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Entropy-based analysis and regionalization of annual

precipitation variation in Iran during 1960–2010 using

ensemble empirical mode decomposition

Kiyoumars Roushangar and Farhad Alizadeh
ABSTRACT
This study proposes an ensemble empirical mode decomposition (EEMD)-based multiscale entropy

(EME) approach. The proposed model is used to analyze and gage variability of the annual

precipitation series and spatially classify raingauges in Iran. For this end, historical annual

precipitation data during 1960–2010 from 31 raingauges are decomposed using EEMD. Decomposed

series of precipitation series present different periods and trends. Next, entropy concept is applied to

the components obtained from EEMD to measure dispersion of multiscale components. It is

observed that entropy values of intrinsic mode functions (IMFs) 1–5 and residual component show

different behaviors. IMF 5 and residual components have highest values of entropy, whereas IMF 3

and 4 present highest entropy variation among all components. Based on spatial distribution of EME

values, EME 3 and 1 have a downward variation from north to south, whereas EME 1 presents

increasing variation. Spatial classification of raingauges is performed using EME values as input data

to self-organizing map (SOM) and k-means clustering techniques. Finally, spatial structure of annual

precipitation variation is investigated. It is observed that EME values have a downward trend with

latitude, whereas it is observed that EME shows an upward relationship with longitude in Iran.
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INTRODUCTION
Assessment of precipitation variation, especially over a large

area (e.g., Iran), is a crucial step in suitable management of

water resources. Iran is a wide country (approximately

1,600,000 km2) in which climate is mostly affected by the

wide latitudinal extent (from 25� N to 40� N) and the

Zagros and Alborz mountain systems (Raziei et al. ).

The moisture coming from the Persian Gulf is usually

trapped by the Zagros Mountains. The plateau is open to

the cold (dry) continental currents flowing from the north-

east. The mitigating influence of the Caspian Sea is limited

to the northern regions of the Alborz Mountains. Further-

more, the Zagros chain, which stretches from northwest to

southeast, is the source of several large rivers such as the
Karkheh, Dez, and Karoon. Lowland areas receive surface

water from these basins and are of great importance for agri-

cultural production (Raziei et al. ). There is high spatial

and temporal variability of precipitation and frequent dry

periods. The increasing water demands for the growing

population as well as for industry and economic develop-

ment, including irrigation, aggravate water scarcity and

make difficult a rational water management. By considering

these facts, the determining of areas according to different

precipitation regimes is substantial for water resources man-

agement and land use planning.

Various precipitation-based studies have been per-

formed in Iran (Domroes et al. ; Dinpashoh et al.

mailto:kroshangar@yahoo.com
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2018.037&domain=pdf&date_stamp=2018-01-29


469 K. Roushangar & F. Alizadeh | Entropy-based analysis and regionalization of annual precipitation variation Journal of Hydroinformatics | 20.2 | 2018

Downloaded from http
by guest
on 05 December 2021
; Modarres ; Soltani et al. ; Raziei et al. ;

Modarres & Sarhadi ; Tabari & Talaee ; Farajzadeh

& Alizadeh ). Domroes et al. () used a network of 71

stations distributed irregularly across Iran. They applied

principal component analysis (PCA) and cluster analysis

(CA) on mean monthly precipitation. Stations were classi-

fied into five different sub-regions of precipitation regimes.

Dinpashoh et al. () applied PCA and CA to 12 variables

selected from 57 candidate variables for 77 stations distribu-

ted across the entire country. They divided the country into

seven climate sub-regions. Rainfall climates in Iran were

also analyzed by Soltani et al. () using monthly precipi-

tation time series from 28 main sites. To determine regional

climates a hierarchical CA was applied to the autocorrela-

tion coefficients at different lags, and three main climatic

groups were found. Tabari & Talaee () analyzed trend

over different sub-regions of Iran during 1966–2005. In

these studies, spatially not homogeneously distributed

stations were considered and different methodologies were

applied. Therefore, identified sub-regions differ from one

study to another, especially in mountainous regions of wes-

tern Iran that are characterized by a complex orography

(Raziei et al. ).

As a general approach, variability is the quality of being

uneven and lacking uniformity over multiscales (Sang ).

Entropy provides useful information about the uncertainty

at a given scale, which can present to the level of variation

existing at that scale. Further, entropy enables determination

of least-biased probability distribution with limited signal

knowledge and data. Entropy theory can serve as a better

approach to study hydrological and meteorological pro-

cesses (Sang ; Roushangar & Alizadeh ). Spatial

variability characterizes the different values for a variable

measured at different locations in an area, and temporal

variability measures the unevenness or randomness of a

variable over different time intervals. Various descriptive

statistics are used for measuring variability (Mishra et al.

). Up to now, information theories have been widely

applied in hydrology to quantify the variability and complex-

ity of hydrologic variables (Koutsoyiannis ; Brunsell

; Sang et al. ; Agarwal et al. ). The Shannon

entropy is a primary measure of the degree of uncertainty,

complexity, disorderliness, and irregularity (Jaynes ;

Elsner & Tsonis ). Higher entropy reflects more
://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
random and complicated systems and vice versa. Traditional

entropy measures usually provide inaccurate or incomplete

descriptions of climatic systems which generally operate

over multi-temporal scales (Li & Zhang ). Compara-

tively, the sample entropy and multiscale entropy are more

effective and applicable for analyses of those systems with

multi-temporal scale characteristics (Zhang ; Costa

et al. ). However, they cannot handle series’ nonstation-

ary characteristics. Observed precipitation series in nature

usually show multi-temporal scale characteristics in daily,

monthly, annual, and multi-annual processes (Labat ;

Sang et al. ). Thus, characterizing the scaling properties

is essential for understanding precipitation variability. There-

fore, taking advantage of a multiscale entropy approach can

be used to evaluate the spatiotemporal variability of precipi-

tation and adequacy of existing raingauges in Iran. Entropy

theory has been used to analyze variability of annual precipi-

tation patterns, using the entropy, determining the entropy

distribution of precipitation, and constructing a water avail-

ability map by linking entropy with precipitation.

Huang et al. () developed an algorithm for analyzing

nonlinear and nonstationary data employing empirical

mode decomposition (EMD). EMD is an adaptive decompo-

sition method based on the local timescale of the signal, in

which any kind of signal can be decomposed into its intrin-

sic mode functions (IMFs). EMD and wavelet analysis are

quite different from each other. It is stated that they both

split a signal into frequency bands. EMD is very difficult

to interpret when analyzing a wide band signal (Xie et al.

; Duffy ; Wu et al. ; McMahon et al. ).

Its amplitude decomposition performance is better compar-

ing it to envelop analysis. The discrete wavelet transform

(DWT) method simplifies the transformation process by pro-

viding a very effective and precise analysis, since DWT is

normally based on the dyadic calculation (Nourani & Parto-

viyan ; Roushangar & Alizadeh ). For the case of

ensemble empirical mode decomposition (EEMD), the

periods of each IMF need be determined separately.

The use of wavelet or EMD depends completely on the

problem dealt with. If an overview of the spectral changes in

power over time is required, the use of wavelet transform

(WT) is recommended. WT convolves a signal with a prede-

fined mother wavelet to decompose a signal (Labat ;

Cazelles et al. ; Sang ; Araghi et al. ; Nourani



470 K. Roushangar & F. Alizadeh | Entropy-based analysis and regionalization of annual precipitation variation Journal of Hydroinformatics | 20.2 | 2018

Downloaded fr
by guest
on 05 Decemb
et al. ; Farajzadeh & Alizadeh ). The choice of the

mother wavelet is usually dependent on the type of data

dealt with. EMD, on the other hand, does not require any

convolution of the signal with a predefined basis function

or mother wavelet. The process of decomposition is totally

data-driven.

EMD is an iterative procedure that extracts oscillatory-

like features from the data. It provides only certain frequen-

cies (specifically, those that have a lot of power and are ∼1/2
the frequency of the previous frequency that was

extracted) that cannot be specified in advance by the

researcher. EMD makes no assumptions a priori about the

composition of the signal (Wang et al. ; Chen et al.

). Rather, it uses spline interpolation between maxima

and minima to successively trace out IMFs. Each IMF will

be a single periodic oscillator, but otherwise cannot be pre-

dicted before it is empirically observed from the signal.

Also, the number of IMFs cannot be predicted before the

decomposition. These two disadvantages can make EMD dif-

ficult to work with under certain circumstances. However,

since it makes no assumptions about signal, the results

might be more meaningful. Also, since the IMFs can

change over time, EMD makes no assumptions about the sta-

tionarity of the signal (or the signal components). Therefore,

it is better suited to nonlinear signals than either Fourier or

wavelets. This makes EMD particularly attractive when ana-

lyzing signals from complex systems.

The main advantage of EMD over wavelet analysis is the

ability to estimate subtle changes in frequency. Estimating

instantaneous frequency from a wavelet convolution is sub-

optimal because of frequency smoothing, and because

wavelet convolution assumes frequency stationarity during

the time span of the wavelet. EMD is also poorly suited

for detecting relative suppressions of power at a specific fre-

quency (Xie et al. ; Duffy ; Wu et al. ;

McMahon et al. ; Wu & Huang ; Wang et al.

; Chen et al. ).

The EMDmethod is able to decompose the complicated

signal into a set of complete and almost orthogonal com-

ponent IMFs. However, the EMD method has a

shortcoming, which is the mode mixing problem. Mode

mixing is defined as a single IMF including oscillations of

dramatically disparate scales, or a component of a similar

scale residing in different IMFs. It is a result of signal
om http://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
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intermittency (Huang et al. ). To solve the problem of

mode mixing in EMD, EEMD was proposed. The EEMD

defines the true IMF components as the mean of an ensem-

ble of trials (Wu & Huang ). Each trial consists of the

decomposition results of the signal plus a white noise of

finite amplitude. This new method is based on the insight

from recent studies of the statistical properties of

white noise (Wu & Huang ; Flandrin et al. ).

Additionally, the result studied by Flandrin et al. ()

demonstrated that noise could help data analysis in the

EMD method. All these investigations promote the advent

of the EEMD method: (Xie et al. ; Duffy ;

Wu et al. ; McMahon et al. ; Wu & Huang ;

Wang et al. ; Chen et al. ).

Artificial neural networks (ANN) are a commonly used

approach for dealing with large amounts of complex data.

When an unsupervised ANN is used for clustering, the

restriction of specifying the number of clusters prior to the

clustering analysis can be avoided (Hsu & Li ; Nourani

& Parhizkar ). Murtagh & Hernández-Pajares ()

demonstrated that the k-means method is a special form of

ANN. Lin & Chen () showed that ANN is more

robust than the k-means method or Ward’s method for iden-

tifying homogeneous regions. The self-organizing map

(SOM) neural network proposed by Kohonen () is a

descriptive unsupervised tool. SOM is increasingly used in

hydrology and water resources, such as for the clustering

of watershed conditions (Liong et al. ; Agarwal et al.

); the determination of hydrological and hydrogeologi-

cal homogeneous regions (Li & Chen ; Hsu & Li

; Nourani et al. , , ; Han et al. ); the

study of algae bloom (Bowden et al. ) and the identifi-

cation of river pollutant sources (Gotz et al. ). The

SOM network quantifies the data space and simultaneously

performs a topology-preserving projection from the data

space onto a regular one- or two-dimensional grid.

Owing to different types of water demands during

different months and different seasons, it is desirable to

study the variability of precipitation based on a multiscale

entropy concept. To that end, an entropy-based approach

seems to be an attractive approach for evaluating disorder

based on spatial and temporal precipitation variability pat-

terns within the study area. For this end, this study is

established based on EEMD, SOM, k-means and entropy
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approaches. The main idea is to combine EEMD multi-

scale entropy approach (EME) to extract multiscale

dispersion of precipitation. The outcome is used to regio-

nalize raingauges with SOM and k-means clustering

techniques. Entropy is a practical concept in enquiring,

when applied in conjunction with the EEMD method,

and can be used to determine the randomness (i.e., level

of variability) of a time series at different timescales. The

methodology can provide useful information about the

underlying dynamic processes associated with the signal

and can help in regionalization studies (Cazelles et al.

).

Some studies took advantage of multiscale approaches

such as WT to spatially classify the variable of interest. For

example, Hsu & Li () used the WT and self-organizing

map (WTSOM) framework to spatially cluster the precipi-

tation data. In the proposed approach, they combined the

WT and a self-organizing maps (SOM) neural network.

WT was used to extract dynamic and multiscale features

of the nonstationary precipitation time-series, and SOM

was employed to objectively identify spatially homo-

geneous clusters on the high-dimensional wavelet

transformed feature space. Haar & Morlet wavelets were

selected in the data preprocessing stage to preserve the

desired characteristics of the precipitation data. Also,

Nourani et al. () proposed to use a WT-based SOM

clustering technique to identify spatially homogeneous

clusters of groundwater level (GWL) data for a feed-for-

ward neural network (FFNN) to model one and multi-

step-ahead GWLs. Agarwal et al. () developed a

hybrid model based on WT and entropy to categorize the

streamflow over the United States. However, in this

study, EEMD is employed to decompose the annual pre-

cipitation series of 31 raingauges in Iran. The entropy-

based dynamic features of time series can improve the per-

formance of clustering approach. Each sub-series (i.e.,

IMFs 1–5 and residual) represents various annual scales.

Nevertheless, using some of these components as input

can cause inappropriate performance, since some IMFs

may not show suitable correlation with the original time

series of precipitation. For this end, EME is calculated

and used as a basis of regionalization. The spectral organ-

ization of this multi-spectral variability in terms of EME

is identified using spatial clustering techniques.
://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
MATERIALS AND METHODS

Case study and climatological dataset

This study used climate data of Iran for studying precipi-

tation regionalization. Iran is in Southwest Asia between

25� to 40�N and 44� to 63�E. There are three seas: in the

north the Caspian Sea, and in the south the Persian Gulf

and Oman Sea (Araghi et al. ). The climate of Iran is

generally recognized as arid or semi-arid with an annual

average precipitation of about 250 mm. However, its cli-

mate is very diverse, with annual precipitation and

temperature variation over the country. For instance, in

different areas of the country precipitation changes from

0 to 2,000 mm. The Caspian Sea coastal areas along with

the northern and northwestern regions of the country are

subjected to higher precipitation. The lowest values of

annual precipitation are found in the southern, eastern

and the central desert regions (Ashraf et al. ). Gener-

ally, Iran is categorized as hyper-arid (35.5%), arid

(29.2%), semi-arid (20.1%), Mediterranean (5%), and wet

climate (10%). Also, the temperature in Iran varies widely

(�20 to þ50 �C) (Saboohi et al. ). On the northern

edge of the country (the Caspian coastal plain), tempera-

tures rarely fall below freezing and the area remains

humid for most of the year. Summer temperatures rarely

exceed 29 �C (Nagarajan ; Weather & Climate Infor-

mation ). To the west, settlements in the Zagros basin

experience lower temperatures, severe winters with below

zero average daily temperatures, and heavy snowfall. The

eastern and central basins are arid and have occasional

deserts. Average summer temperatures rarely exceed

38 �C (Nagarajan ). The coastal plains of the Persian

Gulf and Gulf of Oman in southern Iran have mild winters,

and very humid and hot summers. Therefore, Iran’s

climate could be considered as having eight sub-divisions

(Figure 1(a)).

Thirty-one raingauges were selected from all over Iran

which covered values from 1960 to 2010 (51 years). The pre-

cipitation gauges are shown in Figure 1(b), and Table 1

represents the name, number and geographic locations of

the precipitation gauges. The data used are in annual

scale, and provided by the Iran Meteorological

Organization.



Figure 1 | (a) Climate map of Iran and (b) geographic location of raingauges used in this study.
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Ensemble empirical mode decomposition

The EMD method (Huang et al. ) is applied to a

signal in order to decompose it into a certain number of

IMFs. A signal must accomplish two criteria to be con-

sidered as IMF: (i) the number of extrema (maxima and
om http://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
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minima) and the number of zero-crossings must be equal

or differ at most by one; and (ii) the local mean, defined

as the mean of the upper and lower envelopes, must be

equal to zero.

Research regarding the ability of EMD and its improved

versions has been performed in previous years, including



Table 1 | Geographical coordinates of precipitation gauges used in this study

Station Station

Name
Number
(ID)

Lat.
(decimal
degrees)

Long.
(decimal
degrees)

Mean
annual
rainfall Name

Number
(ID)

Lat.
(decimal
degrees)

Long.
(decimal
degrees)

Mean
annual
rainfall

Abadan 1 30.282 48.411 153.3 Mashhad 17 36.568 59.146 251.5

Ahwaz 2 31.353 49.053 209.2 Ramsar 18 36.785 50.833 1,206.2

Arak 3 34.145 49.188 337.1 Rasht 19 37.261 50.096 831.3

Babolsar 4 36.68 52.537 889.3 Sabzevar 20 35.51 58.01 186.6

Bandar abbas 5 27.213 56.42 176.1 Sanandaj 21 35.738 47.178 449

Birjand 6 32.373 59.576 168.5 Shahre Kord 22 32.41 50.452 321.8

Bushehr 7 28.94 50.952 26.8 Shahrood 23 35.775 55.836 153.3

Dezfoul 8 32.838 48.353 394.6 Shiraz 24 29.897 52.18 334.7

Esfahan 9 33.181 52.694 125 Tabriz 25 37.784 46.526 282.8

Ghazvin 10 36.1 49.843 314.4 Tehran 26 35.787 51.66 232.7

Gorgan 11 36.956 54.26 538 Torbat Heydariye 27 35.196 59.466 267.7

Hamedan 12 34.786 48.492 331 Urmia 28 37.546 44.908 338.9

Kerman 13 30.15 56.58 148 Yazd 29 32.224 55.549 59.2

Kermanshah 14 34.425 46.645 439.2 Zahedan 30 29.597 60.831 89.3

Khorram abad 15 33.586 48.51 504.3 Zanjan 31 36.55 48.468 311.1

Khoy 16 38.617 44.908 289.3
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time-frequency data analysis, dimension reduction analysis,

etc. However, there are some restrictions over application

of EMD (i.e., mode mixing). To overcome this issue, Wu

& Huang () presented the EEMD method, which

could solve some of these deficiencies. The EMD procedure

is as follows:

1. First step: add a random white noise series to the original

signal.

2. Second step (decomposition): use traditional EMD (see

Huang et al. ()) method to the signal with added

white noise to produce the corresponding IMF.

3. Repeat steps (I) and (II) with different white noise series

each time.

4. Capture the means of corresponding IMFs and residuals

of the decomposed components as the final outcome.

The unique properties of EEMD, which adopt white

noise features to provide a uniform reference scale space

structure, could cause a considerable improvement in the

mode mixing problem.
://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
Self-organizing maps

A basic SOM network is composed of an input layer and a

Kohonen layer (Hsu & Li ). The input layer is composed

of input units that receive high-dimensional data. The Koho-

nen layer consists of output units located on a regular two-

dimensional grid. All input units are fully connected to all

output units with weight vectors. In the training process,

one input x from the input dataset is chosen randomly.

Also, similarity measure is calculated between it and all

the weight vectors of the output units in the Kohonen

layer. The similarity is usually defined by a Euclidian dis-

tance as:

dp
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
(xpi �wjk,i)

2
q

(1)

where xpi is the ith component of the pth input vector xp

and wp
jk,i is the weight link of xpi and the neuron located

at ( j,k) of the Kohonen layer. The neurons in the layer

compete with each other to be the winner (or the best-
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matching unit, BMU), denoted as c, which is the unit

whose weight vector has the greatest similarity with the

input vector xp. Formally, the BMU is defined as the

neuron for which:

dp
j�k� ¼ xp �wck k ¼ min

j,k
dp
jk (2)

After finding the BMU, the prototype vectors of the

SOM are updated. The prototype vectors of the BMU

and its topological neighbors are modified to be closer

to the input vector in the input space (Nourani et al.

). The SOM updates the weight vector of the unit i

using the so-called ‘self-organization’ learning rule as:

wjk,i(tþ 1) ¼ wjk,i(t)þ α(t)hci(r jk(t))[x
p
i (t)�wjk,i(t)] (3)

where t denotes time, α(t) is the learning rate which can

be a decreasing function of time or a constant between

[0,1], and hci(r jk(t)) is the neighborhood kernel around

the winner unit c with a neighborhood distance r jk(t). In

this study, α(t) is given a constant value of 0.6. The Gaus-

sian model, a commonly used neighborhood function, has

the expression:

hci(r jk(t)) ¼ exp �1
2

r jk
�� ��2
R2(t)

 !
(4)

where R(t) is the neighborhood radius, which typically

decreases with time t. The training steps are repeated

until a pre-defined maximum number of iterations is

reached. After the SOM network is constructed, the

homogeneous regions, i.e., clusters, need to be appropri-

ately identified in the map for further analysis.
K-means clustering

K-means is one of the most popular unsupervised learning

algorithms that solve the clustering quandary (Rokach &

Maimon ; Rao & Srinivas ). The process of cluster-

ing via k-means uses a simple and easy path to classify a

specific dataset (i.e., precipitation) into a definite number

of clusters (assume k clusters). Determining k centers, one

for each cluster, is the main idea of the clustering technique.
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These centers should be located in an expert way because

selecting different positions can lead to different outcomes.

Hence, the wise selection is to locate them far away from

each other as much as possible. Subsequently, the point

belonging to a given dataset has to be taken and related to

the nearest center. The prime step is completed when no

point is pending and an early group age is accomplished.

At this stage, k new centroids need to be re-calculated as bary-

center of the clusters obtained from the previous step. After

capturing these k new centroids, a new mandatory has to be

performed between the same dataset points and the nearest

new center. This process turns into a loop. According to this

loop, the k centers alter their positions step by step until no

more changes are required. In other words, centers do not

change their locations any more. Finally, this algorithm

aims at minimizing an objective function known as squared

error function. Algorithmic steps for k-means clustering are

as follows:

Let X¼ {x1,x2,x3,…… ..,xn} be the precipitation data

and V¼ {v1,v2,…… .,vc} be the set of centers.

1. Randomly choose ‘c’ cluster centers.

2. Calculate the distance between each data point and clus-

ter centers.

3. Assign the data point to the cluster center whose distance

from the cluster center is the minimum of all the cluster

centers.

4. Recalculate the new cluster center.

5. Recalculate the distance between each data point and

new obtained cluster centers.

6. If no data point was reassigned then stop, otherwise

repeat from step III.

K-means clustering may be performed as a single trial, or

multiple trials may be run on one dataset point. Performing

multiple trials (used in this research) will create multiple sets

of clusters. Each set of clusters is created independently of

each other. Once the cluster sets are created, each set will

be scored, and the set with the best score will be displayed.
Proposed methodology

This study proposed an approach based on hybrid EEMD,

entropy, and SOM/k-means models to investigate the vari-

ation and regionalize the precipitation in Iran. Figure 2



Figure 2 | Flowchart of analyzing and regionalization in this study. The EEMD multiscale entropy (EME) is the basis of the proposed regionalization method.
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shows the schematic of modeling applied in this study.

Annual precipitation time series are decomposed into

IMFs using EEMD with different frequencies.

Furthermore, the EEMD multiscale entropy (EME) is

used to quantify the variability and complexity of annual

precipitation. Based on information theories, the Shannon

entropy (H ) is calculated as follows (Jaynes ):

H(x) ¼ �
Xn
i¼1

p(xi)log2p(xi) (5)

where p(xi) is the probability density function (PDF) used to

define the randomness properties of variable x (i.e., precipi-

tation) with the length of n. H is a measure of information;

more (less) information represents lower (higher) entropy.

Therefore, bigger (smaller) H value shows more (less) disor-

derliness and complication occurring in precipitation

processes. When using the measure of EEMD, the H value

is calculated according to quasi-dyadic EEMD results, and

Equation (6) is used to compute the PDF, which is obtained

according to the EEMD energy (i.e., variance):

P(xi) ¼ E(i, j)
E(j)

¼ imf(i, j)j j2P
imf(i, j)j j2

(6)

where E(i,j) represents the EEMD energy under time pos-

ition i and timescale j and E(j) represents the total EEMD

energy of the time series under timescale j (Cek et al.

; Sang et al. ; Agarwal et al. ). The entropy of

a random variable is a measure of the uncertainty of the

random variable; it is a measure of the amount of infor-

mation required, on average, to describe the random

variable. Moreover, entropy-based values of decomposed
://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
time series (IMFs (imf1, imf2… imfi) and residual com-

ponent (Res) components) are used as a basis of

regionalization. Silhouette evaluation criterion is used to

verify the validity of clustering.
RESULTS AND DISCUSSION

Precipitation data decomposition via EEMD

Generally, the climate trend cannot be linear (Lin et al.

). Hence, applying EEMD as a nonlinear approach to

draw out the climate trend is a suitable approach. The

EEMD method is a noise-assisted analysis of data. EEMD

can be used to extract nonlinear trend if a given feature

has such a trend. In the EEMD method, the white noise is

added to the process of decomposition. In the application

of EEMD, if the added noise amplitude is too small, then

it may not cause the change of extrema that the EMD

depends on. Instead, if the added noise is too large, it

would result in redundant IMF components. The amplitude

of 0.1, the standard deviation of the precipitation series, is

considered as the white noise in this study. The ensemble

size equal to 500 times for each of the EEMD ensemble

members is used. These parameters are similar to those

employed by Lin et al. (), who successfully applied

EEMD to analyze annual time series. In this study, the

annual precipitation time series during 1960–2010 is decom-

posed into six IMFs using EEMD method and defined

parameters. IMFs 1–5 with frequencies from high to low,

each demonstrate an oscillation component with a specific

period. The residual component (trend component) is cap-

tured behind the oscillating components from time series.
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Figure 3 shows the decomposed precipitation series of rain-

gauge 20 (RG20) using the EEMD approach. Due to various

reasons, there is a fluctuation in all annual precipitation

series of Iran (e.g., drought, sea surface temperature (SST),

NAO (North Atlantic Oscillation), MO (Mediterranean

Oscillation), etc.). Also, this could be very different for the

months within the year. Such variations could be enhanced

when they are aggregated to be cumulative annual

precipitation.

According to Figure 3, IMF 1 and 2 components have

periodic variability of 3 and 5.4 years. According to multiple

timescale analysis of SST data in the last 100 years (Sun &

Lin ), there is also periodic variability within 3–4

years and 7–8 years. Hence, the high frequency components

of annual precipitation series can be related to SST vari-

ations. It can be inferred that the short-term variation of

annual precipitation in this study area may be affected by

SST. Also, such a short-term variability may correspond to

the NAO or MO cycles (Araghi et al. ). On the other
Figure 3 | An example of decomposed precipitation of RG 20 using the EEMD method.

Original time series, IMFs 1–5 and residual components are organized from

top to bottom, respectively.
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hand, IMF 3 and 4 present cycles of 10 years and 19

years. Long-term variability could be influenced by various

factors which needs further study. Residual component pre-

sents the overall trend of annual rainfall data (increasing

trend).

These findings are in agreement with results obtained by

Tian et al. (), Wang et al. (), and Guo et al. (),

who had analyzed annual precipitation with EEMD. For

example, Wang et al. () captured periods of 3, 7, 11.5,

and 22 years for IMFs 1–4, respectively.

On the other hand, the components captured by EEMD

are easier to be perceived based on observation and vision.

The white noise series added through the decomposition

process neutralize each other, and the mean IMFs remain

within the natural dyadic filter windows, as studied in Flan-

drin et al. () and Wu & Huang (). These features

can cause considerable improvement in the dyadic property

of the decomposition and lead to stable decompositions

(Wu et al. ). Therefore, this complicated process proves

the EEMD to be a much more solid approach, omitting

many side effects which previously led to scale mixing

(due to existence of noise in data).

The EEMD algorithm is used to estimate the trend of

annual precipitation series and related periods calculated

from each IMF. Results of applying EEMDon annual precipi-

tation data are demonstrated in Table 2. After applying the

EMMD method to decompose the annual precipitation of

31 raingauges in Iran, the mean period obtained from oscil-

lation of IMFs is calculated (Table 2). The average period of

each component is captured according to average distance

between two local maximums related to IMF component. It

is observed that the mean period for IMF 1 is equal to 2.5–3

years, IMF 2 equal to 4.4–6.8 years, 8.6–12 years for IMF 3,

and IMF 4 presents 21–25 years. The IMF 5 of precipitation

series generally presents no significant period. Since residual

components present the trend in annual scale, it is attempted

to calculate the trend based on EEMD residual components.

Table 2 also demonstrates the rate of precipitation variation

per decade (mm). Different ranges of trend for precipitation

series are observed. For example, the lowest trend is observed

for RG 26 with 0.8 mm/decade whereas the highest trend

with 148 mm/decade is observed for RG 20. Figure 4 shows

the spatial distribution of annual trend of precipitation in

Iran. It can be seen that northern Iran (near to the Caspian



Table 2 | Properties of obtained components from annual precipitation series via EEMD

Annual average period

Trend (mm/decade)

Annual average period

Trend (mm/decade)
RG* (ID) IMF 1 IMF 2 IMF 3 IMF 4 Residual RG (ID) IMF 1 IMF 2 IMF 3 IMF 4 Residual

1 2.8 4.9 8.7 21.0 4.49 17 2.7 6.1 12.0 21.0 33.66

2 2.5 6.1 12.0 22.0 6.14 18 2.7 5.9 11.0 23.0 1.84

3 2.5 5.6 12.0 22.0 2.65 19 3.1 5.9 13.7 18.5 78.19

4 2.7 5.0 10.8 24.0 35.22 20 3.0 5.4 10.0 19.0 148.9

5 2.7 5.0 8.6 24.0 27.94 21 2.9 6.0 11.0 22.0 30.

6 2.8 6.8 11.6 24.0 12.91 22 2.5 6.1 12.3 23.0 3.82

7 3.0 5.9 9.0 24.0 11.40 23 2.8 6.1 9.7 17.5 56.32

8 2.6 6.4 11.5 23.0 6.51 24 3.1 5.7 11.0 19.0 45.61

9 2.5 5.5 9.5 22.0 9.08 25 2.8 5.8 12.0 24.0 3.28

10 2.8 5.3 11.7 24.0 8.52 26 2.9 5.4 12.7 22.0 0.8

11 2.7 5.1 11.7 25.0 2.37 27 2.6 5.1 11.3 19.0 21

12 2.6 5.8 10.3 22.0 28. 28 2.9 5.9 13.7 15.0 1.1

13 2.9 5.1 9.0 23.0 22.15 29 2.7 5.6 13.0 22.0 25.73

14 2.6 4.4 10.7 21.0 35.27 30 2.3 5.0 7.8 19.0 2.17

15 2.7 6.0 11.3 20.0 39.12 31 3.2 7.0 12.0 28.0 10.11

16 2.8 4.9 8.7 21.0 4.49

Monthly average periods and precipitation variation rate, non-significant components are in italic font.

*RG¼ raingauge.

Figure 4 | Distribution of trend value in Iran based on EEMD and type of trend variation for selected raingauges (increase: upward trend, decrease: downward trend, fluctuating: altering

trend).
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Sea) demonstrates the most variation in trend values. Trends

in Iran show different behaviors. Some raingauges show

decreasing trend, some increasing in trend, and the rest

show fluctuating trends. Figure 4 also shows the trend behav-

ior of raingauges. Two raingauges in the north and two

raingauges in the west of Iran show an upward trend. North-

ern parts of Iran (near to the Caspian Sea) and northwest of

Iran demonstrated a downward trend of precipitation. The

rest of the raingauges show downward or fluctuating trend.

Another attempt was made to determine the components

with significance level of p¼ 5%. Except for residual com-

ponents and IMF 4 of some raingauges, the rest of the series

proved to be significant (Table 2).

Regionalization of raingauges using proposed model

After decomposing all annual precipitation series using

EEMD, at this stage, entropy of the decomposed com-

ponents are determined according to the proposed

approach. Figure 5 shows the EME values obtained for

each IMF and residual. It is observed that entropy values

of IMF 5 and residual components have the highest values

and lowest variation. IMF 2 has lowest entropy among all

components. Highest variation in IMF components is

related to IMF 3 and IMF 4 (8–12 years and 21–25 years

oscillation components). It can be inferred that these entro-

pies are the key variable in precipitation and regionalization.

In order to have more insight into entropy values of com-

ponents (EMEs), spatial distribution of EME values is

represented in Figure 6. Confirming Figure 5 and 6 shows
Figure 5 | Box plot of EME values variation for different IMFs and residual components.
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that EME 3 and 4 have the highest spatial variations. Spatial

distribution of EME 3 (Figure 6) shows that highest entropy

values are located in northern parts of Iran and from north

to south. EME 3 values demonstrate a downward variation.

Approximately the same pattern can be observed for

EME 4. Based on EME 2 distribution, it is observed that cen-

tral parts of Iran (especially western and eastern sides)

shows highest EME 2 values. EME 1 (2.5–3 years period)

shows an inverse distribution in comparison to EME 3

and EME 4. In other words, from north to south of Iran, gen-

erally EME 1 values present upward variation. For the case

of EME 5 and EME 6, spatial distribution does not show

significant variations, confirming Figure 5.

These six EME-based values as signature dynamic dis-

persion and disorderliness of annual precipitation time

series are used as a basis of regionalization using SOM

and k-means. It is attempted to assign the number of clusters

for the dynamic features of annual precipitation series.

As discussed, for regionalization of 31 raingauges in

Iran, the EME value of each precipitation series is used as

input data of SOM and k-mean approaches. First, k-means

approach with 1,000 trials was trained based on EME

values. K-means clustering may be run as a single trial, or

multiple trials on one dataset point. Performing multiple

trials (which is used in this research) will create multiple

sets of clusters. Each set of clusters is created independently

of each other. Once the cluster sets are created, each set will

be scored. Finally, the set with the best score will be dis-

played. After running k-means, EME values are fed into a

two-step SOM clustering technique.

In the first stage, in order to spatially classify the rain-

gauges and obtain classes with similar patterns based on

precipitation variation, a two-dimensional SOM is trained.

The aim of a two-dimensional SOM clustering approach is

to capture an insight into homogeneous areas and guess

the approximate number of clusters by considering the

plain topology (Nourani et al. ). In order to apply the

two-stage SOM, the size of Kohonen layer is assumed to

be equal to 10 × 10 (for 31 raingauges) for the first step.

Figure 7 illustrates the two-dimensional clustering via

SOM clustering technique.

Figure 7 demonstrates the hits plan of the output with

layer size of 10 × 10. The hits plan is a display of a SOM

output layer; the number of classified input vectors is



Figure 6 | Spatial distribution of EME 1–6 values over Iran during 1960–2010.
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presented by each neuron. The size of a colored patch rep-

resents the pertaining number of vectors for each neuron.

The neighbor weight distances (Figure 7) obtained by the
://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
two-dimensional SOM could be used as a basis of determin-

ing cluster number. In neighbor weight distances, the dark

hexagons show the neurons. The colors represent the



Figure 7 | Results of clusteringvia SOM;SOMhits andneighborweight distance. Please refer to the online versionof this paper to see thisfigure in color: http://dx.doi.org/10.2166/hydro.2018.037.
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distances between neurons where the darker colors mean

larger distances and the lighter colors mean smaller dis-

tances. According to the neighbor weighted distances

obtained by EME-based 2-D SOM approach, there is an

unclear segregated Kohonen layer. Hence, deciding the

number of optimal cluster from this method is not possible

at this stage.

The silhouette index is a way of quantifying the simi-

larity of an object (i.e., raingauge) to the pertained cluster

(cohesion) in comparison to the other clusters (separation)

(Nourani et al. ). The values of silhouette index vary

from �1 to þ1. A high value means that the likeness of

the object to its own cluster is correct and matching to

neighboring clusters is invalid. A good clustering is per-

formed when most objects in a cluster present higher

values of silhouette index, otherwise clustering pattern

may have too many or too few clusters.

As a further step to determine the optimal number of

clusters for SOM, it is attempted to train SOM and
Table 3 | Results of validating SOM and k-means clustering approaches using historical precip

Number of clusters

Validity indices 2 3 4

K-means Silhouette 0.6 0.42 0.41

SOM Index 0.72 0.56 0.5
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k-means by using cluster numbers 2 to 10 based on silhou-

ette index. The results of training k-means and SOM

techniques using EME features based on silhouette index

are presented in Table 3.

The cluster numbers 2, 3, and 4 show a better perform-

ance in comparison to other cluster numbers for the case of

k-means approach. On the other hand, it is observed that

clustering numbers 2, 3, 4, and 6 led to better outcome

based on silhouette index for SOM. It is important to

select the clustering number in which there are no clusters

with a single or numerous raingauges. For EEMDmultiscale

entropy (EME)-based spatial clustering, results proved that

the SOM with clustering number equal to 6 is the optimum

outcome. The selected clustering number satisfied the sil-

houette index values and the aforementioned clustering

conditions.

The geographic location of raingauges using EME-based

SOM approach is presented in Figure 8. It can be seen that

some of the raingauges are distributed in a specific cluster
itation data

5 6 7 8 9 10

0.4 0.2 0.3 0.3 0.3 0.3

0.47 0.61 0.42 0.37 0.34 0.32

http://dx.doi.org/10.2166/hydro.2018.037


Figure 8 | Geographic location of raingauges in each cluster for EME-based SOM approach.

Figure 9 | Annual precipitation variation of raingauges for cluster 1 along with linear trend lines.
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Figure 10 | Spatial structure of EME values (in latitude and longitude directions) and related trends in Iran.
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across Iran. Apart from geographic contiguity, the clustering

shows that there may be no hydrologic similarity in the clus-

ters but variability similarity could be observed. It is

observed that some of the stations in a given cluster are

spread across the study area. It shows that the basis of clus-

tering is not geographic proximity. For example, in cluster 1

raingauges have very different precipitation values. It could

be inferred that these raingauges have variability and uncer-

tainty similarities.

As a further step in analysis of the proposed model, the

raingauges in cluster 1 were examined for any common

characteristics (in terms of monthly precipitation) they

may have among themselves. Figure 9 shows the annual pre-

cipitation series of raingauges in cluster 1. Although

precipitation values have differences, there are two

common characteristics. The first one is the pattern of pre-

cipitation variation in annual scale (which is the basis of

EME approach) and the second common feature is the

linear trend of raingauges. It is observed that all raingauges

show downward trend. These features show the ability of the

proposed EME model.

Being an important issue, the connection between the

EME values with latitude and longitude is investigated.

Figure 10 indicates the spatial structure of the precipitation

variation. It is observed that EME values present a down-

ward trend with latitude. Also, it is observed that EME has
om http://iwaponline.com/jh/article-pdf/20/2/468/657783/jh0200468.pdf
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an upward relationship with longitude in Iran. It can be

inferred from Figure 10 that multiscale precipitation vari-

ation (EME) possesses the longitude zonality. It means

that precipitation variability increases with longitude from

the west to the east.
CONCLUSION

This study has proposed amethodology based on amultiscale

entropy concept for variability analysis and regionalization of

annual precipitation data. Application of the methodology to

annual precipitationdata from31 raingauges in Iran shows an

interesting outcome for annual precipitation regionalization

in Iran. The results lead to the following main features.

Decomposed precipitation series are analyzed to deter-

mine the periods and trends of annual time series. IMFs

and residual components present different period and

trend values. The entropies of these sub-series are calculated

based on the proposed model. The EEMD multiscale

entropy approach captured the variability and complexity

of precipitation dynamics for each raingauge independently.

Results yield the formation of homogeneous areas using the

proposed methodology. Determining input data of SOM and

k-means based on EME values leads to reduction in the

number of input data. Accordingly, performance of the



483 K. Roushangar & F. Alizadeh | Entropy-based analysis and regionalization of annual precipitation variation Journal of Hydroinformatics | 20.2 | 2018

Downloaded from http
by guest
on 05 December 2021
regionalization approach increased. The proposed approach

used k-means and SOM coupled with EMEmethodology for

regionalization of raingauges. The SOM approach generally

provided better homogeneous areas in comparison to the

k-means approach. According to provided clusters based

on SOM, a homogeneous distribution of annual precipi-

tation variation is obtained (i.e., cluster 1). Therefore,

results approve the capability of the proposed approach.

On the other hand, investigating the spatial structure of

EME in latitude and longitude directions demonstrates inter-

esting results.Generally,EMEvalues showadecreasing trend

with latitude; on the other hand, it is observed that EME has

an increasing relationship with longitude in Iran.
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