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Can multi-objective calibration of streamflow guarantee

better hydrological model accuracy?

Ruqiang Zhang, Junguo Liu, Hongkai Gao and Ganquan Mao
ABSTRACT
Hydrological models often require calibration. Multi-objective calibration has been more widely used

than single-objective calibration. However, it has not been fully ascertained that multi-objective

calibration will necessarily guarantee better model accuracy. To test whether multi-calibration was

effective in comparison to single-calibration in terms of model accuracy, two strategies were tested

out. For these strategies, the objective functions used included the Nash–Sutcliffe efficiency and its

logarithmic form, which highlight high flow and low flow, respectively. These two indexes were first

used for multi-objective calibration, and then they were separately employed for single-objective

calibration. To assess the calibration strategies’ accuracy, the simulated streamflow was compared

with observed streamflow, particularly high flow and low flow. This study was conducted in

the upper stream of the Heihe River basin in northwest China using the FLEX-Topo model and

MOSCEM-UA algorithm. The results show that the simulation based on the Nash–Sutcliffe efficiency

performed best both in modelling the dynamics and simulating the high flow of the observed

streamflow. Thus, it seems that multi-objective calibration does not necessarily lead to better model

accuracy. This conclusion might provide useful information for hydrologists in calibrating their

models, making their simulations more reliable.
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INTRODUCTION
In order to understand hydrological processes and thus pre-

dict the likely influence of global climate change on

hydrology, a means of extrapolating into the past and the

future has been deemed necessary, mainly due to the limit-

ations in space and time of hydrological measurement

techniques and scope (Beven ). There are many types

of models that can enable us to quantitatively extrapolate,

predicting flooding, runoff, the availability of various water

resources and nutrient transport (Mimikou et al. ;
Molina-Navarro et al. ). However, these models are

only simplified representations of the real world, and their

accuracy cannot be taken for granted (Muleta ). In

addition, some model parameters may not physically mani-

fest and therefore cannot be determined through direct

measurements. Thus, model calibration is always necessary

(Kim & Lee ). Model calibration is the process of iden-

tifying model parameter values from the available parameter

ranges to enable the maximization or minimization of the

objective function (a function representing difference

between simulated and observed values) (Muleta ).

There has been considerable research into various

optimization algorithms used to identify optimal model
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parameter values. In the past, this particular research has

mainly focused on the calibration of a single objective

(Vrugt et al. a). For example, a widely used algorithm

for identifying optimal parameter values with a single-objec-

tive function, the shuffled complex evolution, was developed

at the University of Arizona (SCE-UA) (Kan et al. ). This

type of calibration algorithm is primarily concentrated with

matching one component of the hydrograph produced by

the model to the observed data (Boyle et al. ). However,

in regards to the observed data, it has been argued that any

single-objective function, no matter how elaborately chosen,

is usually inadequate to properly represent all of the charac-

teristics (Vrugt et al. a; Sadeghi-Tabas et al. ). To

circumvent this problem, multiple-objective calibration,

which represents more than one aspect of a hydrological

system and its behaviour, has been proposed as an alterna-

tive as it can incorporate more information from the

available data (Zhang et al. ).

In the past, assumptions have beenmade that multi-objec-

tive calibration improves model accuracy (Kim & Lee ).

Nevertheless, little research has gone into testing this supposi-

tion prior to now, which this study undertakes. To carry out

this test, the Nash–Sutcliffe efficiency and its logarithmic

form were selected as the objective functions for both multi-

and single-objective calibration for the FLEX-Topo (Topogra-

phy-driven FLux EXchange model) used in the upper stream

of the Heihe River basin (UHRB) in northwest China. At the

basin outlet, streamflow discharge was used for model cali-

bration. Model accuracy was assessed by comparing the

simulated streamflow with the observed streamflow data.
MATERIALS AND METHODS

Study area

The Upper Heihe River Basin (UHRB) is the upper stream

of the second largest inland river in Northwest China, the

Heihe River (Figure 1(a)). The river originates in the

Qilian Mountains. The UHRB has an area of 10,009 km2

and stretches for 303 km. The elevation of the UHRB

ranges from 1,700 m to 5,000 m (Figure 1(b)). This mountai-

nous region surrounding the UHRB is characterized by a

cold desert climate, with an annual temperature of UHRB
om https://iwaponline.com/jh/article-pdf/20/3/687/200057/jh0200687.pdf

er 2019
2–3 �C (Liu et al. ). The long-term average annual pre-

cipitation is ∼430 mm y�1 and potential evaporation is

∼520 mm y�1. More than 80% of the annual precipitation

occurs from May through September. Soil types in this

region are predominantly mountain straw and grassland

soil, chestnut-coloured soil, chernozemic soil and desert.

The land cover includes forest, grassland, bare rock or

bare soil, wetland and permanent snow (Figure 1(c)). On

average, the UHRB produces ∼70% of the total river-borne

runoff of the whole Heihe River Basin (Chen et al. ).

As it is the main runoff-producing region in the Heihe

River basin, the UHRB is essential for an integrated water

management practice, and so the hydrodynamics of the

UHRB have garnered a great deal of research interest.

One hydrological station and four meteorological

stations are located in and around the UHRB (Figure 1(c)).

For this study, these meteorological stations provided

input data for the hydrological model. In this model, Thies-

sen polygons were used to define the monitored area of

these meteorological stations. Since the meteorological

stations are all located at relatively low elevations, empirical

formulas were used to adjust precipitation and temperature

data. The streamflow discharge data for model calibration

were obtained from the hydrological station (Yingluoxia

Station) at the outlet of the UHRB to calibrate the model.

All these input data were obtained from the Cold and Arid

Regions Science Data Center (http://westdc.westgis.ac.cn/).

FLEX-Topo model

The FLEX-Topo model, a semi-distributed hydrological

model, was used as the basis for different calibration strat-

egies. Input data included daily precipitation and daily

temperature, and the outputs included streamflow discharge

and evapotranspiration. The FLEX-Topo model consists of

four identically structured, parallel components represent-

ing four hydrological landscapes (hydrological upland,

sunny-hillslope, shady-hillslope and hydrological lowland)

which are classifed through topographic information that

included height above the nearest drainage (HAND),

elevation, slope and aspect (Gao et al. ). There are 25

parameters, shown in red in Figure 2. Table 1 shows the defi-

nition of the parameters and the ranges of their values

determined by experience or references.

http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/


Figure 1 | (a) Location of the Upper Heihe River basin in China; (b) DEM of the Upper Heihe River basin; (c) land cover map of the Upper Heihe River basin and distribution of hydrology

gauges and meteorology gauges in and around the Upper Heihe.
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Figure 2 | Structure of FLEX-Topo model (revised from Gao et al. 2014). Please refer to the online version of this paper to see this figure in colour: http://dx/doi:10.2166/hydro.2018.131.

Table 1 | Parameters and ranges of values used in the FLEX-Topo model

Parameter Range Description

FDD [1,8] Degree day factor defining the melted water per day per Celsius degree above Tt

Tt [�2.5,2.5] Air temperature threshold above which snow melts

Pt [5,35] Threshold parameter indicating occurrence of HOF in hydrological upland

SumaxB [5,500] Maximum soil moisture capacity in the root zone of hydrological upland

PmaxB [0.1,10] Maximum percolation of hydrological upland

DB [0,1] Splitter to separate preferential flow from recharge in hydrological upland

Tlag [0,5] Time lag between storm and fast runoff generation

KfB [2,50] Timescale of the runoff from fast reservoir in hydrological upland

ImaxFH [1,10] Daily maximum interception capacity of sunny hillslope

Ce 0.5 A ratio above which the actual evaporation is equal to potential evaporation

SumaxFH [100,1,000] Maximum soil moisture capacity in the root zone of sunny hillslope

βFH [0.1,5] Parameter used to calculate runoff coefficient in sunny hillslope

D [0,1] Parameter separating the generated surface runoff on hydrological upland into the splitter to separate preferential
flow from recharge in sunny and shady hillslope

Kf [2,50] Timescale of the runoff from fast reservoir in sunny and shady hillslope

ImaxGH [0,10] Daily maximum interception capacity of shady hillslope

SumaxGH [50,1,000] Maximum soil moisture capacity in the root zone of shady hillslope class

βGH [0.1,5] Parameter used to calculate runoff coefficient in shady hillslope

ImaxW [0.1,10] Daily maximum interception capacity of hydrological lowland

SumaxW [5,1,000] Maximum soil moisture capacity in the root zone of hydrological lowland

βW [0.1,5] Parameter used to calculate runoff coefficient in hydrological lowland

KW [1,9] Timescale of runoff from fast reservoir in hydrological lowland

Ks 90 Timescale of the runoff from slow reservoir

CRmax [0,5] Parameter indicating a constant amount of capillary rise
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The four landscapes are each characterized by various

runoff-producing mechanisms, which are embodied in the

parallel components of the FLEX-Topo model. The hydrolo-

gical processes in each landscape are briefly described next.

More details on the model parameters, the model structure

and the water balance equations have been described by

Gao et al. ().

In the hydrological upland, the dominant hydrological

processes are Hortonian overland flows (HOF) and deep

percolation (DP). Precipitation (P) can be stored as snow

cover (SwB) if the daily temperature is below the threshold

value Tt. It is assumed that there is no interception due to

a lack of significant vegetation. The sum (PeB) of rainfall

and the snowmelt, which is calculated by a degree-day

model, flows towards the unsaturated zone reservoir (SuB).

When PeB is greater than the infiltration capacity (Pt), Hor-

tonian overland flow (RHB) occurs. Infiltration (RuB)

recharges the unsaturated reservoir (SuB). Percolatation

(RpB) from SuB that flows into the slow-response reservoir

(Ss) is calculated from the relative soil moisture (SuB/SumaxB)

and maximum percolation (PmaxB). Actual evapotranspira-

tion (EaB) from the unsaturated reservoir is estimated by

the relative soil moisture (SuB/SumaxB) and the potential eva-

potranspiration that is calculated by the Hamon equation

(Hamon ). Saturation excess overland flow (ReB)

occurs if the amount of water in the unsaturated reservoir

exceeds the maximum storage capacity (SumaxB). ReB plus

RHB is partitioned by a splitter parameter (DB) into flow

(RfB) going into the fast-response reservoir (SfB) and flow

(RsB) re-infiltrating into the slow-response reservoir (Ss).

RfB turns into RLfB after convolution using the time lag par-

ameter Tlag, which represents the time interval between

storm and fast runoff generation. Flow (QfB) from SfB is

routed to the stream channel after time KfB.

The major runoff-producing mechanism of shady-hill-

slope is the storage excess subsurface flow (SSF). The

existence of vegetation indicates the necessity for the inter-

ception reservoir (SiFH). Evapotranspiration (EiFH) from

the interception reservoir is assumed to be equal to potential

evapotranspiration if the storage of the interception reser-

voir is nonzero. The sum (PeFH) of the remainder of

rainfall after interception and the snowmelt that is calcu-

lated from a degree-day model flow towards the

unsaturated reservoir (SuFH). PeFH is partitioned into
s://iwaponline.com/jh/article-pdf/20/3/687/200057/jh0200687.pdf
runoff and flow that is routed to SuFH through the use of

the runoff coefficient that is calculated from the parameter

βFH representing the heterogeneity of soil properties.

Runoff from PeFH and SuFH is separated by a splitter par-

ameter (D) into flow (RfFH) going into the fast-response

reservoir (SfFH) and flow (RsFH) re-infiltrating into Ss.

Actual evapotranspiration (EaFH) from the SuFH is estimated

by parameter Ce and potential evapotranspiration, the latter

of which is calculated by the Hamon equation. Ce is a

threshold value. If SuFH/SumaxFH is larger than Ce, actual

evapotranspiration is assumed to be equal to potential eva-

potranspiration. RfFH becomes RLfB after convolution using

the time lag parameter Tlag and flows into the fast-response

reservoir (SfFH). Water (QfFH) from SfFH is routed to the

stream channel with timescale (KfH).

The major runoff-producing mechanism of sunny-hill-

slope is assumed to be the same as that of shady-hillslope,

but the parameters for this landscape take different values.

In hydrological lowland, the dominant hydrological pro-

cess is saturation excess overland flow (SOF). Interception

and snowmelt are the same as they are in shady-hillslope,

but soil routine is different. Runoff (RfW) produced from

PeW and SuW is directly routed to the fast-response reservoir

(SfW) without delay because of its proximity to the stream

channel. Due to the shallow groundwater level and limited

storage capacity, capillary rise (CR) occurs. CR is represented

by a parameter (CRmax) that indicates a constant amount of

capillary rise.

Optimization algorithm and objective functions

The MOSCEM-UA (Multi-Objective Shuffled Complex Evol-

ution Metropolis-University of Arizona) algorithm that was

developed by Vrugt et al. (a) was proposed for multi-

objective calibration because it maintains a uniform

sampling density within the Pareto set of solutions and

includes the single-criterion end points. The evolution strat-

egy employed in the MOSCEM-UA algorithm is similar to

that of the SCEM-UA algorithm (Vrugt et al. b), but

the probability ratio concept in the SCEM-UA algorithm

was replaced by a multi-objective fitness assignment concept

in order to develop the initial population of points toward a

set of solutions resulting from a stable distribution. The

MOSCEM-UA algorithm has been successfully applied in
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a wide range of hydrological and environmental models,

demonstrating its reliability and effectiveness (Efstratiadis

& Koutsoyiannis ). In this study, the MOSCEM-UA

algorithm (Vrugt et al. a) was adopted to identify the

parameters in the model (Figure 3). With these parameters,

simulated streamflow is generated. Using the simulated and

observed streamflow, objective function values were calcu-

lated by a module within the FLEX-Topo model.
Figure 3 | Flow chart of MOSCEM-UA algorithm (revised from Vrugt et al. 2003a).
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Three basic parameters had to be set in order to control the

operation of the algorithm: the number of iterations, the

number of parallel sequences, and the number of random

samples. Kuczera () suggests that the number of parallel

sequences be set to be equal to the number of the calibration

parameters. The other two algorithmic parameters were set

according to the recommended values in Vrugt et al. (b).

In line with these suggestions, these three parameters were
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set as 100,000, 25 and 2,500, respectively. The 20-year-period

from 1959 to 1978 was used for model calibration. The first

year was disregarded in order to minimize any influence

from the initial conditions. A computer having a 3 GHz Intel

XeonCPUmodel E5-2687Wv4was used to run the algorithms.

There are many commonly used objective functions,

such as the Nash–Sutcliffe efficiency (Nash & Sutcliffe

) and its logarithmic form (Legates & Mccabe ;

Kim& Lee ). The Nash–Sutcliffe efficiency and its logar-

ithmic form highlight high flow and low flow, respectively.

Therefore, both indexes were included for multi-objective

calibration in order to simultaneously consider both high

flow and low flow. Meanwhile, these two indexes were also

separately used for single-objective calibration. Since the

MOSCEM-UA algorithm generally deals with a minimiz-

ation procedure, the Nash–Sutcliffe efficiency and its

logarithmic form were subtracted from one. Table 2 shows

the mathematical formulation of the objective functions.

Comparison between different calibration strategies was

made to assess the simulation accuracy in modelling

observed streamflow, focusing on high flow and low flow.
RESULTS

Objective function values of single- and multi-objective

calibrations

For single-objective calibration, one set of parameters was

obtained, and for multi-objective calibration the Pareto

front consisting of 33 sets of parameters was obtained.

Figure 4 shows the results of different calibration strategies.

It is clear that several tradeoffs exist in multi-objective

calibration, indicating that no single solution can optimize
Table 2 | Mathematical formulations of the objective functions and evaluation index

Objective function Mathematical formulation

NSE NSE ¼
PN

i¼1 (Oi � Si)
2

PN
i¼1 (Oi � �O)

2

lnNSE lnNSE ¼
PN

i¼1 (ln Oi � lnSi)
2

PN
i¼1 ( lnOi � lnOi)

2

Note: Oi is the observed discharge at time step i; Si is the simulated discharge; Ō is the mean o

discharge over the entire simulation period of length N.

s://iwaponline.com/jh/article-pdf/20/3/687/200057/jh0200687.pdf
both objective functions simultaneously. The values of

NSE and lnNSE corresponding to solutions in the Pareto

front (dots marked in blue) vary widely. The NSE values

range from 0.154 to 0.199, while the lnNSE values range

from 0.100 to 0.151, indicating good performance of the

model.

In regards to the NSE calibrated model (dot marked in

red), the NSE value is 0.157, which is very close to the

value (0.154) of the corresponding extreme end of the

Pareto front. As regards the lnNSE calibrated model (dot

marked in green), the lnNSE value is 0.097 and it is close

in value to the other extreme end of the Pareto front

(0.100). This proximity in value confirms that the Pareto

front includes a single-criterion end point, which is consist-

ent with the results of Vrugt et al. (a). In addition, it can

be found that the extreme end of the Pareto front on lnNSE

is closer to the single-objective calibration, yet the other

extreme end is not proximal to the NSE calibrated solution.

Assessment of single- and multi-objective calibrations

Since all Pareto optimal solutions are equally important, it

may be difficult to prefer one solution over another. There-

fore, every solution in the Pareto front was used to run the

model, obtaining 33 sets of simulated streamflow. The aver-

age of these simulated flows was calculated and was denoted

as the ‘Average’. The hydrographs of the different objective

calibrated simulations are also shown in Figure 5. The simu-

lated flows are respectively marked as QNSE, QlnNSE and

QAverage.

It can be seen that the simulated flows fluctuated syn-

chronously with the observed flow, which indicates that

both strategies could capture the dynamics of the observed

discharge. It seems, however, that the resulting hydrograph
Range of values Reference

�∞, 1ð � Nash & Sutcliffe ()

�∞, 1ð � Kim & Lee ()

bserved discharge over the entire simulation period of length N; �S is the mean simulated



Figure 4 | Objective function values of single- and multi-objective calibration solutions.

Please refer to the online version of this paper to see this figure in colour:

http://dx/doi:10.2166/hydro.2018.131.
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based on NSE appeared slightly truer to the observed high

flow than the other two resulting hydrographs.

Figure 6 shows a scatterplot of the residuals in regards to

observed flow. For low flows, these three simulations all
Figure 5 | Hydrographs for single- and multi-objective calibrations.
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tend to show a more centred scatterplot and the distri-

butions of the dots were similar. This pattern indicated

that these three simulations performed similarly in model-

ling low flow, although it was supposed that the lnNSE

calibrated simulation would behave better. For higher

flows the dots show a rising trend, demonstrating that all

three simulations underestimated the high flows but to var-

ious degrees. The multi-objective calibrated simulation

performed no better than the simulation based on NSE,

the latter which presented a relatively low degree of under-

estimation. Taking the values of NSE into consideration, it

is interesting to find that the lower the NSE value, the

better the modelling of the high flow. In general, the NSE

tends to perform better in modelling high flow and in repro-

ducing the observed streamflow dynamics. There were no

apparent differences among these three simulations in simu-

lating low flow.
Influence of optimization algorithm parameters on

model performance

The MOSCEM-UA algorithm is a random sampling

approach, thus initial samples may have an impact on the

solutions. In addition, three parameters control the behav-

iour of MOSCEM-UA: the number of iterations (NI), the

http://dx/doi:10.2166/hydro.2018.131


Figure 6 | Residuals plot of the different simulations corresponding to the multiple- and single-objective calibration.
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number of random samples (NRS) and the number of paral-

lel sequences (NPS). To examine the influence of samples

and these three parameters on the simulations, various com-

binations of these algorithm parameters were carried out.

The results of these trials are shown in Figure 7. It seems

that trials of the changing parameter combinations of the

optimization algorithm almost made no difference in model-

ling high flow and low flow. The results of these trials also

prove the simulations based on NSE outperformed the simu-

lations based on multi-objective.
DISCUSSION

This study aimed at testing whether multi-objective cali-

bration would guarantee a better simulation of observed

streamflow. Two widely used objective functions, NSE and

lnNSE, were selected for model calibration. Since all the set-

tings, including the input data, the hydrological model, the

parameter ranges and the optimization algorithm were

kept the same (except for the calibration strategies), it can

reasonably be assumed that it was the objective functions

that influenced model performance.

For high flow, the results show that simulation based on

NSE performed slightly better. This may be because NSE

weighs error on high flow more than error on low flow.
s://iwaponline.com/jh/article-pdf/20/3/687/200057/jh0200687.pdf
Because of the use of the logarithmic form, lnNSE weighs

more on the error on low flow (Fenicia et al. ; Kim &

Lee ). Therefore, the simulation calibrated by NSE out-

performed the simulation based on lnNSE in reproducing

high flow. Since the multi-objective calibration takes both

NSE and lnNSE into consideration, it is not surprising that

simulation based on NSE outperformed simulation based

on multi-objective calibration in modelling high flow. By con-

trast, there was no significant difference among the three

types of simulations based on different objective function(s),

although simulation based on lnNSE was supposed to

improve the low flow modelling. These results may be due

to two factors. The first is that NSE still reacts to low flows

although it highlights high flow. The second factor is that

there generally tends to be more measurement errors in the

observed low flow values. (Laaha et al. ). The greater

level of error in observed low flow can be confirmed by

Figure 6, in which the centred scatter illustrates a nearly sym-

metrical distribution around the line whose ordinate value is

equal to zero.

It can be argued that a great deal of attention should be

paid to objective function selection for multi-objective cali-

bration as objective function has impact on model

performance (Muleta ). It is crucial that performance

of objective function be assessed before application in

multi-objective calibration.



Figure 7 | Residuals plots of the simulations based on different optimization parameter combinations. Note: IRS is initial random samples (IRS); NRS is the number of random samples; NI is

the number of iterations. (a) IRS¼ 25, NRS¼ 25*2, NI¼ 50,000; (b) IRS¼ 25, NRS¼ 25*4, NI¼ 50,000; (c) IRS¼ 25*2, NRS¼ 25*4, NI¼ 50,000.
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It has been suggested that the inclusion of more vari-

ables in model calibration might provide additional

information about the catchment characteristics (Zhang

et al. ). In this study, the variable was streamflow. How-

ever, it is worth mentioning that there are other observed

variables that could be used for multi-objective calibration,

such as time shift between observed and simulated peak

flow (Fenicia et al. ), energy (Scheerlinck et al. )

and chemical constituent (Haas et al. ; Zhang et al.

). For example, Zhang et al. () calibrated both

water quantity and water quality simultaneously. This type

of multi-objective calibration was not included in this par-

ticular study, but it may prove to be an area of interest in

the future.
CONCLUSION

This hydrological modelling study aimed at testing the sup-

position that a multi-objective calibration guaranteed

better model accuracy in modelling high flow and low

flow. To capture the dynamics of high and low flow, the

Nash–Sutcliffe efficiency and its logarithmic form were

selected as the objective functions. These two criteria were

both included in the multi-objective calibration, while in

the single-objective calibration they were separately used.

The FLEX-Topo, a semi-distributed hydrological model,

was used to simulate the Upper Heihe River basin hydrolo-

gical processes, and the MOSCEM-UA was used for

calibration. Assessment of different calibration strategies

was carried out by comparing the simulated streamflow

with the observed streamflow, focusing on the high flow

and low flow.

It seems that multi-objective calibration, in fact, did

not significantly improve model performance compared

to single-objective calibration. Our results show that the

Nash–Sutcliffe efficiency performed slightly better in mod-

elling high flow while the logarithmic form of the Nash–

Sutcliffe efficiency did not significantly improve the low

flow simulation and at the same time more seriously

underestimated the high flow. Multi-objective calibration

led to no better accuracy in modelling high flow and simi-

lar simulation in low flow compared to single-objective

calibration which was based on the Nash–Sutcliffe
s://iwaponline.com/jh/article-pdf/20/3/687/200057/jh0200687.pdf
efficiency. Thus, it cannot be taken for granted that

multi-objective calibration of streamflow will necessarily

guarantee better model accuracy. Indeed, model perform-

ance depends on the selected objective function(s). With

this in mind, in order to design better and more accurate

hydrological simulations of hydrological processes, a

serious look at the selection of the objective functions

should be undertaken.
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