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Modelling boundary shear stress distribution in open

channels using a face recognition technique

Pedro Martinez-Vazquez and Soroosh Sharifi
ABSTRACT
This paper describes a novel application of a pattern recognition technique for predicting boundary

shear stress distribution in open channels. In this approach, a synthetic database of images

representing normalized shear stress distributions is formed from a training data set using

recurrence plot (RP) analysis. The face recognition algorithm is then employed to synthesize the RPs

and transform the original database into short-dimension vectors containing similarity weights

proportional to the principal components of the distribution of images. These vectors capture the

intrinsic properties of the boundary shear stress distribution of the cases in the training set, and are

sensitive to variations of the corresponding hydraulic parameters. The process of transforming one-

dimensional data series into vectors of weights is invertible, and therefore, shear stress distributions

for unseen cases can be predicted. The developed method is applied to predict boundary shear

stress distributions in smooth trapezoidal and circular channels and the results show a cross

correlation coefficient above 92%, mean square errors within 0.04% and 4.48%, respectively, and

average shear stress fluctuations within 2% and 5%, respectively, thus indicating that the proposed

method is capable of providing accurate estimations of the boundary shear stress distribution in

open channels.
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INTRODUCTION
Boundary shear stress is the result of the tangential com-

ponent of the hydraulic forces that act in the direction

parallel to the channel’s boundaries and transfer momentum

to its bed and walls (Chow ). Excessive shear stress can

undermine channel stability by eroding bank sides and

cause changes in the river morphology by affecting the trans-

port and deposition of sediments (Julien ). Erosion often

results in higher levels of turbidity and lower water quality

levels. Furthermore, an increase in sediment movement

and deposition can cause a decrease in channel capacity

and, consequently, higher flood risk. Computation of flow

resistance, side-wall correction, sediment discharge, channel
erosion or deposition, cavitation problems, and design of

stable channels are among the problems which require accu-

rate estimates of the boundary shear stress distribution

(Yang & Lim ; Guo & Julien ; Blanckaert et al.

).

The distribution of boundary shear stress over the

wetted perimeter of a channel cross-section is non-uniform.

This is true even for steady flows in straight prismatic chan-

nels with a simple cross-sectional geometry. This non-

uniformity is mainly due to the anisotropy of the turbulence

which produces transverse gradients of Reynolds stresses

and secondary circulations (Gessner ). Tominaga et al.
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() and Knight & Demetriou () showed that the

boundary shear stress increases where the secondary cur-

rents flow towards the wall, and decreases when they flow

away from the wall. Other factors that govern the distri-

bution of shear stress are the geometry of the cross-

section, lateral and longitudinal boundary roughness

distributions (Blanckaert et al. ) and sediment concen-

tration (Khodashenas et al. ).

To date, numerous investigations have been conducted

and various mechanistic and empirical methods have been

developed for understanding and estimating the magnitude

and distribution of boundary shear stress. However, due to

the complexities involved, boundary shear stress has

proven to be one of the most challenging parameters to

quantify and measure, even for simple smooth prismatic

channels with uniform flow.

For steady uniform open channel flow, an approxi-

mation of the average boundary shear stress can be found

by applying Newton’s second law on a free body, and balan-

cing the downslope component of the fluid weight by the

frictional force exerted by the boundary:

�τPL ¼ γAL sin α (1)

where �τ is the average boundary shear stress (Nm�2), A is

the channel’s cross-section (m2), P is the channel’s wetted

perimeter (m), L is the reach length (m), γ is water’s specific

weight (kg m�3) and α is the slope angle of the channel bed

plane. Rearranging Equation (1) gives:

�τ ¼ γ sin α
A
P
¼ γ sin αR (2)

where R is the hydraulic radius of the channel (m). This

simple equation, often referred to as the slope method, is

valid for both laminar and turbulent flow regimes, but only

provides the average boundary shear stress.

The logarithmic ‘law of the wall’ (Patel ) is another

popular and simple method for indirect estimation of the

boundary shear stress in rivers and channels. This law, for

a two-dimensional (2D) turbulent flow is given by:

u(z)
u�

¼ 1
κ
ln

u�z
υ

� �
þ C (3)
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where u is the time-averaged (mean) streamwise velocity

profile (ms�1), z is the vertical coordinate (m), u� is the

shear velocity (ms�1) given by u� ¼ (τ=ρ)1=2, ν is the kin-

ematic viscosity (m2 s�1), κ is the von Karman’s

constant¼ 0.41 and C is a dimensionless integration con-

stant related to the thickness of the viscous sublayer.

Although the log law is strictly valid for the turbulent sub-

layer (approximately the lower 20% of the depth), it is

commonly extended over the entire flow depth in rivers

and channels (Petrie & Diplas ). If the mean velocity

profile, u(z), is known, then a simple linear regression (e.g.

least squares) can be applied to fit the velocity profile to

Equation (3) and calculate the log law parameters, the

shear velocity, and consequently the shear stress. The advan-

tage of this approach is that it does not need detailed

information about bed roughness, however it requires

measurements of the streamwise velocity profile, and

making assumptions for the viscous sublayer thickness,

which to some extent limits its applicability and accuracy.

Preston’s () method is the most widely practised

technique for measuring boundary shear stress in smooth

channels. In this method, a Preston tube is used to infer

the velocity of the water flow by recording the difference

between static and total pressures. A non-dimensional cali-

bration function is then established based on the ‘law of

the wall’, Equation (3), and used to determine the boundary

shear stress from the differential pressures. The simplicity of

the experimental setup and its operation are the main

reasons behind the popularity of this method. However,

for rough boundaries, application of the technique is sub-

stantially more complicated, due to the absence of a

viscous sublayer. A number of studies (Hwang & Laursen

; Ghosh & Roy ; Hollick ; Hollingshead &

Rajaratnam ) have attempted to extend the use of this

technique to rough surfaces, and have calibrated curves

for the Preston tube by using Nikuradse’s () model of

velocity distribution over rough boundaries. Although prom-

ising, these methods can only be applied when the sand

equivalent roughness height of the surface is known,

which makes them unsuitable for application to a variety

of open channels. Other methods based on fitting the log

law of the wall such as Clauser’s () method and the

boundary characteristics method (Hinze ; Papanicolaou

et al. ) have been developed and applied to gradually
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(Afzalimehr & Anctil ) and rapidly varying flows over

spatially varying boundaries (Papanicolaou et al. ).

Geometrical methods for estimating shear stress distri-

bution (Leighly ; Einstein ; Lundgren & Jonsson

; Yang & Lim ; Khodashenas & Paquier ;

; Yu & Tan ; Abderrezzak et al. ) consist of

splitting the channel cross-section into sub-regions where

the shear force along each segment of the boundary is calcu-

lated by balancing the forces against the weight of fluid in

the corresponding subregion. In these approximations, map-

ping and discretising the wetted perimeter is often a

complicated and sensitive task, however, they have the

advantage of requiring relatively low computational effort.

Where abundant experimental data existed, researchers

(e.g. Knight ; Knight et al. , ; Flintham & Carling

; Pizzuto ; Olivero et al. ) have used regression

and correlation analysis to derive empirical and semi-empiri-

cal equations for boundary shear stress. These equations are

capable of only calculating mean, maximum and percentages

of shear stress carried on the channel’s walls and beds with

relatively good accuracy, but are unable to provide the distri-

bution of shear stress along the entire wetted perimeter.

Some other researchers (e.g. Zheng & Jin ; Jin et al.

; Bilgil ;Guo&Julien ) have solved the governing

energy transport, continuity, and momentum equations to for-

mulate analytical and semi-analytical solutions for calculating

the boundary shear stress. These methods often rely on a

number of subjective and controversial assumptions and

require a large amount of computing resources which make

them impractical. With the advent of more powerful compu-

ters, computational fluid dynamic techniques have also been

used (e.g. Christensen & Fredsoe ; De Cacqueray et al.

) to solve the referred set of equations and calculate the

boundary shear stress distribution. Nonetheless, these

methods are computationally expensive and themodel outputs

are extremely sensitive to mesh size, the turbulence closure

model, and other internal parameters defined by the user.

Recently, information theory and machine-learning

techniques have been used to tackle this problem. For

instance, the principle of maximum entropy has been used

(e.g. Sterling & Knight ; Li & Zhang ; Bonakdari

& Moazaminia ) to establish relationships for the

boundary shear stress. A comparison with experimental

data has shown that these approximations provide relatively
s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
flat shear stress distributions which make them unreliable.

The divergence between the numerical and experimental

results increases at the regions around the corners of the sec-

tions where secondary flow structures are more

pronounced. Cobaner et al. () used a neural network

with four hidden layers to predict the percentage of the

shear force acting on the walls of smooth rectangular chan-

nels and ducts. The study concluded that the artificial neural

network (ANN) predictions were less biased and slightly

more accurate than the classic empirical models suggested

by Knight et al. () and Knight & Patel ().

Measuring the actual local shear stress along the chan-

nel’s boundaries is difficult and costly owing to the

complexity of the turbulent velocity field, presence of flow

structures, and the small magnitude of the stress. Shear

stress also represents a difficult parameter to calculate

due to the variability of channel slope, geometry and flow

structures, which are the main influencing factors in the

complex flow process. To date, all the developed methods

are inherently based on some sort of simplifying assump-

tion, and therefore, the problem of accurately estimating

these stresses has only been partially resolved (Zheng &

Jin ).

The recent relative abundance in available experimental

data has offered an opportunity to test and validate novel

techniques for describing the boundary shear stress distri-

bution. In this paper, an advanced pattern recognition

technique is employed to predict the distribution of bound-

ary shear stress in open channels. This technique, which

results from merging two existing algorithms (recurrence

plots (RPs) and Eigenfaces for Recognition), is combined

with a standard regression model for the prediction of

data series representing shear stress distribution of flows

with known attributes (i.e. Froude numbers, flow depths

and channel slopes).

In the following sections the RP analysis and its adap-

tation to the Eigenfaces for Recognition is explained. This

is followed by a description of the experimental data used

in the study and details of the proposed methodology.

Next, the prediction of boundary shear stress distributions

in trapezoidal and circular channels are presented and criti-

cally discussed. The paper concludes with a discussion on

the advantages of the method and suggestions for

improvement.



160 P. Martinez-Vazquez & S. Sharifi | Modelling shear stress in open channels using a face recognition technique Journal of Hydroinformatics | 19.2 | 2017

Downloaded fr
by guest
on 20 January
BACKGROUND

The proposed approach for predicting boundary shear stress

distribution combines RP analysis (Eckmann et al. ) and

Eigenfaces for Recognition (Turk & Pentland ). RP is

used to transform one-dimensional data series into two-

dimensional arrays which can be graphically represented.

Eigenfaces for Recognition is then used as a means of iden-

tifying patterns in the arrays and to transform these into

short-dimension vectors which can then be used to predict

boundary shear stress distributions. It is to note that despite

using a method that was originally developed for the recog-

nition of human faces using 2D still images; no ‘recognition’

is involved in the proposed methodology. Instead, the tech-

nique is used to filter the original data and reduce their

dimensionality whilst preserving intrinsic qualities. These

reduced databases are then used to produce shear stress dis-

tribution for unseen cases.

Recurrence plots

RPs are visualization tools that can be used to picture the

recurrence behaviors, hidden patterns and nonlinearities

in data sets (Marwan et al. ). In this technique, starting

from the first point of a data series, d-dimensional vectors

are formed by taking a sample of d consecutive points in

the data series:

~qj ¼ {qj, q jþ1::, q jþd�1}

..

.

~qk ¼ {qk, qkþ1::, qkþd�1}

(4)

where subscripts j and k represent the jth and kth data

points in the data series. The d-dimensional vectors are

then correlated by calculating the Euclidean distance

between them. This parameter can then be used to form

the RP matrix:

RP ¼

e11 e12 . . . e1N

e21 e jk
..
.

..

. . .
. ..

.

eN1 � � � � � � eNN

2
666664

3
777775 (5)
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where ejk is the distance between vectors ~qj and ~qk and N

is the total number of vectors, which define the number of

data points in each column and row of the matrix. Note

that the values of ejk in the RP matrix vary with d whilst

any value of d would result in a matrix that could be

used in the recognition method as described further

below. However by letting d¼ 1 each row in the RP

matrix effectively becomes a normalized version of the

original one-dimensional data series which has the benefit

of maintaining its basic structure throughout the pattern

recognition process.

By projecting the RP matrix on a Cartesian space, a

map of the data can be generated. In this case each pixel

on the map has the coordinates { j,k} with j, k¼ 1, 2,… , N,

as well as a numerical value that is proportional to its

associated distance, ejk. In an 8-bit grayscale image rep-

resentation, the values of ejk can take values within the

range 0 to 255, where the brightness intensity of each

pixel indicates a larger ejk. Through the calculation of the

RP matrix, the correlation between all data points within

the data series is established whilst preserving the basic

structure of the database. Such transformation and visual-

ization helps to make explicit features of data which

otherwise would be difficult to observe in the original

series.

The graphical representations of RPs helps to visualize

characteristic patterns of the data, although for numerical

analysis, its elements need to be sorted in a N2 dimension

vector where all rows of the RP matrix are assembled in

sequence:

ΓT ¼ {e11, e12, . . . , eNN} (6)

The arrangement of rows of the RP matrix into the Г

vector is shown schematically in Figure 1. The unique con-

figuration of RPs makes them particularly suitable for

machine learning. That is because pattern recognition

methods are capable of identifying data sets with unique

features such as those made explicit through the RP

method. In the following sections the post-processing of Г

vectors and their relationship with the hydraulic par-

ameters that control shear stress distributions is discussed

in detail.



Figure 1 | Relationship between the RP matrix and the Г vector.
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Eigenfaces for Recognition

The Eigenfaces for Recognition is based on the premise that

any 2D image of resolution N ×N can be represented by an

N2 size vector Г, where each element is a real number that

represents an individual pixel in the image. If the training

set consists of M images, then the average face of the train-

ing set, ϑ, is defined by:

ϑ ¼ 1
M

Xi¼M

i¼1

Γi (7)

and hence, the difference between each image, Гi, and the

average face, ϑ, is given by:

ϕi ¼ Γi � ϑ ; i ¼ 1, 2, . . . , M (8)

Performing principal component analysis (PCA) on

the collection of all φi, would result in a set of M ortho-

normal vectors which best describe the distribution of

data. PCA is a statistical procedure that is able to identify

orthogonal modes or degrees of freedom within a numeri-

cal array, and transform a number of possibly correlated

variables into a smaller number of uncorrelated variables,

which are called the principal components. The eigenvec-

tors and eigenvalues of these principal components can
s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
be determined from the covariance matrix:

C ¼ AAT (9)

where

A ¼ [ϕ1, ϕ2, . . . , ϕM] (10)

Matrix C is of size N2, and finding its eigenvectors

and eigenvalues is computationally expensive. If

the number of training images, M, is less than the

dimension of the space, N2, then there will only be

M-1 meaningful eigenvectors (Turk & Pentland ),

and hence, to reduce the calculations, an M by

M matrix L can be constructed to find the meaningful

eigenvectors:

L ¼ ATA (11)

where

Lij ¼ ϕTi ϕj (12)

The principal components of the distribution of

images are called the eigenfaces, ul, which can be calcu-

lated from a linear combination of the images and



Figure 2 | Trapezoidal channel cross-section.
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eigenvectors:

ul ¼
XM
i¼1

vliϕi l ¼ 1, . . . , M (13)

where vli is the ith eigenvector of the covariance matrix.

The collection of eigenface vectors defines a subspace

of training images which is called the ‘face space’. Any

input image expressed in vector form Г, can be projected

into the face space through the following operation:

ωi ¼ uT
i (Γ� ϑ), i ¼ 1, . . . , M0 (14)

where ωi is a weight factor that describes the contribution

of the ith eigenface in representing the image, and M0 is

the number of significant eigenvectors, associated with

the M largest eigenvalues, i.e. M0 �M. Furthermore, the

set of weights ordered in a short-dimension vector ΩT¼
(ω1, ω2… , ωM

0) can be used to project any new image,

Г0, into the face space by:

Ω ¼ UT (Γ0 � ϑ), i ¼ 1, . . . , M0 (15)

where U¼ {ui} is the collection of eigenfaces. Equation

(15) suggests that the process of encoding data into Ω

vectors can be inverted for prediction purposes. If a

reliable estimation of weights factors is available to con-

form a new vector Ω0, then a prediction of its associated

image can be made through:

Γ0 ¼ UΩ0 þ ϑ (16)

As will be further explained in the following sections, a

reliable estimation of the weight factors, i.e. vector Ω0,

would be based on the known vectors obtained through

Equation (15) together with the parameters that character-

ize the original data sets. These vectors and parameters can

be typically related with the aid of a simple regression

model or more complicated method such as an artificial

neural network, and the output Ω0 can be considered to

be reliable if the modelling error is less than 5%. Note

that the validity of Equation (16) is provided in Appendix

A (available with the online version of this paper).
om https://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
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EXPERIMENTAL DATA SETS

In this study, laboratory measurements of flow velocity and

boundary shear stress in trapezoidal and circular open chan-

nels were taken directly from the University of

Birmingham’s Flow Database (www.flowdata.bham.ac.uk).
Trapezoidal data sets

Two sets of experimental data relating to uniform flow in tra-

pezoidal channels were used in this study (Yuen ; Yuen

& Knight ). The data included local boundary shear

stress measurements in trapezoidal channels (Figure 2)

using a Preston tube, made in fully developed flow under

uniform flow conditions in a 22 m long titling flume. Two

different base widths (2b) of 0.15 m and 0.45 m were con-

sidered, and the bed slope was varied from 1 × 10�3 to

2.337 × 10�2 in order to observe shear stress distribution

for Froude (Fr) and Reynolds (Re) numbers within ranges

of 0.58� Fr� 3.59 and 0.46 × 105�Re� 6.18 × 105, respect-

ively, which derives from flow velocities (V ) between 0.39

and 2.69 ms�1. Measurements of velocity and shear stress

were taken on average every 20 mm along the wetted per-

imeter (i.e. between 16 and 32 measurement points for

each case), and measurement accuracy was estimated to

be within ±5% (Yuen ).

To obtain homogenous subsets suitable for pattern rec-

ognition, and to test the sensitivity of the approach to the

size of the training set, k-nearest neighbors (k-nn) clustering

analysis (Fix & Hodges ) was first performed. The funda-

mental idea of the k-nn algorithm is to simply separate the

data based on the assumed similarities between various clus-

ters. Here, the Euclidean distance metric was used to

measure the similarity between clusters, and shear stress

data were non-dimensionalized by the average shear stress

http://www.flowdata.bham.ac.uk
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to eliminate the scale effects. K-nn was run with different k

values, and consequently, three clusters (subsets) were ident-

ified by investigating the resultant dendrograms, i.e.

graphical tree-structures that show the hierarchical relation-

ships among clusters, ensuring highest similarity within each

cluster (homogeneity) and lowest similarity between clusters

were achieved.
Table 1 | Geometric and hydraulic parameters of trapezoidal experiments

1 2 3 4 5
ID 2b (m) h (m) A (m2) S0 P (m)

Set 1 #1 0.15 0.030 0.005 0.0040 0.235

#2 0.15 0.058 0.012 0.0087 0.313

#3 0.15 0.037 0.007 0.0234 0.255

(TVc-1) #4 0.15 0.042 0.008 0.0234 0.269

#5 0.15 0.050 0.010 0.0234 0.291

#6 0.15 0.057 0.012 0.0234 0.310

Set 2 #7 0.45 0.044 0.022 0.0040 0.574

#8 0.45 0.050 0.025 0.0010 0.591

#9 0.45 0.056 0.029 0.0010 0.609

#10 0.45 0.060 0.031 0.0010 0.620

#11 0.15 0.029 0.005 0.0087 0.231

#12 0.15 0.036 0.007 0.0087 0.250

#13 0.15 0.041 0.008 0.0088 0.266

#14 0.15 0.048 0.009 0.0087 0.284

(TVc-2) #15 0.45 0.044 0.022 0.0087 0.574

#16 0.45 0.059 0.030 0.0087 0.615

#17 0.45 0.044 0.022 0.0145 0.574

#18 0.15 0.029 0.005 0.0234 0.231

#19 0.45 0.045 0.022 0.0234 0.576

#20 0.45 0.059 0.030 0.0234 0.615

Set 3 #21 0.15 0.075 0.017 0.0040 0.362

#22 0.15 0.107 0.028 0.0010 0.453

(TVc-3) #23 0.15 0.125 0.034 0.0010 0.504

#24 0.15 0.150 0.045 0.0010 0.574

#25 0.45 0.075 0.039 0.0010 0.662

#26 0.15 0.073 0.016 0.0087 0.356

#27 0.15 0.099 0.025 0.0087 0.430

#28 0.15 0.030 0.005 0.0145 0.235

#29 0.15 0.075 0.017 0.0145 0.361

#30 0.15 0.099 0.025 0.0234 0.430

#31 0.45 0.044 0.004 0.0234 0.574

#32 0.45 0.058 0.006 0.0234 0.614

s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
Table 1 lists the geometric and hydraulic parameters of

all the experiments. In each subset, one experiment (high-

lighted in Table 1) was randomly selected and excluded to

be used for validation whilst the remaining were considered

for training. Since the method requires all data series in the

set to have the same number of measurements taken at rela-

tively even distances, for each experiment, the horizontal
6 7 8 9 10 11
R V (ms�1) Q (m3 s�1) �τ (Nm�2) Fr Re

0.023 0.565 0.003 0.894 1.12 11,392

0.038 1.308 0.016 3.256 1.97 43,656

0.027 1.843 0.013 6.223 3.35 43,800

0.030 1.901 0.015 6.871 3.27 50,251

0.034 2.080 0.021 7.859 3.32 62,609

0.038 2.190 0.026 8.625 3.32 72,546

0.038 0.893 0.019 1.472 1.42 29,574

0.042 0.398 0.010 0.414 0.60 14,743

0.047 0.428 0.012 0.459 0.61 17,563

0.049 0.439 0.013 0.484 0.60 18,998

0.022 0.924 0.005 1.882 1.88 17,923

0.026 1.010 0.007 2.244 1.87 23,347

0.029 1.113 0.009 2.521 1.94 28,663

0.033 1.231 0.012 2.815 2.01 35,702

0.038 1.381 0.030 3.228 2.19 45,751

0.048 1.553 0.046 4.124 2.17 65,743

0.038 1.822 0.040 5.384 2.89 60,371

0.022 1.592 0.008 5.052 3.24 30,888

0.038 2.272 0.050 8.752 3.59 76,145

0.048 2.427 0.072 11.067 3.38 102,739

0.047 0.960 0.016 1.812 1.29 39,299

0.061 0.497 0.014 0.596 0.58 26,583

0.068 0.544 0.019 0.669 0.59 32,599

0.078 0.584 0.026 0.768 0.59 40,170

0.060 0.514 0.020 0.583 0.64 26,845

0.046 1.468 0.024 3.896 2.00 58,886

0.057 1.667 0.041 4.891 2.00 84,008

0.023 1.296 0.007 3.272 2.58 26,146

0.046 1.943 0.033 6.598 2.62 78,915

0.057 2.690 0.066 13.129 3.23 135,513

0.007 1.679 0.007 5.264 3.13 9,997

0.010 1.785 0.011 6.513 2.96 15,045
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coordinates of all data points were normalized using a peri-

metric distance defined as Pd¼ s/p, where s is the distance

along the wetted perimeter starting at the left bank at the

free surface, moving around the wetted perimeter, and p is

the total length of the wetted perimeter. The shear stress

measurements in each experiment were also non-

dimensionalized by the average shear stress. Where

required, linear interpolation was used to obtain shear

stress values from adjacent neighboring points. It is notable

that at regions where shear stress varied at higher rates,
Figure 3 | Measured and non-dimensionalized shear stress distribution of trapezoidal channe

om https://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
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experimental measurements were taken at smaller incre-

ments, thus resulting in the standardization of the degree

of accuracy across the wetted perimeter.

Figure 3 shows the distribution of the measured and

non-dimensionalized shear stress for each of the three sets.

It can be seen that the data series corresponding to each

set share patterns such as the location of peak values and

inflection points, which are attributed to the secondary

flow structures, and the range of shear stress fluctuations

across the wetted perimeter.
ls for (a) Set 1, (b) Set 2 and (c) Set 3.
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Circular channels

A separate set of experimental data containing local bound-

ary shear stress measurements in a circular channel, with

and without a flat bed, running partially full was also used

in this study (Figure 4). These data have been described

and analyzed in detail by Sterling (), Knight & Sterling

() and Sterling & Knight ().

Similar to the trapezoidal data, k-nn clustering analysis

was performed and only one major cluster was identified.

It is notable that for this particular data set, even if the

clustering was performed in a different way (e.g. with a

different distance measure or clustering technique) and
Figure 4 | Circular channel cross-section.

Table 2 | Case studies for circular section

1 4 5 6
ID D 2 3 A S0 P

m t/D h/D (m2) × 10�2 (m)

#1 0.24 0 0.33 0.014 0.1 0.3

#2 0.24 0 0.51 0.024 0.1 0.3

#3 0.24 0 0.83 0.041 0.1 0.5

CVc-1 #4 0.24 0.25 0.15 0.008 0.196 0.0

#5 0.24 0.25 0.08 0.004 0.196 0.0

#6 0.24 0.25 0.25 0.014 0.862 0.1

#7 0.24 0.25 0.42 0.024 0.862 0.2

#8 0.24 0.25 0.55 0.031 0.196 0.2

#9 0.24 0.33 0.17 0.010 0.2 0.0

#10 0.24 0.33 0.33 0.020 0.2 0.1

#11 0.24 0.33 0.47 0.027 0.2 0.2

#12 0.24 0.5 0.16 0.009 0.9 0.0

CVc-2 #13 0.24 0.5 0.25 0.014 0.88 0.1

s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
more than one cluster was obtained, the quality of the pre-

diction would increase, given enough data are available for

training the model. The only major difference would be the

increased computation required for the extra clusters.

Hence, in this context, one can see clustering as the pro-

cess to find the optimum data sets on which modelling

can be applied without losing accuracy. Table 2 lists the

geometric and hydraulic parameters of all the circular

channel test cases. Two validation cases, labelled CVc-1

and CVc-2, were randomly chosen to validate the method

and were excluded from the training set. The local shear

stresses were originally measured at 10 mm intervals

around the wetted perimeter using a Preston tube. Hence,

the difference in water depth between experiments resulted

in different number of measurements in each data series,

ranging from 30 to 60 point measurements. Similar to

what was done for the trapezoidal case studies, a peri-

metric distance, Pd, was used to standardize the number

of measurements along the wetted perimeter. Where data

points did not exist in the original series, linear inter-

polation was used to infer local boundary shear stress

from adjacent neighboring points. Figure 5 depicts the

boundary shear stress distribution of the cases in the train-

ing set.
8 9 10
7 V Q �τ 11 12
R (ms�1) (m3 s�1) (Nm�2) Fr Re

00 0.045 0.394 0.005 0.441 0.52 15,687

86 0.061 0.493 0.012 0.597 0.51 26,580

57 0.074 0.554 0.023 0.721 0.38 36,068

78 0.106 0.403 0.003 0.545 0.70 37,377

44 0.100 0.294 0.001 0.337 0.67 25,865

27 0.111 1.283 0.018 3.538 1.70 125,381

10 0.114 1.625 0.039 4.804 1.59 162,219

82 0.109 0.775 0.024 1.198 0.63 74,130

83 0.117 0.449 0.004 0.612 0.72 46,203

66 0.117 0.625 0.012 0.967 0.69 64,359

41 0.110 0.833 0.022 1.106 0.72 80,571

81 0.117 0.886 0.008 2.571 1.40 91,194

26 0.111 1.143 0.016 3.341 1.42 111,576



Figure 5 | (a) Measured and (b) non-dimensionalized shear stress distribution of circular channels.
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METHODOLOGY

The initial step in using RPs and Eigenface Recognition for

predicting boundary shear stress distribution is forming a

training set from available experimental data. As mentioned

in the previous section, the raw experimental data sets typi-

cally consist of a number of local boundary sheer stress

measurements, taken along the wetted perimeter of a chan-

nel, and presented as a data series. If measurements are not

taken at the same relative locations across the different

channels, then, to make the raw data suitable for use in

the data mining algorithm, interpolation is carried out to

find shear stresses at the same relative distances along the

wetted perimeter, for all data series.

As the Eigenfaces for Recognition algorithm accepts two-

dimensional arrays of numbers, the original (one-dimensional)

data series in the training set has to be pre-processed. This can

be done through the RP algorithm. To this end, the dimension

of the ~q vectors identified in Equation (4) is set to be equal to

1, so that each vector would contain numerical differences of

shear stress between consecutive points in the data series,

effectively resulting in each row of the RP matrix becoming

a normalized version of the original data series. In line with

the image recognition algorithm, once the RP matrix is

formed, Equation (6) is used to construct a unique Гi vector

representing the i-th experimental data set.

Figure 6 shows the RPs for the shear stress distri-

bution of selected trapezoidal and circular data sets. It

can be seen that the patterns of RPs associated to trape-

zoidal sections are fairly consistent. There is a square

region at the center of most images whose silhouette

stretches along the diagonals more than it does towards
om https://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
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the sides. This does not appear to be the case for circular

cases (Figure 6(b)) where the RPs follow at least three

types of patterns. The consistency of the data sets is also

present in the original series shown in Figures 3 and 5,

although the use of the RP technique has made those

intrinsic properties more explicit. That is the main

reason for pre-processing the data prior to applying the

full recognition method. As will be shown in the Results

section, the apparent constraint found in data from circu-

lar channels did not have a significant impact on the

prediction of shear stress distributions.

Once the RP vector representation for all members of the

training set are obtained, Equation (7) is used to calculate the

average face, ϑ, and consequently, the difference between

each image in the training set and the average face, φi, are

found by using Equation (8). Then, performing PCA, the eigen-

vectors that characterize the face space are computed, and

consequently, the set of weights, Ω, are determined by using

Equation (14). Figure 7 outlines the steps involved for encoding

the training data sets and obtaining the vectors of weights, Ω.

As mentioned in the Background section above, to use

this approach for predicting the boundary shear stress distri-

bution of an unseen case, i.e. experimental data not included

in the training set, also hereafter referred to as a validation

case, a set of weights must be obtained to be used in

Equation (16). For the sake of generality, the weights

associated with any experimental case are related to

non-dimensional parameters representing the major charac-

teristics of a channel’s geometry and flow. In this research

we have used the following non-dimensional attributes:

• Trapezoidal channels: 2b/h, 2bh/A, Fr, Re



Figure 7 | Process of encoding data series of shear stress.

Figure 6 | Recurrence Plots of selected (a) trapezoidal and (b) circular channels.

167 P. Martinez-Vazquez & S. Sharifi | Modelling shear stress in open channels using a face recognition technique Journal of Hydroinformatics | 19.2 | 2017

Downloaded from http
by guest
on 20 January 2019
• Circular channels: (hþ t)/D, Q/(VD2), Fr, Re

where h is the water depth, V is the mean velocity, Q rep-

resents discharge, and Fr and Re are the Froude and

Reynolds numbers, respectively. The bottom width for trape-

zoidal channels is represented by 2b whilst t/D is the base

height to diameter ratio for circular channels. In order to

relate weights and non-dimensional attributes, a simple
s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
regression model can be established:

ωi ¼ β1xi1 þ β2xi2 þ . . .þ βnxin (17)

where ωi represents a regression estimation of the i-th

weighting factor, xij is the j-th non-dimensional hydraulic/

geometric parameter of the i-th training experiment and βj

are regression parameters. The solution to Equation (17) is
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given by:

bβ ¼ (XTX)�1XTΩ (18)

where β̂ is the best estimator vector of the target β, factors X

represents the matrix of hydraulic/geometric non-dimen-

sional parameters, and Ω is the vector of target weighting

factors. Once the set of β factors is determined, the predic-

tion model can be established. After investigating a

number of non-dimensional attributes, the ones listed

above were found to strongly influence the established

relationship with the target weighting factors.

Figure 7 shows the steps involved in the process of

encoding the original data series. This process can be

reversed to obtain a new set of weighting values, ωɩ,

e.g. for test cases not included in the training set.

Equation (17) enables finding those weighting factors

which can then be stored in the short-dimension vector

(Ω0). Following, the vector Γ0 can be predicted by apply-

ing Equation (16).

To help the reader better understand the entire

modelling process, a simple step-by-step guide to using

the proposed approach is presented in Appendix B (avail-

able with the online version of this paper). Furthermore,

a copy of the code written in Cþþ is available at: http://

shear-stress-using-face-recog.sourceforge.net.
RESULTS

Trapezoidal channels

The proposed methodology was first applied to the three

trapezoidal data sets presented in Table 1. In summary,

for each training set, the process shown in Figure 7 was

first followed to obtain the weight factors for the training

set, Ω. Then, Equation (17) was used to establish a linear

regression between the weights associated with each

eigenface and the non-dimensional attributes of the geo-

metric and hydraulic parameters of the experiments. The

corresponding β regression parameters were then

obtained using Equation (18) and the vector of estimated

weights for the unseen test case, Ω0 was constructed. All

weighting and β factors are provided in Appendix C
om https://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
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(available with the online version of this

paper). Subsequently, Equation (16) was used to obtain the

Г0 vector, and its elements were transformed to find non-

dimensionalized shear stress values across the channel. It

should be noted that the first component of the Г0 vector, i.

e. e11, which corresponds to the boundary shear stress

value at Pd¼ 0 is always zero. The boundary shear stress at

this point was obtained through a separate linear regression

between the predicted values of local shear stresses:

τ0i ¼ β1xi1 þ β2xi2 þ . . .þ βnxin (19)

where τ0i represents a regression estimation of the i-th

shear stress at Pd¼ 0, xij is the j-th non-dimensional

hydraulic/geometric parameter of the i-th training exper-

iment and βj are regression parameters.

Finally, the predicted series were rescaled by multiplying

their ordinates by the estimated average shear stress (�τ)

obtained by the Slope method (Equation (1)). For practical

purposes, this parameter could be estimated using any

other prediction model, such as the ones suggested by

Knight (), Knight et al. (, ) and Flintham & Car-

ling ().

Figure 8 shows the predicted against observed bound-

ary shear stress distributions for the validation cases in

each of the two sets along with the predictions of the

well-established Shiono and Knight model (SKM)

(Shiono & Knight , ). As can be seen, although

there is some difference between the observed and pre-

dicted values particularly at the edges of the wetted

perimeter, the shape and amplitude of the predicted

curves accurately follow the observed distributions. More-

over, the proposed method outperforms SKM in all three

cases, particularly at the edges. It is also inferred that the

relatively small number of experiments in training Set 1

did not have a significant impact on prediction accuracy.

The mean square error (MSE) between observed and pre-

dicted ordinates averaged over all data points along the

wetted perimeter was found to be 4.4%, 0.88%, and

0.04% for TVc-1, 2, and 3, respectively. Table 3 shows a

more detailed comparison between observed and simu-

lated data series for the validation cases. In this table

jΔ�τj is the average absolute difference between the ordi-

nates of the observed and predicted data series, jΔτmaxj

http://shear-stress-using-face-recog.sourceforge.net
http://shear-stress-using-face-recog.sourceforge.net
http://shear-stress-using-face-recog.sourceforge.net


Figure 8 | Modelled vs measured shear stress distributions for trapezoidal validation

cases for: (a) TVc-1 (Fr¼ 3.27); (b) TVc-2 (Fr¼ 2.19); and (c) TVc-3 (Fr¼ 0.59).
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is the largest estimated difference and MSESKM is the

mean square error for the SKM model. The table also pro-

vides the ratio of those divergence parameters with

respect to the average stress, in addition to the relative
Table 3 | Overview of predicted boundary shear stress for trapezoidal channels

Validation case Fr MSE |Δτ| (Nm�2)
Δ�τj j
�τ

|Δτmax

TVc-1 3.2701 0.0448 0.1404 0.0204 0.768

TVc-2 2.1934 0.0088 0.0694 0.0215 0.234

TVc-3 0.5926 0.0004 0.0167 0.0249 0.064

s://iwaponline.com/jh/article-pdf/19/2/157/390944/jh0190157.pdf
location of Δτpeak along the wetted perimeter covering

an interval [0-1], with 0 and 1 corresponding to the

utmost left and right edges of the wetted perimeter,

respectively. Furthermore, the cross correlation, ρτ ,

between the observed and predicted time series is pre-

sented for each case:

ρτ ¼
1
N

XN

i¼1

(τobs � �τobs)(τmodel � �τmodel)
σobsσmodel

� �
(20)

where �τ is the average shear stress and σ is the corre-

sponding standard deviation.

Circular channels

The methodology was also applied to the circular channel

data set introduced in the Experimental data sets section.

Figure 9 shows the modelled vs. measured shear stress distri-

bution for the validation test cases. The MSE between

observed and predicted values were found to be 0.12% in

the first case, CVc-1, and 4.9% in the second validation

case, CVc-2, which are of similar order to those found for

the trapezoidal cases. The largest divergence was obtained

at the channel edges (Pd¼ 0, 1) which seems to be a reflec-

tion of the scatter of the input data shown in Figure 5. It is

also noted from Figure 9 that the predicted curves tend to

be smoother than the observed ones. This can be due to a

‘group’ effect which causes the predicted shear distributions

to tend to the average face value established in the face

space. This effect is to some extent implicit in Equation

(8). Nonetheless, the cross correlation parameter, which is

well above 0.9 in both cases, together with the magnitude

of the differences indicate that the shear stress contours

have been captured with excellent accuracy. Table 4 pro-

vides an extended comparison between observed and

predicted data for circular validation test cases.
| (Nm�2)
Δτmaxj j

�τ
Relative location of |Δτmax| ρτ MSESKM

2 0.1118 1 0.994 0.6589

0 0.0725 0.946 0.984 0.1107

1 0.0958 1 0.975 0.0008



Figure 9 | Modelled vs measured shear stress distributions for circular validation cases:

(a) CVc-1 (Fr¼ 0.7) and (b) CVc-2 (Fr¼ 1.42).
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SUMMARY AND CONCLUSIONS

RP analysis and Eigenface for Recognition were used to pre-

dict the distribution of boundary shear stress in trapezoidal

and circular channels. In this approach, first, the RPs of all

training set members are constructed and the differences

between them and the average RPs are computed. PCA is

then performed and weight factors proportional to the eigen-

vectors are obtained. To obtain predictions of boundary shear

stress, a simple regression equation is established to relate the

weight factors to non-dimensional attributes of the training

set’s hydraulic and geometric characteristics. For each vali-

dation case, corresponding weights are obtained by the

regression equations, and the reverse of the process is per-

formed to obtain the distribution of the boundary shear stress.
Table 4 | Overview of predicted boundary shear stress for circular channels

Validation case Fr MSE |Δτ̄| (Nm�2)
Δ�τj j
�τ

CVc-1 0.696 0.0012 0.0245 0.0448

CVc-2 1.420 0.0494 0.1710 0.0512
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The method was applied to two trapezoidal data sets

and one circular data set. The results showed that: The tech-

nique is capable of capturing the intrinsic patterns of the

RPs which makes it suitable for the prediction of shear

stress distributions; the method is valid for both sub- and

supercritical flow condition; the average error obtained

across all predicted series is 2.09% and the cross correlation

is within 92% of accuracy for all trapezoidal and circular

verification cases.

The accuracy of the predictions was found to be some-

what higher for trapezoidal channels compared to circular

channels. This can be a reflection of the consistency of the

input information which in the case of circular channels is

less, i.e. the distributions are less uniform. The variation of

the shape of the wetted section with the increase of the

water level appears to be the reason of such variability.

The present investigation was based on a database

formed by a limited number of experimental test cases, par-

ticularly for the case of circular sections. Nevertheless, the

prediction results were satisfactory. The robustness of the

methodology should be further tested with a larger training

database containing further combinations of hydraulic par-

ameters and section dimensions, and additional validation

cases. This would help to ensure the generality of the weight-

ing factors, and therefore, the overall accuracy of the

prediction models. Based on the analysis presented here it

is clear that the method works for a relatively low number

of input data series which in this research ranged between 5

and 13 data series in the clusters. Furthermore, the linear

regression models were demonstrated to be adequate estima-

tors for the relatively smooth bed shear stresses studied, as

they were able to capture the rates of shear stress variation

with accuracy. It is notable that such simple estimators

might not be accurate when modelling more complex con-

figurations and patterns, and a more robust estimator (e.g.

artificial neural network) may be more suitable depending

on the degree of non-linearity observed in the input data.
|Δτmax| (Nm�2)
Δτmaxj j

�τ
Relative location of |Δτmax| ρτ

0.1239 0.2264 1 0.922

0.7048 0.2110 1 0.944
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