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Trained meta-models and evolutionary algorithm based

multi-objective management of coastal aquifers under

parameter uncertainty

Dilip Kumar Roy and Bithin Datta
ABSTRACT
Meta-model based coupled simulation-optimization methodology is an effective tool in developing

sustainable saltwater intrusion management strategies for coastal aquifers. Such management

strategies largely depend on the accuracy, reliability, and computational feasibility of meta-models

and the numerical simulation model. However, groundwater models are associated with a certain

amount of uncertainties, e.g. parameter uncertainty and uncertainty in prediction. This study

addresses uncertainties related to input parameters of the groundwater flow and transport system

by using a set of randomized input parameters. Three meta-models are compared to characterize

responses of water quality in coastal aquifers due to groundwater extraction patterns under

parameter uncertainty. The ensemble of the best meta-model is then coupled with a multi-objective

optimization algorithm to develop a saltwater intrusion management model. Uncertainties in

hydraulic conductivity, compressibility, bulk density, and aquifer recharge are incorporated in the

proposed approach. These uncertainties in the physical system are captured by the meta-models

whereas the prediction uncertainties of meta-models are further addressed by the ensemble

approach. An illustrative multi-layered coastal aquifer system is used to demonstrate the feasibility of

the proposed approach. Evaluation results indicate the capability of the proposed approach to

develop accurate and reliable management strategies for groundwater extraction to control

saltwater intrusion.
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ABBREVIATIONS AND NOTATION
Abbreviations
ANN
 Artificial Neural Network
CART
 Classification and Regression Tree
CEMGA
 Controlled Elitist Multi-objective Genetic

Algorithm
EGPR
 Ensemble GPR
EMARS
 Ensemble MARS
EPR
 Evolutionary Polynomial Regression
ERT
 Ensemble RT
FIS
 Fuzzy Inference System
GP
 Genetic Programming
GPR
 Gaussian Process Regression
LHS
 Latin Hypercube Sampling
LSBoost
 Least Squared Boosting
MARS
 Multivariate Adaptive Regression Spline
OP
 Observation Point
RBF
 Radial Basis Function
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Regression Tree
S/O
 Simulation-Optimization
Notation
aL
 longitudinal dispersivity [L];
am
 molecular diffusion coefficient [L2/T];
aT
 lateral dispersivity [L];
C
 material concentration in aqueous phase [M/L3];
D
 Dispersion coefficient tensor [L2/T];
F
 storage coefficient;
g
 acceleration of gravity [L/T2];
h
 pressure head [L];
kr
 relative permeability or relative hydraulic conductivity

[L2];
Ks
 first order biodegradation rate through adsorbed

phase;
ks
 saturated permeability tensor [L2];
kso
 referenced saturated conductivity tensor [L2];
K
 hydraulic conductivity tensor [L/T];
Kd
 distribution coefficient;
Kw
 first order biodegradation rate constant through

dissolved phase;
n
 porosity of the medium;
q
 source and/or sink [[L3/T]/L3];
s
 saturation;
t
 time [T];
T
 number of time steps;
V
 Darcy velocity [L/T];
Vj j
 magnitude of V;
z
 potential head [L];
α
 compressibility of the medium [LT2/M];
α0
 modified compressibility of the medium [1/L];
β
 compressibility of water [LT2/M];
β0
 modified compressibility of the water [1/L];
θ
 moisture concentration;
λ
 decay constant;
μ
 dynamic viscosity of water at chemical concentration

C [M/LT];
μo
 reference dynamic viscosity at zero chemical concen-

tration [M/LT];
ρ
 water density at chemical concentration C [M/L3];
nline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
ρb
 bulk density of the medium (M/L3);
ρ*
 density of either the injection fluid or the withdrawn

water [M/L3];
ρo
 referenced water density at zero chemical concen-

tration [M/L3];
τ
 tortuosity;
δ
 Kronecker delta tensor;
∇
 del operator;
ξ()
 the density dependent coupled flow and salt transport

meta-model.
INTRODUCTION

Coastal groundwater resources are susceptible to saltwater

intrusion as a result of unplanned and irrational water

extraction from the aquifers. This has become a major man-

agement problem, which can be tackled through a judicial

pumping management strategy by adopting optimization of

groundwater extraction patterns. The optimal management

strategy for groundwater pumping to control saltwater intru-

sion can be attained through utilizing coupled simulation-

optimization (S/O) approaches (Bhattacharjya & Datta

; Sreekanth & Datta , b; Hussain et al. ).

In a coupled S/O approach, the role of the simulation

model is to simulate physical processes whereas the optimiz-

ation part is intended to find the optimal groundwater

extraction values to control saltwater intrusion. The

reliability and accuracy of the optimal management strategy

based on a coupled S/O approach depend on how accu-

rately the simulation model captures and simulates the

accompanying physical processes. Moreover, groundwater

flow and solute transport systems in coastal aquifers are

associated with uncertain model parameters (Sreekanth &

Datta ). The multidimensional heterogeneity of aquifer

properties such as hydraulic conductivity, compressibility,

and bulk density are considered as major sources of uncer-

tainty in groundwater modelling systems (Ababou &

Al-Bitar ). Other sources of uncertainty are associated

with spatial and temporal variability of hydrologic as well

as human interventions, e.g. aquifer recharge and transient

groundwater extraction patterns. The present study

addresses uncertainties arising from uncertain model
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parameters (hydraulic conductivity, compressibility, bulk

density, and aquifer recharge), and spatial and temporal

variation of groundwater extraction patterns. Uncertain

model parameters are randomly paired with the transient

groundwater extraction patterns in the simulation of aquifer

processes.

Coupling of simulation models in the optimization

algorithm in a linked S/O approach is computationally inef-

ficient because of the multiple calls of the detailed and

complex simulation model by the optimization routine to

obtain a global optimal solution (Dhar & Datta ).

Therefore, a reasonably accurate and reliable replacement

of the original numerical simulation model, commonly

known as emulators or meta-models, can be used to achieve

computational efficiency in the optimization routine of

computationally intensive problems (Goel et al. ).

Recently, Artificial Neural Network (ANN) (Bhattacharjya

& Datta ; Kourakos & Mantoglou ; Sreekanth &

Datta ), Genetic Programming (GP) (Sreekanth &

Datta , a), Evolutionary Polynomial Regression

(EPR) (Hussain et al. ), Fuzzy Inference System (FIS)

(Roy & Datta a), and cubic Radial Basis Function

(RBF) (Christelis & Mantoglou ) have been used as

computationally efficient substitutes of the density depen-

dent linked flow and solute transport processes in coastal

aquifers. The present study investigates the potential appli-

cability and relative comparison of Multivariate Adaptive

Regression Spline (MARS), Gaussian Process Regression

(GPR), and Regression Tree (RT) based meta-models and

their ensembles to approximate physical processes in a multi-

layered coastal aquifer system under parameter uncertainty.

A saltwater intrusion management model is developed by

coupling the ensemble of the best meta-model obtained from

these three meta-models to a Controlled Elitist Multi-objective

Genetic Algorithm (CEMGA) (Deb & Goel ) in a multiple

objective problem setting.

MARS (Friedman ) utilizes a set of coefficients and

Basis functions in developing a functional relationship

between inputs and outputs. This non-parametric artificial

intelligence based approach provides a relatively rapid, flex-

ible, and reasonably accurate meta-model (Salford-Systems

). One of the main advantages of using MARS in devel-

oping a predictor-response relationship is its ability to build

simple and easy-to-interpret meta-models even from a high
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
dimensional data pattern (Zhang & Goh ). MARS also

considers the most important input variables in determining

the output during the backward pass of the model develop-

ment. MARS has been applied successfully in different

areas of water resources research (Sharda et al. ,

; Beuchat et al. ; Adamowski et al. ; Nasseri

et al. ; Samadi et al. ; Zabihi et al. ). Recently,

Roy & Datta (b) demonstrated the potential applicability

of MARS and ensemble MARS (EMARS) models in

approximating the physical processes of a multi-layered

coastal aquifer system. This study extends the use of

MARS and EMARS to approximate the physical processes

of a multi-layered coastal aquifer system under parameter

uncertainty.

GPR (Rasmussen & Williams ) is a stochastic

approach (Jacobs & Koziel ) to building meta-models

based on the assumption of a Gaussian prior distribution

of model variables. GPR meta-models are based on a non-

parametric approach in which the parameters are presumed

as random variables that are taken from a Gaussian distri-

bution (Bazi et al. ). Although the GPR approach of

meta-model formation is applied successfully in many

engineering applications (Forrester et al. ), GPR based

meta-models and their ensembles have not been utilized

thus far to approximate density dependent linked flow and

salt transport processes in multi-layered coastal aquifers

under parameter uncertainty. Recently, Rajabi & Ketabchi

() proposed GPR based meta-models to develop a

single objective coastal groundwater management model.

Nevertheless, the capability of the GPR meta-models and

their ensembles needs to be evaluated for multi-objective

optimization of coastal aquifer management problems.

Therefore, the present study is an attempt to develop a

multiple objective management model with parameter

uncertainty.

Regression Trees (RTs) are able to build flexible models

that are less complex and easily interpretable. The theory

behind the decision trees is based on the Classification

and Regression Tree (CART) algorithm proposed by

Breiman et al. (). The ensemble RT (ERT) method, inte-

grating the flexibility of the tree model space and robustness

of the ensemble learning technique, is based on the weighted

combination of multiple regression trees. Boosting is one of

the most commonly used methods of formulating the tree
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ensemble (Freund & Schapire ). The boosting algorithm

used in this study is the least squared boosting (LSBoost)

(Hastie et al. ).

However, meta-models are associated with a certain

amount of uncertainty in prediction that results from the

residuals. Using an ensemble of individual meta-models is

one of the most effective ways of reducing predictive uncer-

tainty of the meta-modelling approach in which outputs

obtained from a group of separately trained meta-models

are integrated to acquire one unified output (Zhou et al.

). An ensemble of meta-models is able to capture the

accurate trend of data by combining the outputs from a cer-

tain number of individual models, thus providing better

prediction capability than individual models within the

ensemble (Goel et al. ; Jovanović et al. ). Neverthe-

less, individual meta-models within the ensemble should be

adequately accurate and sufficiently diverse. This diversity of

individual models can be maintained through utilization of

several approaches including optimizing model structures

and parameters, varying the training algorithm, and the

use of different realizations of the training dataset (Sharkey

; Zhang & Berardi ). The random sampling without

replacement (Hastie et al. ) technique can be utilized to

obtain different realizations of the training dataset in order

to form individual ensemble members.

Therefore, this study seeks to develop an optimal

groundwater extraction strategy to control saltwater intru-

sion in multi-layered coastal aquifers incorporating the

uncertainty of model parameters and the prediction uncer-

tainty of meta-model based modelling approaches. MARS,

GPR, and RT based meta-models are proposed as computa-

tionally efficient substitutes of the complex numerical

simulation model. The study also considers predictive un-

certainty of meta-modelling approaches by proposing

ensembles of MARS, GPR, and RT based meta-models. A

comparative evaluation of the MARS, GPR, and RT

based meta-models and their ensembles is performed

based on the accuracy of prediction. The best ensemble

model thus obtained is coupled with CEMGA within a

linked S/O framework in order to develop the saltwater

intrusion management model. The contribution of the pre-

sent study involves incorporation of parameter and

prediction uncertainties, utilization of the stochastic

meta-modelling approach, development of saltwater
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf

er 2019
intrusion management models, and suggestions for water

managers on choosing appropriate management alterna-

tives. Applicability of the proposed methodology is

evaluated using an anisotropic multi-layered coastal aqui-

fer system. Each individual layer of this multi-layered

coastal aquifer represents separate material zones with

different values of hydraulic conductivities. The coupled

flow and solute transport processes considered are transi-

ent and density dependent.
METHODOLOGY

The proposed methodology integrates a numerical simu-

lation model to simulate aquifer processes in a multi-

layered coastal aquifer system under parameter uncertainty,

meta-models to achieve computational efficiency in the

linked S/O approach, ensembles of meta-models to address

prediction uncertainty in meta-modelling, and an optimiz-

ation algorithm to search for the global optimal solution of

groundwater extraction patterns in a general framework.

Components of the proposed approach are briefly described

in the following sub-sections.
Numerical simulation model

Aquifer processes under parameter uncertainty are simu-

lated by using a three-dimensional (3D) finite element

based and density dependent linked flow and solute trans-

port numerical simulation model, FEMWATER (Lin et al.

). The simulation model uses a randomized set of uncer-

tain model parameters and randomized groundwater

pumping values as inputs, and generates saltwater concen-

tration values at specified observation points (OPs) at the

end of the specified management period as outputs. The

3D flow and solute transport processes are expressed by

the following set of equations (Lin et al. ):

ρ

ρ0
F
@h
@t

¼ ∇ � K � ∇hþ ρ

ρ0
∇z

� �� �
þ ρ

ρ� q (1)

F ¼ α0 θ
n
þ β0θ þ n

dS
dh

(2)
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The hydraulic conductivity tensor, K, can be expressed

as

K ¼ ρg
μ
k ¼ ρ=ρoð Þ

μ=μo

ρog
μo

kskr ¼ ρ=ρo
μ=μo

Ksokr (3)

Solute transport processes are represented by the follow-

ing equation

θ
@C
@t

þ ρb
@S
@t

þ V �∇C �∇ � θD �∇Cð Þ

¼ � α0 @h
@t

þ λ

� �
θC þ ρbSð Þ � θKwC þ ρbKsSð Þ

þm� ρ�
ρ
qC þ F

@h
@t

þ ρo
ρ
V �∇ ρ

ρo

� �
� @C

@t

� �
C (4)

The dispersion coefficient tensor D in Equation (4) is

written as

θD ¼ aT Vj jδ þ aL � aTð ÞVV
Vj j þ amθτδ (5)
Generation of uncertain model parameters

This study specifically assumes four model parameters to be

uncertain, i.e. hydraulic conductivity, aquifer recharge, bulk

density, and compressibility of the aquifer material are con-

sidered as uncertain model parameters. These parameters

are presumed homogeneous but uncertain within each

material layer. Different realizations of a representative set

of hydraulic conductivity values are obtained from a lognor-

mal distribution with a specific mean and standard deviation

of the associated normal distribution (Table 1). Lognormal

distribution is a probability distribution in which the uncer-

tain model parameter, hydraulic conductivity, is divided

into N equi-probable intervals from which a single value

is chosen randomly. The obtained lognormal hydraulic

conductivity values more or less represent the standard

values of the corresponding soil materials in different

layers. These values are carefully chosen so that the hydrau-

lic conductivity values within a material layer do not vary

significantly so as to spill over to the hydraulic conductivity
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
values in the range of the other materials. Moreover, the

unsaturated curve is drawn using Van Genuchten’s equation

for every layer for the specific soil type. The ranges of

hydraulic conductivity values for the four material layers

are: Material layer 1: 4.322553–5.793223 m/day, Material

layer 2: 9.334227–10.69161 m/day, Material layer 3:

14.3263–15.74599 m/day, Material layer 4: 2.524144–

3.926397 m/day.

Aquifer recharge and compressibility realizations are

generated from Latin Hypercube Sampling (LHS) (Pebesma

& Heuvelink ) uniform distributions within the

parameter space for specific lower and upper bounds.

Realizations of bulk density are obtained from the LHS

technique from a p-dimensional multivariate normal distri-

bution with specific mean and covariance. The values of

hydraulic conductivity, recharge, compressibility, and bulk

density are then shuffled randomly and combined to

obtain multivariate random realizations of uncertain

model parameters. One hundred realizations of each par-

ameter are generated for each material layer. A total of

3000 uniformly distributed LHS of groundwater extraction

values are generated from the variable space having a

range of 0–1,300 m3/day. For each randomized uncertain

model parameter set, 30 sets of transient pumping values

from the well locations are assigned. When the uncertain

model parameters are combined with the transient ground-

water extraction values, the resulting uncertainty level

further increases. As a whole, the system resembles more

or less a real world study area. Again, synthetic data from

the illustrative site is chosen for evaluation, because that is

necessary for the actual evaluation of a methodology in

the absence of unknown measurement errors and unquanti-

fied uncertainties. The obtained 3000 randomized combined

realizations of uncertain model parameters and transient

groundwater extraction values are then used along with

other initial and boundary conditions as inputs to the simu-

lation model in order to obtain the corresponding salinity

concentrations at specified OPs.

To demonstrate the variation of salinity concentration

values within the ranges of chosen hydraulic parameters,

numerical experiments are conducted using the simulation

model. The effects of hydraulic conductivity on salinity

concentrations are presented here as an example. The per-

centage difference in salinity concentration values using



Table 1 | Parameter distributions with mean and standard deviation values used in simulation

Parameters Unit Material layer Distribution Mean Standard deviation

Hydraulic conductivity in x-direction m/d Silt lognormal 5.02 0.30

Hydraulic conductivity in y-direction m/d Silt lognormal 2.52 0.15

Hydraulic conductivity in z-direction m/d Silt lognormal 0.50 0.03

Compressibility md2/kg Silt uniform (LHS) 7.37 × 10�16 3.50 × 10�16

Bulk density kg/m3 Silt normal (LHS) 1,650 5

*Recharge m/d Silt uniform (LHS) 0.00019 3.48 × 10�5

Hydraulic conductivity in x-direction m/d Sandy loam lognormal 9.97 0.28

Hydraulic conductivity in y-direction m/d Sandy loam lognormal 4.98 0.14

Hydraulic conductivity in z-direction m/d Sandy loam lognormal 1.00 0.03

Compressibility md2/kg Sandy loam uniform (LHS) 7.35 × 10�18 3.49 × 10�18

Bulk density kg/m3 Sandy loam normal (LHS) 1,600 5

Hydraulic conductivity in x-direction m/d Sand lognormal 14.95 0.29

Hydraulic conductivity in y-direction m/d Sand lognormal 7.47 0.15

Hydraulic conductivity in z-direction m/d Sand lognormal 1.49 0.03

Compressibility md2/kg Sand uniform (LHS) 7.35 × 10�18 3.49 × 10�18

Bulk density kg/m3 Sand normal (LHS) 1,550 5

Hydraulic conductivity in x-direction m/d Sandy clay lognormal 3.05 0.30

Hydraulic conductivity in y-direction m/d Sandy clay lognormal 1.53 0.15

Hydraulic conductivity in z-direction m/d Sandy clay lognormal 0.31 0.03

Compressibility md2/kg Sandy clay uniform (LHS) 7.35 × 10�17 3.49 × 10�17

Bulk density kg/m3 Sandy clay normal (LHS) 1,700 5

*Recharge is distributed uniformly over the first layer of the study area.
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the lowest and highest ranges of these hydraulic conduc-

tivity values at five OPs are 4.87%, 13%, 15.93%, 9.53%,

and 10.31%, respectively. For example, in observation

point OP5, the lowest values of hydraulic conductivity at

different soil layers produce a salinity concentration value

of 4,791 mg/l. The highest hydraulic conductivity values

produce 5,285 mg/l of salinity concentration. These results

are obtained only by varying the hydraulic conductivity

values while other uncertain parameters are kept constant.

In addition to hydraulic conductivity, aquifer recharge,

bulk density and compressibility are also considered

uncertain. As mentioned, different realizations of these

uncertain model parameters are randomly paired to obtain

a multivariate realization of these uncertain parameters.

This multivariate realization is further randomly paired

with the random field of groundwater extraction in space

and time. Therefore, the resulting uncertainty represents,

more or less, a realistic coastal aquifer study area.
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
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Meta-models

GPR, MARS, and RT approaches and their ensembles are

used to construct the meta-models. Brief descriptions

of the meta-models are provided in the following sub-

sections.

Gaussian process regression

GPR is a non-parametric and probability based meta-model-

ling approach derived from the Gaussian process theory

(Rasmussen & Williams ). A Gaussian process is

characterized by an accumulation of random variables,

and any finite number of these variables has a combined

Gaussian distribution. GPR builds a functional relationship

between response, Y and predictor variables, X kð Þ such

that Y ¼ f X kð Þð Þ þ ε, where ε is a Gaussian noise with

variance σ2
n (Bishop ). GPR is characterized by mean
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and covariance functions: mean function describes the

anticipated value of the function at any particular point

within the variable space whereas the covariance function

provides an indication of the proximity or resemblance

between the response and the predictor values (Rasmussen

& Williams ). The mean and covariance functions are

defined by

Mean function: m xið Þ ¼ E f xið Þ½ �, (6)

Covariance function: k(xi, xj)

¼ E f xið Þ �m xið Þð Þ f xj
� ��m xj

� �� �� 	
, (7)

Finally, the Gaussian process can be expressed as

f xð Þ ∼ gp m xið Þ, k xi, xj
� �� �

: (8)

The properties of the predictive probability distribution

of the GPR process are defined by free parameters or

hyperparameters (parameters associated with mean and

covariance functions). Maximization of the log-likelihood

function of the training dataset provides the values of hyper-

parameters (Rasmussen & Williams ), and is given by

log p Y jXð Þ ¼ � 1
2
YT K þ σ2

nI
� ��1

Y � 1
2
log K þ σ2

nIj


� �

� n
2
log 2πð Þ, (9)

where n is the number of training samples.

The GPR based meta-models are developed using

the commands and functions of MATLAB (MATLAB

a).
Multivariate adaptive regression spline

MARS is an adaptive and non-parametric regression

approach (Friedman ) in which the total solution

space is divided into different intervals of input variables

to which individual Splines or Basis functions are fitted

during formation of the MARS models (Bera et al. ).

MARS uses a forward and a backward stepwise procedure

for building models that are capable of predicting future
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
responses through non-linear mapping of the predictors

and response variables. In the forward pass, MARS builds

a relatively complex model based on the number of Basis

functions provided by the user. However, in the backward

pass, MARS sparingly selects only those input variables,

that are important in predicting the output variable.

MARS utilizes this backward step to prevent model over-

fitting, and to avoid formulation of the unnecessarily

complex model (Salford-Systems ).

The predictor-response mapping of the developed

MARS model can be expressed as (after Roy & Datta

(b))

BFi(X) ¼ max (0, Xj � α) OR

¼ max (0, α �Xj) (10)

Y ¼ f(X) ¼ β ± γk�BFi(X) (11)

where, i and j are the indices for Basis functions and input

variables (groundwater extraction), respectively; BFi ¼ ith

Basis functions; Xj ¼ jth input variables (groundwater

extraction); α¼ some threshold values chosen by the

MARS model; β ¼ constant value, γk ¼ corresponding coeffi-

cients of BFi(X), ±indicates that the next entity may

be added to or subtracted from the previous entity; and

Y ¼ predicted saltwater concentration value at a specified

OP.

A commercial software package, Salford Predictive

Modeller® (SPM ) is used to build the MARS models.
RT

RTs are able to build flexible models that are less complex

and easily interpretable. The theory behind the decision

trees are based on the CART algorithm proposed by

Breiman et al. (). The CART procedure builds

models by following three major steps. The first step

uses a binary split procedure to build a complex full tree

having numerous terminal nodes. In the second step, the

full tree is pruned to reduce model over-fitting. In the

third step, the CART algorithm selects an optimal sub-

tree so that the quality of prediction for new samples is

ensured. RT methods of meta-modelling provide a pre-

dicted response by following the decisions in the tree
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from the root node (beginning node) to the leaf node

where the responses are contained. The RT meta-models

are developed in the MATLAB environment (MATLAB

a).
Ensemble meta-models

Prediction uncertainty of meta-models can effectively be

reduced by an ensemble of such meta-models, instead of

using the single model. An ensemble approach is able to

capture the nearly true trends of data by utilizing unique

features of individual meta-models. Individual meta-models

are built by varying different architectures of the same

meta-model, using different types of meta-models, utilizing

different algorithms for training, or using different realiz-

ations of training data (Sharkey ; Shu & Ouarda

). Different realizations of the training dataset using a

suitable resampling technique (e.g. random sampling with-

out replacement) often provide better results than other

techniques (Shu & Burn ; Zaier et al. ). For devel-

oping an ensemble of GPR and MARS (written as EGPR

and EMARS thereafter), different realizations of training

datasets are generated using the random sampling without

replacement technique (Hastie et al. ). On the other

hand, the LSBoost (Hastie et al. ) algorithm is used to

build RT ensembles (ERT). The optimum number of RTs

within the ensemble is determined by observing the Root

Mean Squared Error (RMSE) between the observed and

predicted responses. In the LSBoost approach, every step

of ensemble formation is characterized by fitting a new

regression tree to the variance between actual response

and combined prediction of all formerly grown regression

trees.

Selecting the optimum number of individual meta-

models within the ensemble is one of the most crucial

parts of the ensemble based meta-modelling approach.

The present study selects the right number of individual

meta-models for building EGPR and EMARS by observ-

ing the RMSE between the observed and predicted

responses after sequential addition of individual meta-

models to the ensemble. For ERT formation, RMSE

values between the observed and cumulative prediction

of sequentially added RTs are used to determine the
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf

er 2019
optimum number of RTs in the ensemble. Selection of

optimum number of RTs is performed by automatic

tuning of the hyperparameters using the LSBoost

method and the Bayesian Optimization technique

(MATLAB a).

The sequential approach is adopted because this

approach selects the ensemble (collection of the meta-

models) resulting in the best performance in terms of predic-

tions. The sequence is actually based on the performance,

while all meta-models are included in determining the best

sequence and the total number of meta-models in the

sequence. It is difficult to say that this approach is the best.

However, this selection process appears logical, though a

different approach may result in a different set of predic-

tions. The order is not very important as all the training

patterns for the individual meta-models in the ensemble

are obtained from the random sampling without replace-

ment technique. In addition, to avoid bias in selecting

individual meta-models, the original randomized order of

the meta-models is not altered.
Performance evaluation criteria

Mean Absolute Percentage Relative Error (MAPRE), Coeffi-

cient of Correlation (R), Nash-Sutcliffe Efficiency Coefficient

(NS), Index of Agreement (IOA), RMSE and Threshold Stat-

istics (TS) are used to evaluate the performance of GPR,

MARS, EGPR, EMARS, and ERT based meta-models. In

addition, the proposed management models’ performance

is evaluated by observing the constraint violation, and by

confirming whether the constraints are satisfied at their

upper limits.

Mean Absolute Percentage Relative Error (MAPRE) is

calculated as

MAPRE ¼ 1
n

Xn
i¼1

Ci,o � Ci,p

Ci,o










 × 100 (12)

Correlation Coefficient (R) is expressed as

R ¼
Pn

i¼1 (Ci,o � �Co)(Ci,o � �Cp)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (Ci,o � �Co

q
)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1 (Ci,p � �Cp)

2
q (13)
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Nash-Sutcliffe Efficiency Coefficient (NS) is given by

NS ¼ 1�
Pn

i¼1 (Ci,o � Ci,p)
2

Pn
i¼1 (Ci,o � �Co)

2 (14)

Index of Agreement (IOA) is expressed as

d ¼ 1�
Pn

i¼1 Ci,o � Ci,p
� �2

Pn
i¼1 Ci,p � �Co



 

þ Ci,o � �Co


 

� �2 (15)

Root Mean Square Error (RMSE) is calculated using

RMSE ¼
ffiffiffi
1
n

r Xn
i¼1

(Ci,o � Ci,p)
2 (16)

where, Ci,o and Ci,p are the observed and predicted saltwater

concentrations; �Co and �Cp denotes the mean of the observed

and predicted saltwater concentrations; and n represents the

number of data points.
Management model

The management model is multi-objective in nature in

which two conflicting objectives of groundwater extraction

patterns are considered. Therefore, the management model

provides several alternate feasible solutions of groundwater

extraction patterns from the well field, showing a trade-off

between the conflicting objectives represented by a Pareto

optimal front. The conflicting objectives are: (i) maximize

extraction of water from the production bores for beneficial

purposes; and (ii) minimize water extraction from barrier

extraction wells. Water extracted from barrier extraction

wells cannot be used because of its high salinity content;

therefore, the objective is to minimize water extraction

from these wells. Barrier extraction wells are used to

create a hydraulic barrier along the coast to allow hydraulic

control of saltwater intrusion. The management model inte-

grates an ensemble of meta-models and a CEMGA based

optimization algorithm into a general framework of a

linked S/O approach.

Mathematical formulation of the proposed saltwater

intrusion management model is similar to the one proposed
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
in Dhar & Datta ()

Maximize: f1(QPW ) ¼
XM
m¼1

XT
t¼1

QPWmt (17)

Minimize: f2(QBW ) ¼
XN
n¼1

XT
t¼1

QBWnt (18)

s: t: Ci ¼ ξ(QPW , QBW ) (19)

Ci � Cmax∀i (20)

QPW min � QPWmt � QPW max (21)

QBW min � QBWnt � QBW max (22)

where QPWmt represents water extraction from the mth

pumping well throughout the tth time phase; QBWnt stands

for water extraction from the nth barrier extraction well

throughout the tth time phase; Ci symbolizes saltwater con-

centrations at ith OPs at the closure of the management

period; ξ() denotes the density dependent coupled flow

and salt transport simulation model, and Equation (19)

indicates linking of the simulation model within the optim-

ization framework, either using a numerical simulation

model, or a trained and tested meta-model; Equation (20)

specifies the maximum allowable salt concentration at speci-

fied OPs; Equations (21) and (22) outline the lower and

upper limits on the water extraction rate from the pumping

wells and barrier extraction wells, respectively; subscripts

PW and BW stand for production bores and barrier extraction

wells, respectively; M, N, and T stand for the entire pumping

wells, barrier extraction wells, and time periods, respect-

ively. The first objective of maximization of groundwater

extraction from the pumping wells for beneficial use is

represented by Equation (17), and the second objective of

minimizing the water extraction from barrier pumping

wells is given by Equation (18).
Optimization algorithm: CEMGA

A population based optimization algorithm, CEMGA (Deb

& Goel ) is utilized to solve the optimization routine

of the linked S/O based saltwater intrusion management

model. CEMGA includes individuals with a relatively low
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fitness value to the next generation in order to increase the

diversity of the population. Therefore, the algorithm has a

mechanism to control the elite members of the population

to maintain the population diversity. As the algorithm

progresses, this control of elite members makes the new

population more diverse. This controlled elitist approach

reduces the elitism effect by including a particular fraction

of the dominated populations with the present best non-

dominated populations. CEMGA has performed better in

terms of providing better convergence to the global Pareto

optimal solution for a number of complex test problems

(Deb & Goel ) compared to its previous version of the

non-CEMGA (Deb et al. ). The elite control mechanism

of CEMGA uses a pre-defined geometric distribution of the

number of individuals in each front to control the maximum

number of individuals allowed in the ith front, ni, such that

ni¼ r × ni-1, where r represents the reduction rate, the value

of which should be less than 1.

Coupled simulation-optimization

This study proposes multiple objective optimization in the

form of an externally linked S/O methodology together

with an ensemble meta-modelling approach to develop a

saltwater intrusion management model. Individual meta-

models within the ensemble are separately linked to the

optimization algorithm as constraints of the optimization

routine. Other constraints of the optimization procedure

are the maximum allowable saltwater concentrations at the

specified OPs. These constraints are set based on the poten-

tial usability of the extracted water from the production

bores in different regions of the study area. Therefore, the

aim of developing this saltwater intrusion management

model is to provide several alternate feasible solutions of

optimal groundwater extraction values while restricting the

salinity concentrations at specified OPs to predefined allow-

able limits.

Parallel computing

The proposed ensemble meta-model based linked S/O meth-

odology considers a large number of constraints in terms of

individual meta-models requiring a relatively large compu-

tational time. Therefore, to achieve further computational
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
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efficiency, the multi-objective optimization formulation is

executed in a parallel computation framework by distribut-

ing the objective functions and all constraints among a

parallel pool of multiple workers. Parallel computing

enables speed computations that help achieve an additional

computational efficiency in the ensemble based linked S/O

approach. The present study performs parallel computing

utilizing the physical cores of a CPU [Intel (R) Core (TM)

i7-4790 CPU@3.60 GHz] by using the parallel computing

toolbox of MATLAB (MATLAB b).
APPLICATION OF THE PROPOSED METHODOLOGY

Performance evaluation of the proposed methodology is

carried out in an illustrative multi-layered coastal aquifer

system considering uncertainty in some of the model

parameters. The reason for choosing a synthetic application

is that any real life application needs extensive calibration

and validation of the simulation models. The calibration

process is also dependent on the accuracy of field measure-

ments. Therefore, performance evaluation of a proposed

methodology becomes complicated when actual field

measurements are utilized. The evaluation process becomes

dependent on the unquantifiable errors in measurement

of parameters and other measurements, as well as on

calibration inadequacies. However, it is necessary to incor-

porate realistic error scenarios or uncertainties in the

modelling within the scope of synthetic modelling as

reported in this study. Indeed, it needs to be emphasized

that it is almost impossible to properly evaluate the accuracy

and other performance criteria, with different scenarios of

uncertainties and parameter values, when the performance

is evaluated for a real life aquifer with a given set of par-

ameter values and field measurements. It is for this reason

that the performance needs to be first validated using syn-

thetic data. Therefore, an illustrative aquifer and synthetic/

simulated data are utilized for evaluation of the method,

with quantifiable uncertainties. Nevertheless, the illustrative

example model incorporates important features of a real

coastal aquifer system.

Hydraulic conductivity, compressibility, and bulk den-

sity are considered homogeneous but uncertain within

each vertical zone of material layers. However, a set of
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different realizations of these uncertain model parameters

are used for each vertical material layer, making the uncon-

fined aquifer anisotropic. The reason why an anisotropic

medium is chosen is that most of the real world coastal

aquifers are anisotropic in nature, where the hydraulic con-

ductivity in the principal direction is the largest, compared

to the hydraulic conductivity in an orthogonal direction

even in the same plane. In addition, the hydraulic conduc-

tivity is different in a vertical direction compared to the

horizontal directions. For hydraulic conductivity realiz-

ations, the ratio of horizontal hydraulic conductivities in

the X- and Y-directions is taken as 2.0, i.e. KX=KY ¼ 2:0.

The value of vertical hydraulic conductivity in the Z-

direction KZð Þ is specified as one tenth of the hydraulic

conductivity values in the X-direction, i.e. KZ ¼ KX=10. A

set of realizations of aquifer recharge intended to be

spread uniformly over the top layer of the aquifer is gener-

ated and randomly paired with the other uncertain model

parameters. Finally, these uncertain model parameters are

combined with the transient groundwater extraction values

obtained from a set of production bores and barrier extrac-

tion wells. The multi-layered aquifer system is similar to

the one developed in Roy & Datta (a), and is illustrated

in Figure 1.

The illustrative study area has an aerial extent of

4.35 km2. The total thickness of the unconfined aquifer is

80 m, dividing into four different layers with different aqui-

fer materials. The seaside boundary has an initial head of
Figure 1 | Three-dimensional view of the study area.

s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
0 m and a constant concentration of 35,000 mg/l.

The upstream end of the river is assigned with a specified

head of 1 m that varies linearly along the stream until it

reaches 0 m at the seaside boundary. The study considers

11 production bores and 5 barrier extraction wells having

a fairly well spread extraction well field with a well density

of 3.68 wells/km2. The production bores, denoted by

PW1–PW11 in Figure 1, are intended to extract water for

beneficial purposes. On the other hand, to control saltwater

intrusion by creating a hydraulic barrier along the coast, the

study also considers five barrier extraction wells denoted by

BW1–BW5. Water is extracted from the second and third

layer of the aquifer. The transient simulation for a time

horizon of 5 years is divided into 365 uniform time intervals

of 5 days duration, which is the length of the time step for

the numerical simulation. The total management period of

5 years is divided into five uniform management periods

of 1 year each. Water extracted from both the production

bores and barrier extraction wells during this 1-year manage-

ment period is assumed constant. Saltwater concentrations

at the end of the management period are monitored at five

OPs located at three different salinity zones: OP1 is located

in the low salinity zone, OP2 and OP3 are located in the

moderate salinity zone, and OP4 and OP5 are located in

high salinity zones. OPs are placed at different salinity

zones with a view to using the extracted water from different

regions of the aquifer for different purposes.

The proposed ensemble meta-model based linked S/O

methodology considers 80 input pumping variables

[16 wells (11 production boresþ 5 barrier extraction wells)

× 5 years] of groundwater extraction in space and time.

These variables are designated by X1–X80. Variables X1–

X55 represent groundwater extraction for the management

period of 5 years from the production bores, PW1–PW11.

Water extracted from barrier wells BW1–BW5 are

indicated by X56–X80.
PERFORMANCE EVALUATION

Performance of the GPR, MARS, and RT based meta-models

and their ensembles (EGPR, EMARS, and ERT) to approxi-

mate density dependent coupled flow and salt transport

processes in a multi-layered coastal aquifer system are
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evaluated. The developed meta-models and their ensembles

trained using the solution results of the simulation model

are used to predict saltwater concentrations at specified

OPs. Once proper training and validation are completed,

the meta-models are presented with a new realization of

test dataset to ensure a fair comparison among the meta-

models. The best meta-model thus obtained from the

comparison results is then used to develop the saltwater

intrusion management model. The performance of the

meta-model based management model is evaluated by

using the optimized pumping value obtained from the

management model to run the original simulation model.

The percentage relative error values between the meta-

model predicted saltwater concentration and simulation

model’s result are observed to validate the optimal solution

obtained from the proposed management model. Solution

results are presented in the following sub-sections.

Comparison of the performance of GPR, MARS, EGPR,

EMARS, and ERT

GPR and EGPR

The performance of the best GPR in the ensemble and

EGPR in terms of prediction accuracy is evaluated. The opti-

mal model structures of the GPR models are obtained

through automatic tuning of the hyperparameters for three

different kernel functions, namely squaredexponential,

matern32, and matern52. From these trials, matern52

kernel function is selected based on the RMSE values

between the training and testing datasets. Bayesian optimiz-

ation is used to tune the hyperparameters for which the

GPR based meta-models are formulated. Then EGPR

models are developed by sequential addition of individual

GPR models. EGPR models are developed for five OPs.

The RMSE criterion is used to determine the optimum

number of individual meta-models within the ensemble.

Based on this criterion, the optimum number of GPR

models for ensemble formation at five OPs are 12, 13, 20,

20, and 12, respectively, for OP1, OP2, OP3, OP4, and

OP5. Once the EGPR models are obtained, both the

EGPR models and the best individual GPR models in the

ensemble for all OPs are presented with a completely new

realization of test dataset.
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In this evaluation, the actual saltwater concentration

values are represented by synthetically generated saltwater

concentrations obtained using the simulation model. Actual

and predicted saltwater concentration values with a 95% pre-

diction interval at five OPs are presented in Figure 2. For

brevity of presentation, 20 observations from the middle part

of the test dataset are presented. It is observed from Figure 2

that both actual, GPR predicted, and EGPR predicted

saltwater concentration values are within the 95% confidence

interval identified by GPR and EGPR models. It is also noted

that both the best GPR andEGPR predictions are very close to

the actual saltwater concentration values.

MARS and EMARS

A sufficient number of individual MARS models (50 in this

study) are developed using different realizations of the input-

output training patterns. During the forward pass, suffi-

ciently large and complex MARS models are developed by

using 200 Basis functions, and allowing 100 forward

passes. No penalty is given to any of the variables, i.e.

equal priority is given to all 80 pumping variables during

the forward pass of the model development. However,

during the backward pass, relatively simple but accurate

MARS models are developed based on the most important

input variables for predicting saltwater concentrations at

specified OPs. EMARS models are then developed at each

OP by sequentially adding individual MARS models, and

by observing the resulting RMSE values between the

actual and the predicted saltwater concentration values.

Based on RMSE criterion, the optimum number of individ-

ual MARS models to build EMARS models at OP1, OP2,

OP3, OP4, and OP5 are 32, 5, 27, 6, and 14, respectively.

Actual and predicted values as well as errors of prediction

for both the MARS and EMARS based meta-models at

OP1 are illustrated in Figure 3.

It is observed from Figure 3 that both models produce a

comparable result, which is very close to the actual saltwater

concentration values. Figure 3(b) also depicts that the errors

of prediction for both the models are very close. Therefore,

in addition to reducing the prediction uncertainty, the

EMARS models performed equally well when compared

to the best individual MARS models within the ensemble.

A similar trend of results is obtained for other OPs.



Figure 2 | Actual vs. predicted saltwater concentration values with 95% prediction intervals predicted by the best GPR and EGPR models at observation points: (a) OP1, (b) OP2, (c) OP3,

(d) OP4, and (e) OP5. (Continued.)
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ERT

RT based ERT meta-models are built by automatic tuning of

the model parameters, e.g. number of regression trees,
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
learning rate, and maximum number of splits through

LSBoost, by utilizing Bayesian optimization. The optimum

number of regression trees to build ERT for observation

points OP1, OP2, OP3, OP4, and OP5 are 498, 476, 499,



Figure 2 | Continued.
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469, and 500, respectively. Once the ERT models are devel-

oped, they are then presented with a completely new set of

test data. The prediction capability of the ERT models on the

new test data at OP1 is shown in Figure 4. It is noted from

Figure 4 that ERT predicted saltwater concentration values

are very similar to the actual values, and that the errors of

prediction are within the acceptable limits. A similar trend

is observed at other OPs.

Although the developed meta-models and their ensem-

bles provide a reasonably accurate prediction of saltwater

concentration values at all OPs, a comparative evaluation

of meta-model performances is carried out to find the best

meta-model for utilization in the proposed linked S/O

based saltwater intrusion management model. For
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
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consistency and a fair comparison, all the meta-models

and their ensembles are tested on the same realization of

the input-output patterns of the test dataset. This compari-

son is performed by using a number of statistical indices

calculated based on the prediction capability of the pro-

posed meta-models and their ensembles on the test data.

Comparison results are illustrated in Figures 5 and 6.

Figure 5 illustrates the values of MAPRE, R, NS, IOA,

and RMSE values calculated at OPs using the predicted

and actual saltwater concentration values. It is observed

from Figure 5 that all the models produce acceptable

prediction results at all OPs: all models produce higher

values of R, NS, and IOA as well as lower values of

MAPRE and RMSE. However, a closer look at the



Figure 3 | Prediction performance of MARS and EMARS on the new test dataset for observation point OP1: (a) actual vs. predicted saltwater concentrations, (b) errors of prediction.
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comparison results reveals that GPR and EGPR based meta-

models outperform the results obtained from both MARS,

EMRS, and ERT based meta-models. It is also noted

that the prediction capabilities of EGPR models are almost

similar to the best GPRmodel within the ensemble at all OPs.

In most cases, the selection of the best standalone meta-

model is difficult. A greater number of meta-models needs to

be evaluated to decide on the best performing meta-model.

On the other hand, an ensemble provides better solutions

than most of the meta-models considered for the ensemble.

An ensemble is formed by utilizing each individual meta-

model’s prediction capabilities from a diverse range of data-

sets. Therefore, it is more likely that an ensemble will

perform better than most standalone meta-models. Indeed,

this is one reason for utilizing the ensembles.

It is also worth mentioning that proposed meta-models

produce comparatively lower values of R and NS at
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
observation points OP2, OP4, and OP5. For instance, NS

values produced by the best GPR model at OP2, OP4, and

OP5 are 0.53, 0.65, and 0.64, respectively, whereas the NS

values at those OPs provided by EGPR model are 0.78,

0.61, and 0.60, respectively. Therefore, the IOA (Willmott

) criterion is proposed to ascertain the proposed meta-

model’s prediction capability as well as to overcome the

insensitivity of NS and R to differences in the simulated

and predicted means and variances (Legates & McCabe

). All the meta-models have IOA values greater than

80% indicating the good prediction capability of the proposed

meta-models.

Figure 6 illustrates boxplots of absolute errors between

the simulated and predicted saltwater concentration values

at different OPs obtained from GPR, MARS, EGPR,

EMARS, and ERT based meta-models. In Figure 6, horizon-

tal lines within the box indicate the median of the absolute



Figure 4 | Prediction capability at observation point OP1: (a) FEMWATER simulated and ERT predicted saltwater concentrations, (b) errors of prediction.
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errors whereas the small black circles represent the mean of

absolute errors. It is also demonstrated from this figure that

the best GPR and EGPR based meta-models are superior in

terms of prediction accuracy.

Therefore, EGPR models incorporating prediction

uncertainty are selected for developing the saltwater intru-

sion management model.

Performance of the management model using EGPR

based meta-models

The saltwater intrusion management model is developed by

integrating EGPR models with a population based multi-

objective optimization algorithm, CEMGA. The proposed

management model provides the optimal solution of ground-

water extraction in the form of a Pareto optimal front that

shows the trade-off between the two conflicting objectives

of groundwater extraction. EGPR consists of 77 individual
om https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf

er 2019
GPR models, each of which is separately linked to the

CEMGA. To reduce additional computational burden, com-

pact versions of these 77 individual GPR models are linked

to the optimization algorithm. The compact GPR models

retain essential properties of standard GPR models. Finally,

the optimization routine is run in a parallel computing

platform by distributing the objective functions and the

constraints among four physical cores of a PC. The

EGPR-CEMGA model evaluates 1,978,801 functions

(1,648 generations × 1,200 populations) before deciding on

the global Pareto optimal solution. The optimum combi-

nation of the parameters of CEMGA is selected by

carrying out a set of numerical experiments by varying the

parameters. Based on the numerical trials, the CEMGA

uses a population size of 1,200, crossover rate of 0.9, and

Pareto front population fraction of 0.7. The function and

constraint tolerances are set as 1 × 10�5 and 1 × 10�3,

respectively. The optimal groundwater extraction strategy



Figure 5 | Statistical indices of the actual and predicted saltwater concentration values at different observation points predicted by GPR, MARS, EGPR, EMARS, and ERT: (a) MAPRE, (b) R, (c)

NS, (d) IOA, (e) RMSE.
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in the form of a Pareto optimal front is presented in Figure 7.

The Pareto front provides 840 non-dominated solutions

from which the managers can choose the right combination

of production and barrier well pumping. These solutions are

based on limiting the salinity concentrations at specified

OPs to the pre-defined maximum allowable limits.

Verification of the management model

The performance of the developed saltwater intrusion

management model is verified by comparing the solution
s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
results obtained from the optimization routine with those

obtained from the numerical simulation model. To do this,

10 solutions of optimal groundwater extraction values are

randomly selected from different regions of the Pareto

optimal front. These solutions are used as inputs to the simu-

lation model, developed by using the average values of

uncertain model parameters to obtain the corresponding

saltwater concentration values at each OP.

Table 2 represents the percentage absolute relative

errors (PARE) between the EGPR predicted saltwater

concentration values and simulation model’s output. It is



Figure 6 | Absolute error boxplots of the prediction models: (a) observation point OP1, (b) observation point OP2, (c) observation point OP3, (d) observation point OP4, (e) observation point

OP5.

1264 D. K. Roy & B. Datta | Multi-objective management strategies of coastal aquifers under parameter uncertainty Journal of Hydroinformatics | 20.6 | 2018

Downloaded from https://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
by guest
on 20 November 2019



Figure 7 | Pareto optimal front of the EGPR based saltwater intrusion management

model.
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observed from Table 2 that PARE values are less than 3% for

all estimates at all OPs. Therefore, the proposed saltwater

intrusion management model can be applied to obtain

optimal groundwater extraction values in a multi-layered

coastal aquifer system under prediction and parameter

uncertainties.
CONCLUSIONS AND RECOMMENDATIONS

This study proposes a saltwater intrusion management

model based on a linked S/O approach that integrates

ensemble of meta-models with an optimization algorithm.

Prediction uncertainty of the meta-modelling approach is

incorporated by proposing an ensemble of such meta-

models. The best meta-models and their ensembles are
Table 2 | Validation of the optimization model in terms of percentage relative error values

Obs.

Relative error, %

OP1 OP2 OP3 OP4 OP5

1 0.20 2.44 2.06 0.58 0.66

2 0.16 2.56 2.19 0.75 0.71

3 0.21 2.45 2.01 0.67 0.68

4 0.21 2.39 1.90 0.88 0.69

5 0.11 2.55 2.34 0.46 0.65

6 0.13 2.50 2.24 0.53 0.67

7 0.04 2.65 2.54 0.50 0.71

8 0.18 2.46 2.03 0.52 0.65

9 0.13 2.53 2.35 0.58 0.67

10 0.12 2.51 2.30 0.53 0.67

s://iwaponline.com/jh/article-pdf/20/6/1247/505841/jh0201247.pdf
selected by comparing the prediction capabilities of GPR,

MARS, RT and their ensembles (EGPR, EMARS, and

ERT). Results indicate that GPR based meta-models and

their ensemble, EGPR, provide the best prediction capabili-

ties compared to MARS, RT based meta-models and their

ensembles. In addition, EGPR models provide better results

than most of the single GPR models within the ensemble,

and EGPR models provide solution results very close to

the best GPR models in the ensemble. The study develops

and evaluates a more accurate and reliable meta-model

compared to the existing meta-models, while also combining

the ensemble approach to approximate coupled flow and

solute transport processes of a coastal aquifer. The present

study demonstrates the suitability of the GPR meta-model,

which is also a new application in multi-objective setting.

In addition, this approach is shown to facilitate a more

accurate prediction of the aquifer responses, which is an

important issue in developing vector (multiple) optimization

based management strategies.

Therefore, EGPR models are linked to the optimization

algorithm to develop the optimal groundwater extraction

strategies for the coastal aquifer management problem.

Results suggest that the EGPR models are suitable for incor-

porating into a management model as an approximate

simulator of the physical processes of a multi-layered coastal

aquifer system under parameter and prediction uncertainty.

The present study also aims to achieve an additional compu-

tational efficiency by running the optimization formulation

utilizing parallel computing facilities. Therefore, the

proposed management model addresses parameter uncer-

tainty in numerical modelling, prediction uncertainty in

meta-modelling through the ensemble approach, and com-

putational feasibility by using parallel computing facilities.

Performance evaluation results reveal the potential applica-

bility of the developed saltwater intrusion management

model in providing optimal groundwater extraction values

to control saltwater intrusion in multi-layered coastal aqui-

fers under parameter uncertainty.

The present study considers a multi-layered coastal aqui-

fer system in which four vertical material layers vary in

randomized realizations of uncertain model parameters.

However, the aquifer materials within each layer are con-

sidered homogeneous but uncertain. Future research may

be directed towards applicability of the saltwater intrusion
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system.
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