developed analytical sol-

utions using the Laplace and Fourier transform methods

and superposition principle for the first-order rate model

in an infinite porous medium.

Using Peclet and Courant numbers and a new sink/

source dimensionless number, Ataie-Ashtiani et al. ()
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discussed truncation errors associated with finite difference

solutions of the advection–dispersion equation (ADE) with

first-order reaction. Bedient et al. () presented a math-

ematical model of the ADE for describing the migration

and fate of pollutants in groundwater. Neville et al. ()

presented semi-analytical solutions for a multi-process non-

equilibrium model for describing contaminant concen-

tration distribution patterns. Balla et al. () presented a

computational case study using a transport model for pol-

lution of underground water due to damage of the

waterproofing system in a waste material depository or

sewage sludge composting plant.

Lowry & Li () discussed an improved finite analyti-

cal solution method for solving the time-dependent ADE

that does not discretize the derivative terms rather solving

the equation analytically in the space–time domain. Smedt

() presented an analytical solution for solute transport

in rivers, including the effect of transient storage and first-

order decay. Tkalich () explored the derivation of

high-order advection–diffusion schemes by employing the

interpolation polynomial method. Hill et al. () proposed

upscaling models of solute transport in porous media

through genetic programming in heterogeneous porous

media. Chen () presented an analytical solution of

two-dimensional non-axisymmetrical solute transport in a

radially convergent flow tracer test with a diffusion coeffi-

cient increasing with travel distance. Yeh & Yeh ()

derived solutions of the transport equation with a point-

source term considered as the point-source solution under

the condition that the solute was introduced into the flow

system from the boundary that was considered as the bound-

ary-source solution. Kumar et al. () also described

transport through a heterogeneous porous medium with a

time-dependent dispersivity in solute transport modeling.

Zhan et al. () explored two-dimensional solute transport

in an aquifer–aquitard system by maintaining the mass con-

servation at the aquifer–aquitard interface. Gao et al. ()

explored a mobile–immobile model with an asymptotic dis-

persivity function of travel distance with the concept of

scale-dependent dispersion during solute transport in finite

heterogeneous porous media. Rezaei et al. () derived a

semi-analytical solution to the two-dimensional conserva-

tive solute transport in an aquifer bounded by thin

aquitards in the Laplace domain. Singh & Das ()
om http://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
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explored the analytical and numerical solutions for one-

dimensional scale-dependent solute transport in hetero-

geneous media in which analytical and numerical

solutions were compared and found very good agreement

among them. The root mean square (RMS) error analysis

was made to check the accuracy of the solution.

In the present work, we focus on one-dimensional solute

transport modeling using the ADE in a finite aquifer with

first-order decay and zero-order production. To simplify

ADE, different transformations were applied. Non-

dimensional parameters were employed for reducing the

number of parameters of the ADE. To predict the pattern

of contaminant concentration, different types of unsteady

velocities, such as sinusoidal, exponentially decreasing,

asymptotic, and algebraic sigmoid, were considered. They

helped describe the nature of contaminant concentration

in time and space.
MATHEMATICAL FORMULATION

The contaminant transport phenomena in a groundwater

layered medium or reservoir, i.e., aquifer, can be predicted

by analytical solute transport modeling of the ADE. The

modeling depends on the distance as well as time. The domi-

nant process of mass transfer in groundwater is the

advection and diffusion; in contrast, it refers to the solute

transport through the action of random motions in the

groundwater reservoir. The one-dimensional ADE for an

isotropic homogeneous finite aquifer with zero-order pro-

duction and first-order decay can be expressed as:

@c
@t

þ ρ(1� n)
n

@F
@t

¼ D
@2c
@x2

� u
@c
@x

� μcþ γ (1)

Here, D[L2T�1] is the longitudinal dispersion coefficient

(i.e., representing longitudinal dispersion), c[ML�3] is the

volume averaged dispersing solute concentration in the

liquid phase, F[ML�3] is the volume averaged dispersing

solute concentration in the solid phase, u[LT�1] is the

unsteady uniform downward pore seepage velocity, x[L] is

the longitudinal direction of flow, t[T ] is time, γ[ML�3T�1]

is the zero order production rate coefficients for solute pro-

duction in the liquid phase, μ[T�1] is the first-order decay
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rate coefficient in the liquid phase, ρ is the bulk density of

the porous medium, and n is the porosity of geological

formation.

As the contaminant goes from the solid phase into the

liquid phase under the linear isotherm condition, we can

express mathematically:

F ¼ Kdc (2)

where Kd is the distribution coefficient, defined as the con-

centration adsorbed by the solid phase to the liquid phase

into the groundwater reservoir, i.e., aquifer.

Equation (1) was solved analytically with appropriate

initial and boundary conditions. As the aquifer is not

solute free initially, i.e., at t ¼ 0, a linear combination of

initial concentration ci and a function of space-dependent

along with zero-order production term is considered. The

loss or gain of solute mass occurs due to chemical com-

ponents within the liquid, radioactive decay and

biodegradation, and growth due to bacterial activities.

The loss of gain term is usually described through the

sources of solute. The solute can grow in liquid phase

and the solid phase. Its growth is frequently expressed by

a zero-order production. In this study, initially the growth

of solute along the space was a linear combination of the

initial concentration taken into consideration. This can be

written as:

c(x, 0) ¼ ci þ γx
u

x> 0, t ¼ 0 (3)

Due to the increasing human activity at the earth sur-

face, the solute concentration in groundwater increases in

time. Hence, a mixed type boundary condition in the split-

ting time domain at the source is considered as follows:

�D
@c
@x

þ uc ¼ uc0 0< t � t0

�D
@c
@x

þ uc ¼ 0 t> t0

9>=
>;at x ¼ 0 (4)

Due to no mass flow at the other end of the domain, a

flux type boundary condition is considered as follows:

@c
@x

¼ 0; x ¼ L t> 0 (5)
://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
Using Equation (2), Equation (1) can be written as:

R
@c
@t

¼ D
@2c
@x2

� u
@c
@x

� μcþ γ, (6)

where

R ¼ 1þ 1� n
n

ρKd (7)

The dispersion theory, proposed by Freeze & Cherry

(), was employed here. As dispersion is directly pro-

portional to the seepage velocity, i.e., D αu, and so,

D ¼ Au, where, A is constant that depends upon the pore

geometry of the aquifer. Let u ¼ u0f(mt) and

D ¼ D0f(mt), where, u0 and D0 are the initial seepage vel-

ocity and initial dispersion coefficient, respectively. Also,

let μ ¼ μ0f(mt) and γ ¼ γ0f(mt), where, μ0 and γ0 are the

initial first-order decay rate coefficient and the initial

zero-order production rate coefficient for solute production

in the liquid phase, respectively. f(mt) is the non-dimensional

expression where m[T�1] is the flow resistance coefficient.

Using this concept, Equation (6) can be written as:

R
1

f(mt)
@c
@t

¼ D0
@2c
@x2

� u0
@c
@x

� μ0cþ γ0 (8)

A new time variable T� (Crank ):

T � ¼
ðt
0

f(mt)dt (9)

is introduced and Equation (8) can be written as:

R
@c
@T � ¼ D0

@2c
@x2

� u0
@c
@x

� μ0cþ γ0 (10)

The following non-dimensional variables:

C ¼ c
c0

; X ¼ nx
L

; T ¼ T �nu0

L
; Tp ¼ nu0t0

L
;

μ� ¼ μ0L
nu0

; γ� ¼ γ0L
nc0u0

(11)

are used to reduce the number of parameters of Equation

(10) and one can then write:

R
@C
@T

¼ 1
Pe

@2C
@X2 �

@C
@X

� μ�C þ γ�, (12)
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where

Pe ¼ Lu0

nD0
(13)

The initial and boundary conditions given in Equation

(3), Equation (5), and Equation (6) can be written in non-

dimensional form, respectively, as follows:

C(X, T ) ¼ ci
c0

þ γ�X X> 0, T ¼ 0 (14)

� 1
Pe

@C
@X

þ C ¼ 1, 0< T � Tp

� 1
Pe

@C
@X

þ C ¼ 0, T > Tp

9>=
>;at X ¼ 0 (15)

@C
@X

¼ 0; X ¼ n; T > 0 (16)

Now, the following transformation:

C(X, T ) ¼ K(X, T) exp
X
2
Pe� 1

R
Pe
4

þ μ�
� �

T
� �

þ γ�

μ�
, (17)

was used to remove the advection term from Equation (12).

The initial and boundary conditions accordingly were trans-

formed and the Laplace transform technique was employed.

The analytical solution can be obtained as follows (see Appen-

dix, available with the online version of this paper):

C(X,T)¼ F(X,T )þG(X,T )þH(X,T )þ I(X,T)þ J(X,T)

þM(X,T )þN(X,T )þP(X,T )þS(X,T )þU(X,T )

� �

×exp
X
2
Pe� 1

R
Pe
4
þμ�

� �
T

� �
þγ�

μ�
, 0<T �TP (18)

C(X, T ) ¼
F(X, T )þG(X, T )þ {H(X, T)�H(X, T � Tp)}þ I(X, T)
�

þJ(X, T)þM(X, T)þ {N(X, T )�N(X, T � Tp)}þ P(X, T)

þS(X, T)þU(X, T )� × exp
X
2
Pe� 1

R
Pe
4

þ μ�
� �

T
� �

þ γ�

μ�
,

T > TP (19)
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where

F(X, T) ¼ �γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1
2(aþ ξ)

C1 � 1
2(a� ξ)

D1

� 	

� γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n ξ

(a2 � ξ2)
exp {ξ2T þ ξZ}

erfc
Z

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(20a)

C1 ¼ exp (a2T � aZ)erfc
Z

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(20b)

D1 ¼ exp (a2T þ aZ)erfc
Z

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(20c)

Z ¼ n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(20d)

a ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
(20e)

G(X, T) ¼ G1(X, T )þG2(X, T )�G3(X, T )

þG4(X, T) (21a)

G1(X, T) ¼ �γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1
2(aþ ξ)

C2 � 1
2(a� ξ)

D2

� 	

� γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n ξ

a2 � ξ2
exp {ξ2T þ ξY}

erfc
Y

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(21b)

G2(X, T) ¼ 4γ�ξffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1

2(aþ ξ)2
C2 þ 1

2(a� ξ)2
D2

( )

þ 4γ�ξffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 2ξT

a2 � ξ2
A� 4γ�ξffiffiffiffiffiffiffiffiffi

PeR
p e

�
Pe
2

n

a2 þ ξ2

(a2 � ξ2)
2 þ

2ξ2T þ ξY

(a2 � ξ2)

( )
exp {ξ2T þ ξY }

erfc
Y

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(21c)
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C2 ¼ exp (a2T � aY)erfc
Y

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(21d)

D2 ¼ exp (a2T þ aY)erfc
Y

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(21e)

A ¼ 1ffiffiffiffiffiffi
πT

p exp �Y2

4T

� �
(21f)

Y ¼ 3n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(21g)

G3(X, T ) ¼ γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1
2(aþ ξ)

C3 � 1
2(a� ξ)

D3

� 	

þ γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n ξ

a2 � ξ2
exp {ξ2T þ ξω}

erfc
ω

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(21h)

G4(X, T ) ¼ 8γ�ξffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1

2(aþ ξ)2
C3 þ 1

2(a� ξ)2
D3

( )

þ 8γ�ξffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 2ξT

a2 � ξ2
A1 � 8γ�ξffiffiffiffiffiffiffiffiffi

PeR
p e

�
Pe
2

n

a2 þ ξ2

(a2 � ξ2)
2 þ

2ξ2T þ ξω

(a2 � ξ2)

( )
exp {ξ2T þ ξω}

erfc
ω

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(21i)

C3 ¼ exp (a2T � aω)erfc
ω

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(21j)

D3 ¼ exp (a2T þ aω)erfc
ω

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(21k)

A1 ¼ 1ffiffiffiffiffiffi
πT

p exp � ω2

4T

� �
(21l)

ω ¼ 5n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(21m)
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H(X, T ) ¼ H1(X, T )�H2(X, T)þH3(X, T )

�H4(X, T ) (22a)

H1(X, T ) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
(C4 þD4) (22b)

H2(X, T )¼
ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
2ξ

1

2(
ffiffiffiffi
Q

p þ ξ)
C4� 1

2(
ffiffiffiffi
Q

p � ξ)
D4

( )

þ2ξ

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
ξ

Q� ξ2
exp{ξ2T þ ξY1}

erfc
Y1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(22c)

C4 ¼ exp (QT �
ffiffiffiffi
Q

p
Y1)erfc

Y1

2
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffi
QT

p� �
(22d)

D4 ¼ exp (QT þ
ffiffiffiffi
Q

p
Y1)erfc

Y1

2
ffiffiffiffi
T

p þ
ffiffiffiffiffiffiffiffi
QT

p� �
(22e)

Y1 ¼ 2n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(22f)

H3(X, T ) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
(C5 þD5) (22g)

H4(X, T )¼ 6ξ

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
1

2(
ffiffiffiffi
Q

p þ ξ)
C5� 1

2(
ffiffiffiffi
Q

p � ξ)
D5

( )

þ6ξ

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
ξ

Q� ξ2
exp(ξ2T þ ξω1)

erfc
ω1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(22h)

C5 ¼ exp (QT �
ffiffiffiffi
Q

p
ω1)erfc

ω1

2
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffi
QT

p� �
(22i)

D5 ¼ exp (QT þ
ffiffiffiffi
Q

p
ω1)erfc

ω1

2
ffiffiffiffi
T

p þ
ffiffiffiffiffiffiffiffi
QT

p� �
(22j)

ω1 ¼ 4n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(22k)
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Q ¼ 1
R

Pe
4

þ μ�
� �

(22l)

I(X, T) ¼ I1(X, T)� I2(X, T )þ I3(X, T )� I4(X, T) (23a)

I1(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
(C6 þD6) (23b)

I2(X, T) ¼ 2ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
1

2(aþ ξ)
C6 � 1

2(a� ξ)
D6

� 	

þ 2ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
ξ

a2 � ξ2
exp (ξ2T þ ξY1)

erfc
Y1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(23c)

C6 ¼ exp (a2T � aY1)erfc
Y1

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(23d)

D6 ¼ exp (a2T þ aY1)erfc
Y1

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(23e)

Y1 ¼ 2n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(23f)

I3(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
(C7 þD7) (23g)

I4(X, T) ¼ 6ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
1

2(aþ ξ)
C7 � 1

2(a� ξ)
D7

� 	

þ 6ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
ξ

a2 � ξ2
exp {ξ2T þ ξω1}

erfc
ω1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(23h)

C7 ¼ exp (a2T � aω1)erfc
ω1

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(23i)

D7 ¼ exp (a2T þ aω1)erfc
ω1

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(23j)

ω1 ¼ 4n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(23k)
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J(X, T) ¼ J1(X, T )� J2(X, T )� J3(X, T )� J4(X, T )

þ J5(X, T)� J6(X, T)� J7(X, T )þ J8(X, T ) (24a)

J1(X, T) ¼ � 1
2

γ�ffiffiffiffiffiffiffiffiffi
PeR

p (C6 þD6) (24b)

J2(X, T)¼�γ�
2ξffiffiffiffiffiffiffiffiffi
RPe

p 1
2(aþ ξ)

C6� 1
2(a� ξ)

D6

� 	

� γ�
2ξffiffiffiffiffiffiffiffiffi
RPe

p ξ

a2� ξ2
exp{ξ2T þ ξY1}erfc

Y1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(24c)

J3(X, T) ¼ �γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT � Y1)C6

� 	

� γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT þ Y1)D6

� 	
(24d)

J4(X, T) ¼ γ�

R

ffiffiffiffiffiffi
Pe
R

r
2ξ

1� (aþ ξ)(2aT � Y1)

4a(aþ ξ)2
C6

þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
2ξ

(2aT þ Y1)(a� ξ)� 1

4a(a� ξ)2
D6

� γ�

R

ffiffiffiffiffiffi
Pe
R

r
2ξ

T

a2 � ξ2
A2 þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
2ξ

ξ

(a2 � ξ2)
2

exp (ξ2T þ ξY1)erfc
Y1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(24e)

J5(X, T) ¼ � 1
2

γ�ffiffiffiffiffiffiffiffiffi
RPe

p (C7 þD7) (24f)

J6(X, T)¼�γ�
6ξffiffiffiffiffiffiffiffiffi
RPe

p 1
2(aþ ξ)

C7� 1
2(a� ξ)

D7

� 	

� γ�
6ξffiffiffiffiffiffiffiffiffi
RPe

p ξ

a2� ξ2
exp{ξ2T þ ξω1}erfc

ω1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(24g)

J7(X, T )¼ γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT �ω1)C7þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT þω1)D7

(24h)

J8(X, T) ¼ 6ξ
γ�

R

ffiffiffiffiffiffi
Pe
R

r
1� (aþ ξ)(2aT � ω1)

4a(aþ ξ)2

C7 þ 6ξ
γ�

R

ffiffiffiffiffiffi
Pe
R

r
(2aT þ ω1)(a� ξ)� 1

4a(a� ξ)2

D7 � 6ξ
γ�

R

ffiffiffiffiffiffi
Pe
R

r
T

a2 � ξ2
A3 þ 6ξ

γ�

R

ffiffiffiffiffiffi
Pe
R

r
ξ

(a2 � ξ2)
2

exp {ξ2T þ ξω1}erfc
ω1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(24i)
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A2 ¼ 1ffiffiffiffiffiffi
πT

p exp �Y1
2

4T

 !
(24j)

A3 ¼ 1ffiffiffiffiffiffi
πT

p exp �ω1
2

4T

� �
(24k)

M(X, T) ¼ M1(X, T )þM2(X, T )�M3(X, T )þM4(X, T)

(25a)

M1(X, T) ¼ � γ�ffiffiffiffiffiffiffiffiffi
RPe

p e
�
Pe
2

n 1
2(aþ ξ)

C8 � 1
2(a� ξ)

D8

� 	

� γ�ffiffiffiffiffiffiffiffiffi
RPe

p e
�
Pe
2

n ξ

a2 � ξ2
exp {ξ2T þ ξσ}

erfc
σ

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(25b)

M2(X, T) ¼ γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 1

2(aþ ξ)2
C8 þ 1

2(a� ξ)2
D8

( )

þ γ�ffiffiffiffiffiffiffiffiffi
PeR

p e
�
Pe
2

n 2ξT

a2 � ξ2
A4 � γ�ffiffiffiffiffiffiffiffiffi

PeR
p e

�
Pe
2

n

a2 þ ξ2

(a2 � ξ2)
2 þ

2ξ2T þ ξσ

(a2 � ξ2)

( )
exp {ξ2T þ ξσ}

erfc
σ

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(25c)

M3(X, T) ¼ γ�ffiffiffiffiffiffiffiffiffi
RPe

p e
�
Pe
2

n 1
2(aþ ξ)

C9 � 1
2(a� ξ)

D9

� 	

þ γ�ffiffiffiffiffiffiffiffiffi
RPe

p e
�
Pe
2

n ξ

a2 � ξ2
exp {ξ2T þ ξψ}

erfc
ψ

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(25d)

M4(X, T) ¼ γ�ffiffiffiffiffiffiffiffiffi
PeR

p 6ξe
�
Pe
2

n 1

2(aþ ξ)2
C9 þ 1

2(a� ξ)2
D9

( )

þ γ�ffiffiffiffiffiffiffiffiffi
PeR

p 6ξe
�
Pe
2

n 2ξT

a2 � ξ2
A5

� γ�ffiffiffiffiffiffiffiffiffi
PeR

p 6ξe
�
Pe
2

n a2 þ ξ2

(a2 � ξ2)
2 þ

2ξ2T þ ξψ

(a2 � ξ2)

( )

exp {ξ2T þ ξψ}erfc
ψ

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(25e)
://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
C8 ¼ exp (a2T � aσ)erfc
σ

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(25f)

D8 ¼ exp (a2T þ aσ)erfc
σ

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(25g)

C9 ¼ exp (a2T � aψ)erfc
ψ

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(25h)

D9 ¼ exp (a2T þ aψ)erfc
ψ

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(25i)

σ ¼ n
ffiffiffiffiffiffiffiffiffi
RPe

p
þX

ffiffiffiffiffiffiffiffiffi
RPe

p
(25j)

ψ ¼ 3n
ffiffiffiffiffiffiffiffiffi
RPe

p
�X

ffiffiffiffiffiffiffiffiffi
RPe

p
(25k)

A4 ¼ 1ffiffiffiffiffiffi
πT

p exp � σ2

4T

� �
(25l)

A5 ¼ 1ffiffiffiffiffiffi
πT

p exp � ψ2

4T

� �
(25m)

N(X, T) ¼ N1(X, T )þN2(X, T)�N3(X, T) (26a)

N1(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
(C10 þD10) (26b)

C10 ¼ exp (QT �X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RPeQ

p
)erfc

X
2

ffiffiffiffiffiffiffiffiffi
RPe
T

r
�

ffiffiffiffiffiffiffiffi
QT

p !
(26c)

D10 ¼ exp (QT þX
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RPeQ

p
)erfc

X
2

ffiffiffiffiffiffiffiffiffi
RPe
T

r
þ

ffiffiffiffiffiffiffiffi
QT

p !
(26d)

N2(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
1� γ�

μ�

� �
(C11 þD11) (26e)

N3(X,T )¼4ξ

ffiffiffiffiffiffi
Pe
R

r
1�γ�

μ�

� �
1

2(
ffiffiffiffi
Q

p þξ)
C11� 1

2(
ffiffiffiffi
Q

p � ξ)
D11

( )

þ4ξ

ffiffiffiffiffiffi
Pe
R

r
1�γ�

μ�

� �
ξ

Q� ξ2
exp{ξ2T þ ξσ1}

erfc
σ1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(26f)

C11 ¼ exp (QT � σ1

ffiffiffiffi
Q

p
)erfc

σ1

2
ffiffiffiffi
T

p �
ffiffiffiffiffiffiffiffi
QT

p� �
(26g)
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D11 ¼ exp (QT þ σ1

ffiffiffiffi
Q

p
)erfc

σ1

2
ffiffiffiffi
T

p þ
ffiffiffiffiffiffiffiffi
QT

p� �
(26h)

σ1 ¼ 2n
ffiffiffiffiffiffiffiffiffi
RPe

p
þX

ffiffiffiffiffiffiffiffiffi
RPe

p
(26i)

P(X, T) ¼ P1(X, T)þ P2(X, T)� P3(X, T ) (27a)

P1(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
(C12 þD12) (27b)

C12 ¼ exp (a2T � aX
ffiffiffiffiffiffiffiffiffi
RPe

p
)erfc

X
2

ffiffiffiffiffiffiffiffiffi
RPe
T

r
� a

ffiffiffiffi
T

p !
(27c)

D12 ¼ exp (a2T þ aX
ffiffiffiffiffiffiffiffiffi
RPe

p
)erfc

X
2

ffiffiffiffiffiffiffiffiffi
RPe
T

r
þ a

ffiffiffiffi
T

p !
(27d)

P2(X, T) ¼ 1
2

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
(C13 þD13) (27e)

P3(X, T) ¼ 4ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
1

2(aþ ξ)
C13 � 1

2(a� ξ)
D13

� 	

þ 4ξ

ffiffiffiffiffiffi
Pe
R

r
ci
c0

� γ�

μ�

� �
ξ

a2 � ξ2
exp {ξ2T þ ξσ1}

erfc
σ1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(27f)

C13 ¼ exp (a2T � aσ1)erfc
σ1

2
ffiffiffiffi
T

p � a
ffiffiffiffi
T

p� �
(27g)

D13 ¼ exp (a2T þ aσ1)erfc
σ1

2
ffiffiffiffi
T

p þ a
ffiffiffiffi
T

p� �
(27h)

S(X, T) ¼ S1(X, T )þ S2(X, T )� S3(X, T )� S4(X, T )

þ S5(X, T)þ S6(X, T) (28a)

S1(X, T) ¼ � 1
2

γ�ffiffiffiffiffiffiffiffiffi
RPe

p (C12 þD12) (28b)

S2(X, T ) ¼ � γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT �X
ffiffiffiffiffiffiffiffiffi
RPe

p
)C12

� 	

� γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT þX
ffiffiffiffiffiffiffiffiffi
RPe

p
)D12

� 	 (28c)
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S3(X, T) ¼ 1
2

γ�ffiffiffiffiffiffiffiffiffi
RPe

p (C13 þD13) (28d)

S4(X, T) ¼ γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT � σ1)C13

� 	

þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
1
4a

(2aT þ σ1)D13

� 	
(28e)

S5(X, T) ¼ γ�ffiffiffiffiffiffiffiffiffi
RPe

p 4ξ
1

2(aþ ξ)
C13 � 1

2(a� ξ)
D13

� 	

þ γ�ffiffiffiffiffiffiffiffiffi
RPe

p 4ξ
ξ

a2 � ξ2
exp (ξ2T þ ξσ1)

erfc
σ1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(28f)

S6(X, T) ¼ γ�

R

ffiffiffiffiffiffi
Pe
R

r
4ξ

1� (aþ ξ)(2aT � σ1)

4a(aþ ξ)2

C13 þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
4ξ

(2aT þ σ1)(a� ξ)� 1

4a(a� ξ)2
D13

� γ�

R

ffiffiffiffiffiffi
Pe
R

r
4ξ

T

a2 � ξ2
A6 þ γ�

R

ffiffiffiffiffiffi
Pe
R

r
4ξ

ξ

(a2 � ξ2)
2

exp {ξ2T þ ξσ1}erfc
σ1

2
ffiffiffiffi
T

p þ ξ
ffiffiffiffi
T

p� 	
(28g)

U(X, T ) ¼ ci
c0

� γ�

μ�
þ γ�X

� �
e
�

Pe
2

X� Pe
4R

T
� �

� γ�T
R

e
�

Pe
2

X� Pe
4R

T
� �

(29)

H(X, T )�H(X, T � Tp) ¼ {H1(X, T)�H1(X, T � Tp)}

� {H2(X, T)�H2(X, T � Tp)}þ {H3(X, T)

�H3(X, T � Tp)}� {H4(X, T )�H4(X, T � Tp)} (30)

N(X, T )�N(X, T �Tp)¼ {N1(X, T)�N1(X, T � Tp)}

þ {N2(X, T)�N2(X, T � Tp)}� {N3(X, T)�N3(X, T � Tp)}

(31)
NUMERICAL SOLUTION

The finite-difference technique has been applied in various

works for numerically modeling the solute transport

phenomena in groundwater systems (i.e., Molenkamp
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; van Genuchten & Gray ; Richard ; Hogarth

et al. ; Dudley et al. ; Moldrup et al. ; Zheng

& Bennett ; Meerschaer & Tadjeran ; Ataie-

Ashtiani & Hosseini ; Wang et al. ; Mohebbi &

Abbaszadeh ). In order to solve numerically the ADE

(Equation (12)) together with the initial and boundary con-

dition transformed in domain Z [0, 1], a suitable space

transform was used as:

Z ¼ X
n

(32)

Equation (12) together with the initial and boundary

condition may be written as:

R
@C
@T

¼ 1
n2Pe

@2C
@Z2 �

1
n
@C
@Z

� μ�C þ γ� (33)

C(Z, T) ¼ ci
c0

þ γ�nZ Z> 0, T ¼ 0 (34)

� 1
nPe

@C
@Z

þ C ¼ 1, 0< T � Tp

� 1
nPe

@C
@Z

þ C ¼ 0, T > Tp

9>=
>;at Z ¼ 0 (35)

@C
@Z

¼ 0; Z ¼ 1; T > 0 (36)

A finite difference technique was derived by using Tay-

lor’s series expansion (Mickley et al. ; Carnahan et al.

). The explicit finite difference scheme is commonly

used, even though it may require an extended computing

time because of its restrictive stability criterion. Here, we

used a general form of the explicit finite difference approxi-

mation with forward time and central space forward

difference scheme to approximate Equations (33)–(36). We

obtained as follows:

Ci,jþ1 ¼ 1� μ�

R
ΔT

� �
Ci,j þ 1

n2RPe
(Ciþ1,j � 2Ci,j

þ Ci�1,j)
ΔT
ΔZ2 �

1
nR

(Ciþ1,j � Ci�1,j)
ΔT
2ΔZ

þ γ�

R
ΔT (37)

Ci,0 ¼ ci
c0

þ nγ�Zi i> 0 (38)
://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
C0,j ¼ 1
(1þ nPeΔZ)

C1,j þ nPeΔZ
(1þ nPeΔZ)

0< Tj � Tp

C0,j ¼ 1
(1þ nPeΔZ)

C1,j Tj > Tp

9>>=
>>;j> 0

(39)

CM,j ¼ CM�1,j j> 0 (40)

where superscript j refers to time, subscript i refers to space,

ΔT is the time increment, and ΔZ is the space increment.

The space domain Z and time domain T are discretized

by a rectangular grid of points (Zi, Tj) with mesh size ΔZ and

ΔT , respectively. So, one can write as follows:

Zi ¼ Zi�1 þ ΔZ, i ¼ 1, 2, . . . , M, Z0 ¼ 0, ΔZ ¼ 0:02

Tj ¼ Tj�1 þ ΔT , j ¼ 1, 2, . . . , I, T0 ¼ 0, ΔT ¼ 0:0001

The contaminant concentration at a point in space Zi

with the jth subinterval of time T was defined by Ci,j.
STABILITY CONDITION

The finite difference scheme is convergent if the discretiza-

tion error approaches zero as the grid spacing ΔT and ΔZ

tends to zero (Carnahan et al. ). The stability test of

the finite difference scheme was proposed by a matrix

method (Smith ) and this was used by Notodarmojo

et al. (). Kwok () investigated the stability properties

of the various two-level, six-point finite difference schemes

for the approximation of the convection–diffusion equation.

The solution was convergent, subject to the satisfaction of

the stability criterion. The finite difference scheme of the

governing partial differential Equation (37) can be written

as follows:

Ci,jþ1 ¼ αCi�1,j þ βCi,j þ ξCiþ1,j þ γ�

R
ΔT (41)

where

α ¼ 1
n2RPe

ΔT
ΔZ2 þ

1
nR

ΔT
2ΔZ

(42)



490 M. K. Singh et al. | Mathematical modeling in aquifer Journal of Hydroinformatics | 18.3 | 2016

Downloaded fr
by guest
on 27 Novemb
β ¼ 1� μ�

R
ΔT � 2

n2RPe
ΔT
ΔZ2 (43)

and

ξ ¼ 1
n2RPe

ΔT
ΔZ2 �

1
nR

ΔT
2ΔZ

(44)

Equation (41) was expressed in matrix form as:

[C] jþ1 ¼ A[C]j þ γ�

R
ΔT (45)

where A contains the entire constants.

The difference approximation equation was stable if the

eigenvalues of A had modulus values less than or equal to

unity, i.e., θj j � 1, where θ was the eigenvalue of matrix A.

To find the bounds of the eigenvalues of matrix A on

applying the Gerschgorin circle method, the stability cri-

terion for the time step was as follows:

ΔT � 1
μ�

2R
þ 2
n2RPe

1
Δz2

� � (46)
TRUNCATION ERROR

Numerical dispersion was first quantified by Lantz ().

Ataie-Ashtiani et al. () explored the expansion of the

Taylor series of solute concentration along the ADE used

for determining the truncation error in one dimension.

Chaudhari () investigated a second-order error through

the examination of the truncated Taylor series approxi-

mation with explicit finite difference solution of the one-

dimensional ADE. We also explored the truncation error

for the various parameters, such as dispersion, seepage vel-

ocity, first-order decay, and zero-order production term.

From Equation (37), we obtained as follows:

R
Ci,jþ1 � Ci,j

ΔT

� �
¼ 1

n2Pe
Ciþ1,j � 2Ci,j þ Ci�1,j

ΔZ2

� �

� 1
n

Ciþ1,j � Ci�1,j

2ΔZ

� �
� μ�Ci,j þ γ� (47)
om http://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
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From the Taylor series expansion of each term of

Equation (47), we obtained as follows:

Ciþ1,j ¼ Ci,j þ ΔZ
@C
@Z

þ ΔZ2

2
@2C
@Z2 þ

ΔZ3

6
@3C
@Z3 þ

ΔZ4

24
@4C
@Z4

þ��� (48)

Ci�1,j ¼ Ci,j � ΔZ
@C
@Z

þ ΔZ2

2
@2C
@Z2 �

ΔZ3

6
@3C
@Z3 þ

ΔZ4

24
@4C
@Z4

���� (49)

Ci,jþ1 ¼ Ci,j þ ΔT
@C
@T

þ ΔT2

2
@2C
@T2 þ

ΔT3

6
@3C
@T3 þ

ΔT4

24
@4C
@T4

þ��� (50)

where Ci,j is simply denoted by C.

After imposing the Taylor series expansion on Equation

(47), we got the truncation error of the finite difference

approximation of order O(ΔT þ ΔZ2). The transport par-

ameters were constant within each combination of time

and space increments in finite difference calculations. The

second-order temporal derivative of C was written in terms

of the spatial derivative of C by using the partial differential

equation obtained from Equation (47). We obtained as

follows:

R
@2C
@T2 ¼ 1

n2 �
2μ�

n2Pe

� �
@2C
@Z2 þ

2μ�

n
@C
@Z

þ μ�
2
C � μ�γ� (51)

Then the partial differential equation obtained from

Equation (47) can be written as:

R
@C
@T

¼ 1
n2Pe

� ΔT
2

1
n2 �

2μ�

n2Pe

� �� �
@2C
@Z2

� 1
n
þ μ�

n
ΔT

� �
@C
@Z

� μ� þ μ�
2

2
ΔT

" #
C

þ γ� � μ�γ�

2
ΔT

� �
(52)

Now, after comparison between Equation (52) and the

original partial differential equation, we found different

forms of the truncation error, as discussed by Ataie-Ashtiani

et al. (). These errors can be identified as follows:



491 M. K. Singh et al. | Mathematical modeling in aquifer Journal of Hydroinformatics | 18.3 | 2016

Downloaded from http
by guest
on 27 November 2022
The second-order truncation error or numerical dis-

persion was

� ΔT
2

1
n2 �

2μ�

n2Pe

� �
, (53)

The first-order truncation error or numerical seepage

velocity was

μ�

n
ΔT , (54)

The zero-order truncation error or numerical first-order

decay was

μ�
2

2
ΔT , (55)

Constant error or numerical zero-order production was

� μ�γ�

2
ΔT , (56)

After removing the induced numerical errors from the

finite difference model, Equation (52) can be written as

follows:

R
@C
@T

¼ D� @
2C

@Z2 � u� @C
@Z

� μ�0C þ γ�0 (57)

where

D� ¼ 1
n2Pe

� ΔT
2

1
n2 �

2μ�

n2Pe

� �
(58)

u� ¼ 1
n
þ μ�ΔT

n
(59)

μ�0 ¼ μ�
2
ΔT
2

þ μ� (60)

γ�0 ¼ γ� � μ�γ�

2
ΔT (61)
://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
ACCURACY OF THE SOLUTION

The accuracy of the solution was obtained by comparison of

the numerical result with the analytical one. In the numerical

solution, the accuracy is the degree of closeness of concen-

tration values of the numerical result obtained with various

methods to those of the analytical result. Towler & Yang

() adopted a criterion of comparison that was more sys-

tematic and consistent: (1) the RMS error and (2) the

absolute maximum error between the analytical solution and

the numerical solution at all grid points. Roberts & Selim

() used the RMS method to calculate the average error at

each nodal point of the grid. Singh & Das () explored the

accuracy of solution of the solute transport equation in com-

parison of the analytical result with numerical one. For

testing the accuracy of solutions in this paper, we used the

RMS error which is the most appropriate method to check

the accuracy of the solution (Chai & Draxler ). The RMS

method was used to calculate the average error at each point

which is defined by:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jΔCij2
vuut ; (62)

where

ΔC ¼ Canalytical � Cnumerical:

The difference between the analytical and numerical con-

centration values is denoted byΔC, andN is the numberof data

which were used to evaluate the accuracy of the solution.
RESULTS AND DISCUSSION

The analytical solution, obtained by Equations (18) and (19),

was computed for the following data (Singh & Kumari ):

ci ¼ 0:01, c0 ¼ 1:0, u0 ¼ 0:01(m year�1),

D0 ¼ 0:1(m2 year�1), γ0 ¼ 0:000001, μ0 ¼ 0:0005 (year�1),

L ¼ 200m, Kd ¼ 0:0025, Pe ¼ 2:0,

ρ ¼ 999, m ¼ 0:004 (year�1), k ¼ 0:2



Figure 1 | Concentration distribution pattern for exponentially decreasing velocity for

time 0< T � TP with average porosity of the medium.

Figure 2 | Concentration distribution pattern for sinusoidal velocity for time 0< T � TP
with zero-order production in the aquifer.
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The average porosity of the different geological for-

mation was considered as n¼ 0.37 (sand), 0.55 (clay)

(Freeze & Cherry ). We considered four different time-

dependent forms of velocity expressions that can be written

as follows:

1. Exponential decreasing form of velocity:

u ¼ u0f(mt), f(mt) ¼ exp (� k1mt),

T ¼ nu0

k1mL
[1� e�k1mt] (63)

2. Sinusoidal form of velocity:

u ¼ u0f(mt), f(mt) ¼ 1� sin (k1mt);

T ¼ nu0

Lk1m
k1mt� {1� cos (k1mt)}½ � (64)

3. Asymptotic form of velocity:

u ¼ u0f(mt), f(mt) ¼ mt
mtþ k1

;

T ¼ nu0

Lm
mt� k1 log

mtþ k1

k1

� �� �
(65)

4. Algebraic form of velocity:

u ¼ u0f(mt), f(mt) ¼ mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mt)2 þ k1

2
q ,

T ¼ nu0

Lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mt)2 þ k1

2
q

� k1

� �
(66)

where m is the flow resistance coefficient and k1 is the con-

stant parameter. The first and third ones have been used by

Aral & Liao (), the second one by Singh et al. (),

and the last one is based on the properties of the algebraic

sigmoid function which include the error function. It starts

to progress from a small beginning, accelerates in the rainy

season, and then reaches a limit over a period of time.

From Figure 1 it can be seen that the maximum contami-

nant concentration is observed, i.e., 0.8 in the case of aquitard

(i.e., clay) and 0.6 in the case of aquifer (i.e., sand) which are

subsequently lowered down tominimumconcentration tends

to zero at the far end of the domain with respect to the
om http://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
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distance, i.e., X ¼ 0:02695 and X ¼ 0:01813, respectively.

The concentration values increases with time at each of the

positions in both the media.

Figure 2 depicts the contaminant concentration pattern

for the unsteady sinusoidal form of velocity with zero order

production parameter. The effect of this parameter is pre-

dicted with respect to the aquifer (i.e., sand). The

concentration level decreases with the increasing value of

the zero-order production parameter, but the contaminant

concentration increases with increasing time. The peak of

the contaminant concentration is lower at the source due

to the increasing zero-order production parameter. The



Figure 4 | Concentration distribution pattern for the exponentially decreasing form of the

velocity pattern for the sand medium.
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effective parameters, like zero-order production, first-order

decay, etc., in tropical regions are more significant for trans-

port modeling for groundwater bodies.

Figure 3 compares the contaminant concentration pat-

terns for exponentially decreasing type unsteady velocity

expression in the time domain T > Tp between aquifer (i.e.,

sand) and aquitard (i.e., clay). This is the case when the

source has been removed from the aquifer. From this figure

it is observed that after removing the source, some initial con-

centration exists at the origin. As a result, the effect of

contaminant concentration increases with distance that

attains the maximum peak in the case of the aquitard as com-

pared to the aquifer and then decreases up to a harmless

concentrationwith respect to the distance. The concentration

pattern initially decreases with the increasing value of time

and after covering some distance it takes the reverse pattern

with respect to time in the aquifer and aquitard and ultimately

goes to a minimum harmless concentration with respect to

distance. From this figure it is observed that the concentration

pattern is high in the aquitard as compared to the aquifer.

Figure 4 shows a comparisonof the analytical result against

the numerical one with averaging porosity of sand (0.37). The

concentration distribution pattern follows its decreasing

nature with respect to the distance in both the results. Initially,

the concentration values are minimum in the numerical sol-

ution, but after covering some distance the numerical result

attains slightly higher values in comparison to the analytical

one. Both the results attain the minimum level at a particular
Figure 3 | Concentration distribution for the exponential decreasing form of unsteady

form of velocity for time T > Tp with average porosity of the medium.
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point, after that it takes the reverse pattern in the case of expo-

nentially decreasing form of the velocity pattern.

The contaminant concentration pattern for the asympto-

tic form and algebraic sigmoid form of velocity patterns are

almost similar and are shown in Figures 5 and 6, respect-

ively. The contaminant concentration increases slowly

with respect to time and decreases rapidly with respect to

distance. The effect of the Peclet number is shown in

Figure 7. The Peclet number physically measures the relative

magnitude of advection versus dispersion. The contaminant

concentration increases with the increasing Peclet number

and decreases with the decreasing Peclet number. Both
Figure 5 | Concentration distribution pattern for asymptotic velocity with average por-

osity of the medium.



Figure 7 | Concentration distribution pattern for algebraic sigmoid velocity with different

values of Peclet number with the average porosity of the sand medium.

Figure 6 | Concentration distribution pattern for algebraic sigmoid velocity with average

porosity of the medium.

Figure 9 | Concentration distribution for asymptotic velocity for time T > Tp with average

porosity of the medium.

Figure 8 | Concentration distribution for sinusoidal velocity for the time T > Tp with

average porosity of the medium.
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patterns with different Peclet numbers reach minimum con-

centration with distance. The effect of the Peclet number on

the solute concentration is observed with respect to the dis-

tance. For high Peclet number, the concentration level takes

a minimum distance to reach its minimum concentration,

whereas for low Peclet number it takes more distance for

the same value. The above discussion is for time domain

0< T � TP for the analytical solution given in Equation (18).

A similar type of concentration pattern was found for

the case of the sinusoidal form of unsteady velocity pattern,

as shown in Figure 8. The concentration is high in the aqui-

tard as compared to the aquifer and ultimately goes to a
om http://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
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minimum harmless concentration with respect to distance

and time.

Figures 9 and 10 compare the concentration patterns for

the asymptotic form and the algebraic sigmoid form of

unsteady velocity patterns, respectively. From these figures it

is observed that the concentration pattern attains a maximum

peak value at a certain distance and thereafter it begins to

decrease with respect to distance. The concentration pattern

initially decreases with the increasing value of time and after

covering some distance of approximately 0.005 for the case

of aquifer (i.e., sand) and 0.012 for the case of aquitard (i.e.,

clay) the concentration takes a reverse pattern with respect

to time and goes to a minimum harmless concentration. The



Figure 10 | Concentration distribution for the algebraic sigmoid velocity for time T > Tp
with average porosity of the medium.

Figure 12 | Concentration distribution pattern for the sinusoidal form of the velocity

pattern for the sand medium.
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concentration pattern takes on a lesser peak value in the case

of asymptotic form and algebraic sigmoid form than for the

exponentially decreasing and sinusoidal form of the velocity

pattern for time domain T > Tp.

Figure 11 exhibits contaminant concentration for differ-

ent values of the Peclet number with the algebraic sigmoid

form of unsteady velocity pattern for time domain T > Tp.

The solute concentration value increases with the increasing

value of the Peclet number and the peak of the concen-

tration is reduced with the increasing time.

Figure 12 predicts for the sinusoidal form of the velocity

pattern for the averaging porosity of sand. It also follows the
Figure 11 | Concentration distribution pattern for algebraic sigmoid velocity for time

T > Tp with different values of Peclet numbers with average porosity of the

sand medium.
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same type of nature as in Figure 4. The concentration value

attains its minimum level in a short distance for the case of

sinusoidal form of the velocity pattern in comparison to

exponentially decreasing velocity pattern. From Figures 4

and 12, we observed that the decreasing nature of the con-

centration distribution patterns is faster for the sinusoidal

form of velocity pattern (which shows the nature of ground-

water contamination in the tropical region in which the

fluctuation behavior of groundwater recharge is shown) in

comparison to the exponentially decreasing form of velocity

(Singh & Singh ; Jain et al. ) in which contaminant

concentration follows a decreasing nature.

Figures 13 and 14 predict for the averaging porosity of

the clay. After the rainy season the contamination fluctu-

ation in groundwater is shown from the asymptotic and

algebraic sigmoid forms of velocity patterns (Aral & Liao

; Singh & Kumari ). The concentration distribution

pattern for the asymptotic form of the velocity pattern for

the clay is shown in Figure 13. The concentration values

are minimum for the numerical result in comparison to

the analytical one and beyond some distance it takes a

reverse pattern. Both the analytical and numerical concen-

tration values attain their minimum level at a particular

position. A similar type of nature of the contaminant distri-

bution pattern was observed for the algebraic sigmoid form

of the velocity pattern depicted in Figure 14.

In this paper, the RMS error was used to check the val-

idity of numerical solution against the analytical one, as



Figure 14 | Concentration distribution pattern for the algebraic sigmoid form of the vel-

ocity pattern for the clay medium.

Table 1 | The RMS values for the sand medium at particular 20 year in 0< T� TP

Distance Analytical result

Numerical result

ΔZ¼ 0.02 ΔZ¼ 0.05 ΔZ¼ 0.07

Case i: For exponential decreasing form of the velocity pattern

0.0019 0.5125 0.0119 0.0149 0.0169

0.0055 0.3188 0.0159 0.0248 0.0308

0.0093 0.1736 0.0198 0.0348 0.0448

0.0130 0.0837 0.0238 0.0448 0.0588

0.0167 0.0376 0.0278 0.0548 0.0727

RMS error 0.2719 0.2665 0.2634

Case ii: For asymptotic form of the velocity pattern

0.0019 0.3613 0.0120 0.0150 0.0170

0.0055 0.0687 0.0160 0.0250 0.0310

0.0093 0.0130 0.0200 0.0350 0.0449

0.0130 0.0094 0.0240 0.0449 0.0589

0.0167 0.0091 0.0280 0.0549 0.0729

RMS error 0.1583 0.1585 0.1596

Table 2 | RMS values for the clay medium with their averaging porosity at particular 30

years for T> Tp

Distance Analytical result

Numerical result

ΔZ¼ 0.02 ΔZ¼ 0.05 ΔZ¼ 0.07

Case i: For the sinusoidal form of the velocity pattern

0.0028 0.1094 0.0118 0.0148 0.0168

0.0083 0.2425 0.0158 0.0248 0.0307

0.0138 0.2524 0.0198 0.0347 0.0447

0.0193 0.1869 0.0238 0.0447 0.0586

0.0248 0.1135 0.0278 0.0546 0.0725

RMS error 0.1726 0.1596 0.1514

Case ii: For the algebraic sigmoid form of the velocity pattern

0.0028 0.1001 0.0119 0.0149 0.0169

0.0083 0.1608 0.0159 0.0249 0.0309

0.0138 0.0868 0.0199 0.0349 0.0449

0.0193 0.0301 0.0239 0.0449 0.0589

0.0248 0.0126 0.0279 0.0549 0.0728

RMS error 0.0818 0.0780 0.0774

Figure 13 | Concentration distribution pattern for the asymptotic form of the velocity

pattern for the clay medium.
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shown in Tables 1 and 2. The two parameters, ΔZ and ΔT ,

play an important role to investigate the performance of

the numerical solution. In the explicit finite difference

scheme ΔT is restricted under the stability condition. Thus,

in this present study, the accuracy was investigated by select-

ing different mesh sizes. The RMS error was investigated for

ΔZ ¼ 0:02, 0.05, and 0.07 for the particular time period 20

years in the time domain 0< T � TP for the exponential

decreasing and the asymptotic form of the velocity patterns,

and 30 years with T > Tp within the sinusoidal and algebraic

sigmoid form of the velocity patterns in sand and clay

media, respectively.
om http://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
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In both the tables, ΔT was fixed. Tables 1 and 2 were tabu-

lated for theRMSerror in the aquifer (i.e., sand) and aquitard (i.

e., clay) for four different types of the velocity patterns, respect-

ively. The RMS error decreases with the increasing grid space



Figure 15 | Concentration distribution pattern with different input for time 0< T � TP
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for the exponential decreasing form of the velocity pattern for

the sand medium, which was observed from Case i of Table 1.

In the asymptotic form of the velocity pattern the RMS error

increases with respect to the increasing grid space in Case ii

of Table 1. The RMS error attains its minimum value with the

increasing mesh size for Cases i and ii in Table 2 for the clay

medium. The RMS error was evaluated for the accuracy of sol-

ution for the sinusoidal form of the velocity pattern tabulated in

Case i in Table 2, and for the algebraic sigmoid form of the vel-

ocity pattern tabulated in Case ii of Table 2. In both the velocity

patterns the result is more accurate for the maximum value of

the mesh size, except in the case of the asymptotic form of

the velocity pattern where the result is more accurate in the

case of minimum value of the mesh size.

with average porosity of the medium.

Figure 16 | Concentration distribution with the different input for time T > Tp with

average porosity of the medium.
VALIDATION OF THE MODEL WITH EXISTING
SOLUTION OF LIU ET AL. (1998)

One-dimensional ADE in multilayer porous media was

solved analytically using generalized integral transform tech-

nique by Liu et al. (), where the analytical solution was

derived under arbitrary initial and boundary conditions. In

this present paper, the authors have shown the validation of

the model equation with the existing research work done by

Liu et al. (). The analytical solution obtained inEquations

(18) and (19) was computed for the same set of input data,

except some parameters which had an effect on the solute

transport modeling, which have been compared with the

input values taken by Liu et al. () as follows:

Input (i) D0 ¼ 3:1(m2 year�1), u0 ¼ 0:06(myear�1)

Input (ii) D0 ¼ 0:1(m2 year�1), u0 ¼ 0:01(myear�1)

The following inputs are taken for validation purposes in

this present paper. The concentration distribution pattern for

Input (i) and (ii) are predicted for the different geological for-

mations with their averaging porosity and shown in

Figures 15 and 16 for different time domains. The concen-

tration distribution pattern for a particular time, 10 years, for

sand and clay medium are predicted and shown in Figure 15,

and for 25 years is also predicted and shown in Figure 16.
://iwaponline.com/jh/article-pdf/18/3/481/478993/jh0180481.pdf
The concentration values in each of the positions in Input (i)

are higher as compared to Input (ii) in both the media as

observed in Figure 15. The claymediumattainsmaximumcon-

centration values as compared to the sand medium, but both

patterns ultimately follow minimum concentration values

with their respective distance. After removing the source, con-

taminant concentration increases with distance up to a certain

limit, then decreases with respect to the distance in both the

medium for Input (i) and (ii), as seen in Figure 16. The concen-

tration pattern attains its maximum peak in the case of the

aquitard (i.e., clay) as compared to the aquifer (i.e., sand) in

both Input (i) and (ii). Initially, minimum concentration
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values are attained for Input (i) as comparedwith Input (ii), but

after covering a certain distance the reverse pattern is

observed. At the end of the position, minimum concentration

values are attained by Input (ii), which have been taken in

the present paper for illustration.
SUMMARY AND CONCLUSIONS

Employing the concept of linear isotherms, analytical solutions

for theADEwithrespect tothesolidandliquidphasearederived.

Themixed type boundary condition is employed at the source in

the splitting time domain. The contaminant concentration pat-

terns for different types of velocity patterns are evaluated. The

following conclusions can be drawn from this study:

1. The impact of contaminant concentration for linear iso-

therms with the distribution coefficient is significantly

observed in the splitting time domain for different vel-

ocity patterns, such as exponentially decreasing,

sinusoidally varying, algebraic, and asymptotic forms.

2. The contaminant concentration values depend upon the

decreasing or increasing values of the zero-order pro-

duction term and first-order decay rate coefficient.

3. The contaminant concentration distribution behavior is

predicted for different geological formations in two time

domains, i.e., 0< T � TP and T > TP.

4. Comparison of the analytical result with the numerical

result is taken into account. Accuracy of the solution is sig-

nificantly observed by using RMS error. Truncation error

of various parameters is also explored, which causes the

inconsistency among analytical and numerical results.

5. The validation of the model is made with the result of an

existing solution given by Liu et al. () and the same

trend for contaminant concentration was found.
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