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Optimum design and operation of a hydropower reservoir

considering uncertainty of inflow

Toktam Hoseinzadeh, Mojtaba Shourian and Jafar Yazdi
ABSTRACT
Due to the large number of variables and nonlinear relations, hydropower plant design and operation

optimization problems belong to the Non-polynomial hard class of problems. In this study, optimum

design and operation of a hydropower reservoir is compared in two cases using deterministic and

stochastic inflows by two meta-heuristic algorithms. Particle swarm optimization (PSO) and cuckoo

optimization algorithm (COA) are applied under two conditions of using the historical inflow time

series as a deterministic approach and the eigenvector-based synthetic generations as a stochastic

approach for optimum design and operation of the Bakhtiari hydropower plant in Iran. The problem is

solved in two states of finding the optimum values for the reservoir and power plant capacities (as

the design decision variables) with known standard operation policy (SOP) and optimum values for

the capacities and the reservoir releases variables (as the design and operating variables). Results

obtained by the models indicate that the role of operation optimization is negligible as the SOP used

in the design models led to near optimum solutions. Considering uncertainty in the reservoir inflows

resulted in an increase of the installation capacity and consequently the energy production. In

addition, PSO demonstrated more efficiency compared to COA in dealing with the proposed

optimization problem that has a complex feasible search space.
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HIGHLIGHTS

• Optimum design and operation of a hydropower reservoir plant is compared in two cases using

deterministic and stochastic inflows.

• Particle Swarm Optimization (PSO) and Cuckoo Optimization Algorithm (COA) are applied.

• Two conditions of using the historical time series of the reservoir inflow as a deterministic

approach and the eigenvector-based synthetic generations as a stochastic approach are

compared.

• The problem is solved in two states of finding the optimum values for the reservoir and power

plant capacities (as the design decision variables) with known Standard Operation Policy (SOP)

and the optimum values for the capacities and the reservoir releases variables (as the design

and operating variables).

• The results obtained from the models indicate that the role of operation optimization is

negligible as the SOP applied in the design models led to good solutions for the problem.
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INTRODUCTION
Given the increase in population and the limitation and non-

uniform distribution of water resources, as well as the over-

use of these limited resources, the need for optimal

management and utilization of the existing resources has

become more evident. In addition to significantly reducing

the costs, renewable hydroelectric energy helps with the

environmental sustainability. Considering the limitation of

fossil resources as well as the adverse environmental effects

of fuel consumption, and due to the growth of population

and the ever-increasing need for energy, the tendency to

using clean energies has increased significantly. Today,

hydropower is the most important source of renewable

energy in the world (Hatamkhani et al. ).

Optimization of the design and operation of hydroelec-

tric reservoirs through classic optimization methods is

associated with difficulties such as nonlinearity and non-con-

vexity of the problem, as well as the procedure of determining

the stochastic constraints related to the reliability of energy

demands. In this regard, the simulation-based meta-heuristic

search algorithms are suitable alternatives (Mousavi &

Shourian ). In addition, attention to the issue of uncer-

tainty in hydrological variables is a common problem in

planning water resource systems. The main objective of this

study is to optimize the design and operation of a hydro-

power reservoir considering the uncertainty of the inflow to

the reservoir as the one of the most important factors affect-

ing the rate of energy generation.

In this field, Afzali et al. () developed a reliability-

based simulation model with one-period optimization

sub-models for a multi-reservoir hydropower system

operation. Mousavi & Shourian () optimized the design

and operation of a hydropower reservoir using a particle

swarm optimization algorithm in combination with the

sequential streamflow routing (SSR) simulation model. Rahi

et al. () employed particle swarm optimization (PSO)

for the maximization of the benefit to cost ratio in a hydro-

power plant system. The results indicated that the benefit-

cost ratio obtained was well above unity, which proved the

feasibility of power plants construction. Jothiprakash &

Arunkumar () optimized a hydropower reservoir oper-

ation using an evolutionary algorithm coupled with chaos.
://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
Bozorg-Haddad et al. () focused on simultaneous

design–operation optimization in the design phase of pump-

ing systems (pump–storage) in reservoir power plants. The

optimizationmodelmaximized the net benefit of installations

in reservoir systems while determining design decision vari-

ables, including volume of reservoir, installed capacity of

power plants, diameter of water transmission installations

and operation decision variables including output volume

of the reservoir at each time step and number of hours the

power plant works in a day. Li & Qiu () proposed an

optimization model based on PSO in order to determine

the optimal distribution of the electrical load in the hydro-

power plants. They developed a multi-objective reservoir

optimization model for balancing energy generation and

firm power. Hosseini-Moghari et al. () optimized oper-

ation of a reservoir using two evolutionary algorithms of

imperialist competitive algorithm (ICA) and cuckoo optimiz-

ation algorithm (COA). Jahandideh-Tehrani et al. ()

assessed the performance of hydropower production by reser-

voirs with and without climate change impacts on river

discharge. Reservoir simulation and optimization models

were implemented to calculate hydropower production in

the base and future periods. The hydropower production

obtained with the optimization model was found to be

larger than that obtained with the simulation model. Their

results demonstrated the benefit of applying optimization

modeling for hydropower production in the multi-reservoir

systems to mitigate and adapt to climate-change impacts on

river discharge.

Soleimani et al. () investigated the reservoir oper-

ation rules with uncertainties in inflow and agricultural

demand derived with stochastic dynamic programming and

showed the advantage of considering the uncertainty.

Hatamkhani & Alizadeh () dealt with optimal design of

a hydropower project’s capacity when an analyst may take

into account different economic analysis approaches and

considerations. They formulated the problem using mixed-

integer nonlinear programming including an economic

objective function and governing hydropower constraints.

They employed an effective simulation–optimization

approach coupling PSO andWater Evaluation and Planning



1454 T. Hoseinzadeh et al. | Optimum design and operation of a hydropower reservoir Journal of Hydroinformatics | 22.6 | 2020

Downloaded fr
by guest
on 12 October 
(WEAP) software that they customized for hydropower simu-

lation using scripting capabilities of the software. Their

results showed how inclusion of externality and a clean devel-

opment mechanism could affect the project’s design and

measures. Yazdi & Moridi () proposed a multi-objective

optimization model for determination of design parameters

in cascade hydropower multi-purpose reservoir systems. A

multi-objective evolutionary algorithm known as non-domi-

nated sorting differential evolution was developed to solve

the problem and reduce the computational costs. Based on

the results, it is possible to supply various demands such as

environmental demands of the aquatic ecosystems with

high reliability as well as generating firm hydropower

energy through optimal design of cascade hydropower reser-

voirs. Hatamkhani & Moridi () used a simulation-

optimization approach to solve the problem of optimal plan-

ning at the watershed scale. The WEAP simulation model

was linked with the multi-objective particle swarm optimiz-

ation (MOPSO) model for optimal long-term planning at

the basin scale. Their results demonstrated the proper per-

formance of the simulation–optimization model in the

optimal allocation and planning of water resources at the

basin scale. Hatamkhani et al. () developed a simu-

lation–optimization model for optimal design of

hydropower systems with a systematic view of the basin.

They employed WEAP to develop the simulation model of

water allocation in the basin. For simulating the hydropower

energy production, a hydropower energy simulation module

was developed within the software and linked to the optimiz-

ation algorithm. This model was used to find the optimal

value of design parameters of normal water level, minimum

operation level and installation capacity of a hydropower pro-

ject in the Karkheh basin in Iran.

According to the literature, most hydropower planning

and operation studies have solved the problem with determi-

nistic historical inflows. Paying attention to uncertainty is

important for designing and operation of hydropower

plants to estimate the potential energy production and deter-

mining design parameters based on what may occur in

future. Accordingly, in this research optimum design and

operation of the Bakhtiari hydropower plant in Iran is

studied considering the uncertainty of the reservoir inflow

and the results are compared with the deterministic histori-

cal state. To do so, probable future inflows are generated
om http://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
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using the eigenvector method. In spite of the abilities of

COA, it has been rarely used in hydropower plant design

and operation optimization problems that belong to the

Non-polynomial hard (Np-hard) class of problems. PSO is

a well-known metaheuristic optimization algorithm which

has shown its ability in various optimization applications

and can be used as a reference for comparing the results.

As the marginal contribution, performances of the COA

and PSO algorithms are investigated and compared in this

study, too. Four models of A1, A2, B1 and B2 are developed

where models A1 and A2 optimize the design variables with

a defined operation policy while the operational variables

are also optimized in models B1 and B2. Results are com-

pared and the impact of considering the uncertainty in

reservoir’s inflow is discussed.
METHODS

Cuckoo optimization algorithm

Cuckoo optimization algorithm is introduced by Rajabioun

(), inspired from the lifestyle of a bird called a

cuckoo. In nature, cuckoos choose the nests of other

birds to lay their eggs. If the living area of a cuckoo is the

decision space, each habitat is a solution for a problem.

Therefore, the algorithm begins with an initial population

of cuckoos that live in different places (Hosseini-Moghari

et al. ):

habitat ¼ V1,V2, . . . VN½ � (1)

Cost ¼ F(habitat) (2)

where V1,V2, . . . VN are decision variables, F is the objective

function, and Cost is the value of F. The maximum distance

for moving in the next iteration is called egg laying radius

(ELR) where each cuckoo lays its eggs in this radius ran-

domly. In an optimization problem for variables with

upper and lower limit (Varmax and Varmin), ELR is calcu-

lated by the following equation:

ELR ¼ ∝ ×
Number of the current cuckoo0s eggs

Total number of eggs

× (Varmax � Varmin) (3)



1455 T. Hoseinzadeh et al. | Optimum design and operation of a hydropower reservoir Journal of Hydroinformatics | 22.6 | 2020

Downloaded from http
by guest
on 12 October 2024
α is an integer number which handles the maximum value of

ELR. Because cuckoos are found in different parts of the

decision space, it is difficult to determine which cuckoo is

related to which group. K-means clustering method is used

for grouping cuckoos. The destination of other groups in

the next generation is the group which has the best relative

optimality. Cuckoos go through only λ percent of the dis-

tance to destination and in this way have a deviation with

φ value. λ is a random number between zero and one,

with a uniform distribution, and φ also has uniform distri-

bution in [–w, w]. Usually, w is equal to π=6 which has

shown good convergence to the optimum solution. λ and

φ cause a more global search in the decision space.

λ ¼ U 0; 1ð Þ (4)

φ ¼ U �w;wð Þ (5)

There is usually a balance between populations of birds

in nature because of factors such as hunting, lack of food etc.

Therefore, in COA, a number ofNmax controls the maximum

number of cuckoos. After several iterations, cuckoos
Figure 1 | Cuckoo optimization algorithm.

://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
converge to the point with the best objective function. In

Figure 1, a flowchart of COA is shown.
Particle swarm optimization

In PSO, each individual of the population has an adaptable

velocity (position change), according to which it moves in

the search space. Moreover, each individual has a

memory, remembering the best position of the search

space it has ever visited (Kennedy & Eberhart ).

Equation (6) updates the velocity for each particle in the

next iteration step, whereas Equation (7) updates each par-

ticle’s position in the search space:

vnþ1
id ¼ χ(ωvnid þ c1rn1 ( p

n
id � xnid)þ c2rn2 ( p

n
gd � xngd)) (6)

xnþ1
id ¼ xnid þ vnþ 1

id (7)

where d is the dimension, i is the number of the particle, χ is

the constriction factor usually equal to 1, ω is the inertia

weight linearly degrading from 1.2 to 0.1, c1, c2 are two posi-

tive constants that values of 2.5 and 1.5 for them
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respectively have shown good performance, r1, r2 are

random numbers uniformly distributed in [0 1] and n rep-

resents the iteration number. For more details about PSO

and the flowchart of the algorithm, please refer to Shourian

et al. ().

Generating synthetic streamflow using eigenvectors

The eigenvector of a matrix is a vector whose direction

remains unchanged when multiplied in that matrix and

only its size changes:

Av ¼ λv (8)

A is a n × n matrix (like the covariance matrix of the

data), v is the eigenvector and λ is the eigenvalue of the

matrix A. Eigenvectors can specify the directions in which

the maximum and minimum variations occur (the eigenvec-

tor values specify the amount of these changes). This feature

can be used to generate stochastic data where the data are

dependent. The relationship between eigenvectors is written

in the following form:

Cov(x)v ¼ vΛ ) Cov(x) ¼ vΛv0 (9)
In the above relations, Cov(x) is the covariance matrix of

the variable x, v is the matrix of eigenvectors and Λ is the

diagonal matrix of eigenvalues. To find variables in the

direction of eigenvectors, the following change of variables

is used:

W ¼ v0X (10)

Thus, we can obtain the expected value and the covari-

ance of the new variable W:

E(W) ¼ v0E(X) (11)

Cov(W) ¼ v0Cov(X)v ¼ v0(vΛv0)v ¼ Λ (12)
Therefore, the covariance matrix of W is a diagonal

matrix which means that there is no linear relationship

between variables in the new coordinate space. Therefore,

it is possible to generate separate data for each variable as
om http://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
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needed and then transfer the generated data to the main

coordinate space using the relation: X ¼ v ×W . The steps

of river flow stochastic data generation through eigenvectors

method can be summarized as follows (Yazdi ):

1. After calculating the covariance matrix, eigenvalues and

vectors (λ and v) are obtained from the following

equations:

jCov(X)� λIj ¼ 0 (13)

Cov(X) × v ¼ v × Λ (14)
2. The following transformation of variables is done:

W ¼ v0X (15)
3. The expected value of the variables in the new space and

the covariance matrix which is diagonal in the new coor-

dinate space, are calculated:

E(W) ¼ v0E(X) (16)

Cov(W) ¼ Λ (17)
Then, in the new coordinate space, an adequate number

of new data are generated.

4. By transforming the variable X ¼ v ×W , the data are

transferred to the main space.

Hydropower reservoir simulation

In order to calculate the energy potential of the system, a

reliability-based simulation (RBS) model is used. It is first

necessary to estimate the capacity of the plant installation.

An initial production capacity may be estimated by the fol-

lowing equation:

IC ¼ 2:73 ×Qave ×Hmax

PF × nhours
(18)

where IC is the power plant’s initial production capacity

(MW), Qave is monthly inflow to reservoir (mcm), Hmax is

initial maximum net head on turbines as the difference
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between the normal and tail water levels (m), PF is the speci-

fied plant factor that defines the number of hours per day in

which the power plant generates power with its production

capacity (%) and nhours is the number of hours per month

(hr). It may be desirable to maximize the system’s energy

yield that can reliably be produced. Given the estimated pro-

duction capacity and specified plant factor, the plant’s

monthly energy yield, EF (MWh) is estimated as follows:

EF(t) ¼ IC × nhours × PF(t) (19)

The reservoir operation is simulated over a representa-

tive hydrologic period using the sequential stream flow

routing (SSR) method to determine the energy yield

reliability. The power plant’s capacity is then adjusted

accordingly, if required. The energy generation in each

time step is calculated as follows:

E(t) ¼ 2:73 × R(t)

× (0:5 × (h1(t)þ h2(t))� htail(t)� hf(t)) × ep(t) (20)

where E(t) is energy generated in month t (MWh) to be

maximized by sum as the objective function in all

models, R(t) is the turbine release (mcm), ep(t) is power

plant’s efficiency (%), h1(t) and h2(t) are beginning and

end-of-month reservoir levels (m), respectively, htail(t) is

average tail water level (m) and hf(t) is total minor and fric-

tional losses in conveyance structures (m) all in month t.

The monthly turbine release would then be obtained as fol-

lows:

R(t) ¼ EF(t)
2:73�(0:5�(h1(t)þ h2(t))� htail(t)� hf(t))�ep(t)

(21)

h2(t), htail(t) and hf(t) depend on the turbine release

making the equation implicit with respect to R(t). Therefore,

it has to be solved iteratively. Assume an initial end-of-

month reservoir storage that yields the initial R(t) from

Equation (21). The new end-of-month reservoir storage is

then determined from the mass balance equation as follows:

S(tþ 1) ¼ S(t)þQ(t)� R(t)� Evp (t)� Spill(t) (22)
://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
Evp (t) and Spill(t) are evaporation and spill (mcm) in

month t, respectively. The new end-of-month storage is com-

pared with the one initially assumed. If they are not the

same, the next estimation of the turbine release in Equation

(21) is determined from the new end-of-month storage. The

procedure is repeated to get the end-of-month storages and

releases converged to the same values in two successive iter-

ations. It should be noted that the end-of-month storage

determined by Equation (22) is checked if it is within its

acceptable range of [Smin Smax]. If it is above Smax, the tur-

bine release and the energy generated will be increased (as

secondary energy) so that the ending storage equals Smax.

Of course, the excess turbine release and the generated

energy are limited, respectively, by the power plant’s hydrau-

lic capacity and the maximum energy that can be generated

according to the installation capacity estimated. If any of

those limits are touched, the excess release is spilled, not

contributing in energy generation. On the other hand if

reservoir storage falls below the Smin, the end-of-month sto-

rage is set to Smin, and consequently the turbine release

and the energy generated will be decreased. In this situation,

the energy generated will be less than the estimated monthly

energy yield, resulting in a failure in that month. This oper-

ating policy implies that the release in each time period is

determined so that the energy generated equals the esti-

mated energy yield, if possible. By repeating the above-

mentioned procedure over the simulation horizon, one can

estimate the energy-yield reliability as:

REL ¼
XT

t¼1

z(t)
T

(23)

where z(t) is a binary variable equal to zero if the energy gen-

erated is less than the target energy yield and to one,

otherwise and T is the number of monthly time steps. If

the estimated reliability is within the desired range specified

for target reliability (TarREL� δ � REL � TarRELþ δ), the

estimated production installed capacity (IC) and energy

yield will be acceptable; otherwise, they will be increased

or decreased accordingly. Then all of the steps explained

above are repeated until the production capacity and

energy yield values are converged and the reliability of



1458 T. Hoseinzadeh et al. | Optimum design and operation of a hydropower reservoir Journal of Hydroinformatics | 22.6 | 2020

Downloaded fr
by guest
on 12 October 
generation of the energy yield reaches the specified target

value (TarREL). The converged values are in fact the maxi-

mum production capacity and energy yield values that can

be achieved at the specified level of reliability (Mousavi &

Shourian ). The workflow of the proposed method is

shown in Figure 2.

Hydropower plant optimum design models

Hydropower reservoir design optimization is formulated in

two forms of A1 and A2 models. In Model A1, the inde-

pendent decision variables are the normal and the

minimum water levels optimized by the search algorithms.

The power plant installation capacity is the third design
Figure 2 | Workflow of the simulation-optimization model used for hydropower plant design a

om http://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
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variable that is dependent on other characteristics of the

system and is calculated using the RBS process (Equation

(19)). In Model A2, the power plant capacity is considered

as a decision variable searched by the meta-heuristic algor-

ithms. This means that by search-based generation of the

normal and minimum water levels and the power plant

capacity, the reservoir storage volume, the energy pro-

duction and other dependent variables are calculated

using the sequential stream flow routing (SSR) method

with the objective function of maximizing the total

energy production (Equation (20)). In this model, the con-

straint of satisfaction of the reliability to be equal to

TarREL is added as a penalty term to the objective

function.
nd operation.



Table 2 | Values of the parameters of COA and PSO algorithms

Algorithm Parameter

Model

A1 A2 B1 B2

COA Initial no. of cuckoos 5 10 20 30
Min. no. of eggs 2 2 2 2
Max. no. of eggs 4 4 6 4
Max. no. of cuckoos 10 12 25 35
Motion coefficient 9 9 12 10
KNN cluster no. 1 1 2 1

PSO No. of particles 10 15 50 100
c1 1.5 2 1.5 1.5
c2 1 1.5 1.5 1.2
Constriction 0.9 0.9 0.9 0.9
Max. inertia 0.8 0.8 0.8 0.8
Min. inertia 0.3 0.3 0.3 0.3

Table 1 | Decision variables of the hydropower plant optimization models

Model Decision variable Type

A1 Normal water level Design
Minimum operation level Design

A2 Normal water level Design
Minimum operation level Design
Energy production capacity Design

B1 Normal water level Design
Minimum operation level Design
Energy production capacity Design
36 parameters of a year linear release rules

(Equation (24))
Operation

B2 Normal water level Design
Minimum operation level Design
Energy production capacity Design
240 reservoir monthly releases Operation
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Hydropower plant optimum design and operation

models

In the design optimization models (Models A1 and A2), a

standard operation policy is used in which the reservoir

release is equal to the downstream demand at each time

step and the energy is produced as the lateral purpose. In

optimum design and operation models, instead of applying

a standard operation policy, the monthly releases from the

reservoir are also optimized by the search algorithms to

maximize the energy production. Here also, two models of

B1 and B2 are defined for optimum design and operation

of the hydropower reservoir. In Model B1, a linear operation

policy is used for the months of a year as follows:

R tð Þ ¼ am × I tð Þ þ bm × S tð Þ þ cm
m ¼ 1, . . . ,12 ; t ¼ 1 . . . , T (24)

am, bm, and cm are the coefficients of the release rule in

month m of a year to be optimized and T is the number of

monthly time series of the operation period. Therefore,

there are 39 decision variables in Model B1 searched by

the optimization algorithm which are three design variables

of the normal and minimum water levels and the power

plant capacity, and 36 operation rule coefficients.

In Model B2, instead of applying a linear rule, the

monthly releases over the 20-year reservoir simulation

period are directly considered as the operational decision

variables. Therefore, in this case, the optimization model

searches for 243 decision variables (three design and 240

monthly releases operation variables) to be optimized by

the applied metaheuristic algorithms.

In Table 1, the decision variables of the optimization

models used in this study are briefly presented.

The objective function is to maximize the total energy

production (Equation (20)) in all models. By trial-and-

error, values of the parameters of COA and PSO algorithms

are selected based on the best solutions obtained by the

algorithms in the deterministic case. These values are

given in Table 2. Due to the high time-consumption of

execution of the models in the stochastic cases, these

values are used by the algorithms in these cases too. Maxi-

mum iteration for both algorithms is 300 and they stop if
://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
there is no improvement in the best solution in 30 successive

iterations.
Case study

The Bakhtiari Hydropower Reservoir is located on the

Bakhtiari River in west of Iran which is one of the two

main streams of the Dez River and originates from the

Ghalikooh Mountains. Figure 3 shows the catchment area

of the Bakhtiari River and location of the dam on the

river. The main characteristics of the Bakhtiari hydropower

plant are presented in Table 3.



Figure 3 | Bakhtiari River basin and location of the Bakhtiari hydropower reservoir.

Table 3 | Characteristics of the Bakhtiari hydropower plant

Item Value

Max. normal water level (masl) 830

Dead volume level (masl) 660

Tail water elevation (masl) 533.5

Head loss (m) 3

Plant efficiency 92%

Plant factor 0.25

Energy production target reliability (TarREL) 90%
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The range of the normal water level for the Bakhtiari

dam could vary between 770 and 830 meters above sea

level (masl) (Mahab-Ghods Consulting Engineers ). A

monthly time series for 20 years (1990–2010) is used as

the reservoir inflow for the operation simulation. The

series is considered as it contains drought and wet periods

to include various hydrologic conditions for the reservoir

operation. In Figure 4, historical time series of the inflow

to the Bakhtiari reservoir is plotted.
RESULTS AND DISCUSSION

For generation of the synthetic time series to see the effect of

uncertainty in the reservoir inflow on the optimum design
om http://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
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and operation of the hydropower plant, a normal distri-

bution function is fitted on the monthly historical data.

The next step in the eigenvector method is to create

random time series using the historical series. Since the

available time series is dependent, the required random

series are obtained using the eigenvector method. In

Figure 5, the generated time series for the reservoir inflow

using the historical data and the eigenvector method are

plotted.

To evaluate the sufficiency of the number of gener-

ated time series, the hydropower reservoir RBS

procedure is executed with a pre-determined set of

decision variables while increasing number of generated

inflow time series and the mean capacity of the power

plant is obtained for each number of time series as

shown in Figure 6.

As seen in Figure 6, the mean installed power plant

capacity converges to an approximately constant level with

80 time-series meaning that this variable is not affected sig-

nificantly by further increase in the number of generated

time-series. Therefore, with regard to the use of a large

number of samples leading to a high runtime, it is decided

to utilize 100 generated time series samples for the stochas-

tic models.

By preparation of 100-inflow time series, four devel-

oped models of A1, A2, B1, and B2 are executed with



Figure 4 | Historical monthly time series of the inflow to the Bakhtiari reservoir.

Figure 5 | Synthetic generated inflow time series using the eigenvector method.

Figure 6 | Average power plant’s maximum production capacity obtained versus number

of generated inflow time series.
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both deterministic and stochastic reservoir inflow time

series. The execution procedure for the stochastic

models is similar to the deterministic ones. However, in

this case, for each individual or particle of the optimiz-

ation algorithm, the reservoir simulation process is

executed for each sample of the inflow time-series and

eventually an average hydropower energy production

over 100 simulation runs is calculated for the obtained

decision variables to compute the individual’s objective

function value.
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Deterministic approach results

The design and operation optimization models are executed

with COA and PSO algorithms. Each model is executed ten

times to assure the model’s convergence and the best result

is assessed. In the first stage, as the deterministic approach,

the historical inflow time series is used as the input to the

reservoir. To show the convergence ability of the COA and

PSO algorithms, a box-plot of the optimum objective func-

tion values obtained in ten runs of the models is shown in

Figure 7.

According to Figure 7, PSO shows more convergence

ability compared to COA. In addition, the best value for

the fitness function for each model obtained by PSO is a

little higher than the COA’s solution. Solutions obtained

for Model B2 by both algorithms have a wider range of vari-

ation compared to Models A1, A2 and B1 because of a high

number of decision variables, which makes it more difficult

for the meta-heuristic algorithms to find the global optimum

for the problem. The details of the best solution obtained by

COA and PSO for the design and operation models of the

Bakhtiari hydropower reservoir in the deterministic state

are reported in Table 4.

By comparing the results obtained by COA, it is seen

that the results of Models A1 and A2, which use the stan-

dard operation policy (SOP) for reservoir operation, are

close in terms of the objective function and are among the

good solutions for the problem, although in these models
Figure 7 | Box-plot of the optimum objective function obtained in ten runs of models with de
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the reservoir releases are not searched as the decision vari-

ables. Model A2 with three design decision variables has

converged to the best net benefit while satisfying the desired

reliability. In Model A2, the power plant capacity as well as

the annual energy production is improved compared to

Model A1. Model B1 with 39 decision variables has

obtained the lowest net benefit among other models indicat-

ing that regression of a linear operation rule (Equation (24))

on the reservoir releases has not improved the reservoir effi-

ciency and energy production. Model B2 with 243 decision

variables also has found a solution worse than the optimum

design models (A1 and A2) in terms of the objective function

but it has found a better solution than Model B1. This is

because of using a free policy for the reservoir operation

in Model B2. For further investigation, the optimum result

obtained by Model A2 was included as an initial solution

in the first iteration of random generated solutions for

Model B2 to see if it can progress the results or not and

then Model B2 was executed. It was seen that Model

B2-COA was not able to find a better solution obtained by

Model A2-COA.

On the other hand, and as the results obtained by PSO,

Model B2-PSO has converged to the best solution compared

to the optimum design models and even this answer is the

best of all. Also, it is seen that the results obtained by PSO

are better than COA in terms of the net benefit. This indi-

cates the higher capability of the PSO algorithm to deal

with optimization problems with a high number of decision
terministic inflow.



Table 4 | Details of the optimum solution obtained by models with deterministic historical inflow

Algorithm

COA PSO

Model A1 A2 B1 B2 A1 A2 B1 B2

Net benefit (109 Rials) 24,669 24,685 23,243 24,446 24,635 24,699 24,177 24,915

Reliability of energy yield (%) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Normal water level (masl) 830 830 828 830 830 830 830 830

Min. operating level (masl) 811 801 757 737 778 778 811 777

Power plant capacity (MW) 1,063 1,110 708 876 1,170 1,095 883 1,000

Annual total energy (106 MWh) 3.11 3.11 2.93 3.08 3.11 3.12 3.05 3.14

Annual firm energy (106 MWh) 2.16 2.34 1.45 1.88 2.49 2.33 1.79 2.13

Figure 8 | Exceedance probability curve for energy production obtained by COA.
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variables and complex search space. The reason for this

issue could be the simpler and more efficient structure and

computation in PSO compared to COA that enables this

algorithm to explore more various regions in the search

space of the problem resulting to find a better solution.

Exceedance probability curves of energy production and

reservoir releases obtained by four models using COA and

PSO algorithms are presented in Figures 8–11.

According to the results obtained by COA in Figure 8, in

20% of the operation period, Models A1 and A2 have pro-

duced more energy than Models B1 and B2, which

indicates fitness of the SOP used in these models as a

proper policy for reservoir operation. In addition, in the

range of 30–90% of the operation period, these models

have produced a constant level of energy (200,000 MWh).
://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
Model B1, with a yearly linear operation rule, has shown

the worse performance among other models indicating

that a linear rule does not fit a proper operation policy for

the reservoir. Model A2-COA has generated more energy

compared to the other models.

The results obtained by PSO for four models are closer

to each other compared to the results obtained by COA,

but the general scheme is the same as previous. Models

A1 and A2 have found higher energy production here

again. Model B2-PSO has resulted in the best objective func-

tion among other models, although Models A1 and A2 have

generated more energy in some months of the operation

period.

Optimum values obtained for the reservoir releases in

Figures 10 and 11 follow the scheme of energy production.



Figure 9 | Exceedance probability curve for energy production obtained by PSO.

Figure 10 | Exceedance probability curve for reservoir release obtained by COA.

Figure 11 | Exceedance probability curve for reservoir release obtained by PSO.
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Models A1 and A2 have resulted in higher releases than

Models B1 and B2, while Model B2-PSO has found the

best objective function among the other models.
Stochastic optimization approach results

To show the convergence ability of the COA and PSO algor-

ithms in this state, a box-plot of the optimum objective

function values obtained in ten runs of the models is

shown in Figure 12.

Here again, PSO shows a little more convergence power

compared to COA. Also, finding a same near optimal sol-

ution for Model B2 is much harder than the other cases.

Details of the best solution obtained by COA and PSO for

the Bakhtiari hydropower reservoir design and operation

models in condition of stochastic inflows are presented in

Table 5.
Figure 12 | Box-plot of the optimum objective function obtained in 10 runs of models

with stochastic inflows.

Table 5 | Details of the optimum plan obtained by models with stochastic generated inflows

Algorithm

COA

Model A1 A2 B1

Net benefit (109 Rials) 27,636 27,506 26,244

Reliability of energy yield (%) 0.89 0.89 0.75

Normal water level (masl) 830 830 829

Min. operating level (masl) 802 799 777

Power plant capacity (MW) 1,459 1,472 1,173

Annual total energy (106 MWh) 3.47 3.46 3.46

Annual firm energy (106 MWh) 2.89 2.77 0.53

://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
According to Table 5, a higher value for the net benefit is

obtained in conditions of using uncertain generated reser-

voir inflow time series instead of the historical data. In

COA results, similar to the deterministic approach, the

best objective function pertains to Model A2. Also this

model using the PSO algorithm has found the best solution

among all cases. The installation power plant capacity for

four models has increased compared to the deterministic

model results. The objective function value, the installed

power plant capacity and consequently the produced

energy are improved in the stochastic optimization

approach.

Based on the results reported in Tables 4 and 5, in the

deterministic approach, Model B2-PSO has converged to

the best objective function. However, in the stochastic

approach, this model has failed to reach the best result com-

pared with the design models, which could be due to the

narrow feasible solution domain and involvement of 240

operation variables in each execution of the model for

each generated time series. For further investigation and to

assess the improvement of the results of Model B2, by feed-

ing the optimum solution obtained by Model A2 into Model

B2 as an initial solution, it was observed that the model was

not able to improve Model A2’s results. Thus, it can be con-

cluded that Model A2-PSO with three design decision

variables and applying the standard operation policy for

the reservoir releases has a good performance in dealing

with the problem of optimum design and operation of a

hydropower reservoir. For a general comparison, the opti-

mum objective function values obtained by both
PSO

B2 A1 A2 B1 B2

26,473 27,840 27,936 26,796 27,671

0.86 0.89 0.9 0.9 0.9

830 830 830 830 830

806 814 807 803 800

982 1,278 1,395 955 837

3.39 3.50 3.49 3.47 3.35

1.42 2.53 2.71 1.92 1.74



Figure 13 | Optimum objective function value obtained by COA and PSO algorithms in deterministic and stochastic models.
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algorithms in deterministic and stochastic models are pre-

sented in Figure 13.
CONCLUSION

In this research, the cuckoo optimization algorithm and the

particle swarm optimization are used to optimize the design

and operation of hydropower reservoir in two approaches of

using the historical inflow data and generated stochastic

time series. The eigenvector sample generation method is

used to produce probable reservoir inflows. A reliability-

based simulation (RBS) is used for computation of the

hydropower energy production. Four models are developed

which, in the first two, the design variables are searched by

the optimization algorithms and in the next two the oper-

ation variables are also added to the set of decision

variables. Considering the uncertainty of the inflow to the

reservoir, as an important factor, has been rarely seen in

the optimum design and operation of the hydropower

plants which is dealt with in the present research.

From the results, it can be concluded that the role of

optimization of the operation variables is negligible and

the standard operation policy used in Models A1 and A2

for determining the reservoir releases can lead to acceptable
om http://iwaponline.com/jh/article-pdf/22/6/1452/782327/jh0221452.pdf
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good solutions compared to the results obtained by Models

B1 and B2. The linear operation rule used by Model B1

could not be fitted effectively on the optimum reservoir

releases. Also, the PSO algorithm showed a better efficiency

compared to COA in dealing with problems with a narrow

feasible solution domain and a complexity dependent

search space. This could be due to the simpler and more effi-

cient structure of PSO rather than COA. In the stochastic

approach, the results were improved in terms of the objec-

tive function and the installed power plant capacity that

directly affects the reliable energy production.

The main challenge of taking into account the uncertain

inflow time series is the enormous increase in the compu-

tational time and cost, especially in the optimum design

models that are based on iterative time-consuming RBS pro-

cess. The COA algorithm consumes a longer runtime than

the PSO algorithm due to its more complex structure

where combination of this algorithm with the eigenvector-

based generated time series increased the runtime of the

models to several days. For future direction, applications

of modified PSO and COA algorithms are suggested. In

addition, using surrogate modeling (meta-models such as

ANN) instead of the RBS process, which in turn decreases

the computational cost and running time of the models, is

recommended.
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