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Improving the integrated hydrological simulation on a

data-scarce catchment with multi-objective calibration

Qianwen He and Frank Molkenthin
ABSTRACT
The process-based hydrological model Soil and Water Assessment Tool ensures the simulation’s

reliability by calibration. Compared to the commonly applied single-objective calibration, multi-

objective calibration benefits the spatial parameterization and the simulation of specific processes.

However, the requirements of additional observations and the practical procedure are among the

reasons to prevent the wider application of the multi-objective calibration. This study proposes to

consider three groups of objectives for the calibration: multisite, multi-objective function, and multi-

metric. For the study catchment with limited observations like the Yuan River Catchment (YRC) in

China, the three groups corresponded to discharge from three hydrometric stations, both Nash–

Sutcliffe efficiency (NSE) and inversed NSE for discharge evaluation, and MODIS global terrestrial

evapotranspiration product and baseflow filtered from discharge as metrics, respectively. The

applicability of two multi-objective calibration approaches, the Euclidean distance and nondominated

sorting genetic algorithm II, was analyzed to calibrate the above-mentioned objectives for the YRC.

Results show that multi-objective calibration has simultaneously ensured the model’s better

performance in terms of the spatial parameterization, the magnitude of the output time series, and

the water balance components, and it also reduces the parameter and prediction uncertainty. The

study thus leads to a generalized, recommended procedure for catchments with data scarcity to

perform the multi-objective calibration.
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• The application of the multi-objective calibration approach on a data-scarce catchment.

• Multiple objectives for calibration extracted for a data-scarce catchment from measured

discharge and an open-access satellite-based dataset.

• The analysis of the applicability of the evolutionary algorithm, nondominated sorting genetic

algorithm II, and the aggregation approach, the Euclidean distance.
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GRAPHICAL ABSTRACT
INTRODUCTION
Integrated process-based hydrological models play an

increasingly important role in supporting catchment man-

agement (van Griensven et al. ). The Soil and Water

Assessment Tool (SWAT) (Neitsch et al. ) is one of the

most commonly applied physically based hydrological

models, which integrates various processes including

hydrology, nutrients, erosion, etc. The complexity of the

model system requires a sound calibration of the parametric

assumption to derive the simulation with the least residue to

the observations, which is essential to evaluate the model’s

reliability. However, the difficulty of calibrating the SWAT

model lies in the validation of the spatially varied catchment

characteristics and the interacted complex processes.

The classic calibration approach applied a regression-

based summary statistic (Gupta et al. ) as the objec-

tive function, e.g. Nash–Sutcliffe efficiency (NSE), to

optimize the goodness of fit of the output variable, e.g.

the discharge at the catchment outlet. This approach is

also referred to as single-objective calibration if only one

output variable is evaluated and it is fundamental to per-

form the calibration procedure. However, the limitations

of the single-objective approach are also obvious. It

neglects the trade-off among interactive processes and

responses at the interior location of the watershed (Yen

et al. ), and the neglect of the catchment heterogen-

eity will lead to the parameters selected inconsistent

with their physical meanings (Zhang et al. ). Also,

applying only one objective function tends to derive a

biased assessment, e.g. NSE is more sensitive to the
om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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peak values (Krause et al. ) and leads to a less reliable

simulation in the low-flow period.

Multi-objective calibration was later proposed as a diag-

nostic approach (Gupta et al. ) that applied additional

data, e.g. time-series or qualitative data, for validation

(Yilmaz et al. ). The implementation of the additional

observations in the calibration, e.g. mean annual water

balances (Pfannerstill et al. ) and satellite-based evapo-

transpiration (ET) (Herman et al. ), improved the

accuracy of the simulated water balance components.

Multi-objective calibration was also applied to optimize

the fitness of the magnitude of different flow periods (Pfan-

nerstill et al. ) or the timing of the hydrograph (Zhang

et al. ). Besides, the commonly applied multisite cali-

bration helps to ensure reliable performance at the gauged

locations (Zhang et al. ; Shrestha et al. ; Leta

et al. ). Moreover, studies used extra objective functions

to also tackle the low values in the time series, e.g. NSE with

the inversed form to increase the weight of low flow (Push-

palatha et al. ).

Multi-objective calibration optimizes the parameters to

meet the multiple criteria that control varied processes.

Due to the existing conflicts between objectives in hydrolo-

gical modeling, it is often not feasible to obtain the best

performance of all the objectives simultaneously. The classic

aggregation approach converts the objectives into a scalar

function, e.g. the weighted average of all objectives (Zhang

et al. ). The multi-objective evolutionary algorithms

(MOEAs) (Schaffer ) combine the evolutionary
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algorithms with the optimization of multiple objectives, e.g.

the nondominated sorting genetic algorithm II (NSGA-II)

(Deb et al. ).

The multi-objective calibration has not yet been widely

adopted by the integrated hydrological models, such as the

SWAT. The reasons include the requirements of additional

observations, which are critical to catchments with limited

measurements, and the lack of a practical procedure for

implementation. Therefore, we proposed to overcome the

data scarcity by utilizing satellite-based datasets and

metrics extracted from the existing observations. The

MODIS Global Terrestrial ET product (MOD16 ET) from

NASA (Running et al. ) offers the global dataset of

hydrological components and could be an option as an

external metric (van Griensven et al. ; Abiodun et al.

). Metrics could also be extracted from the existing

hydrography, e.g. the baseflow index filtered from hydro-

graph (Arnold et al. ; Ladson et al. ). Therefore,

it is proposed in this study first to classify the objectives

used in the multi-objective calibration procedure into

three groups according to their potential effect: (1) multi-

site, including the internal sites of observed discharge or

water quality; (2) multi-objective function, evaluating both

high and low values of the multisite objectives; and (3)

multi-metric, including metrics extracted from hydrograph

and external datasets, assessed by proper evaluation

statistics.

To analyze the applicability of the multi-objective cali-

bration on a catchment that only measured discharges

were available for calibration, we conducted this study by

utilizing the data from the MOD16 ET dataset and the

existing measured discharge as the additional objectives.

We implemented one representative aggregation approach,

the Euclidean distance (ED), and one representative

MOEA, the NSGA-II. ED is to aggregate the objectives

(Gupta et al. ; Pfannerstill et al. ), and NSGA-II

is a fast and efficient population-based optimization tech-

nique (Ercan & Goodall ). The research was

designed to achieve the following aims: (1) to prove the

applicability of the three objective groups with ED and

NSGA-II, and (2) to demonstrate the advantages of ED

and NSGA-II in comparison to the single-objective

calibration.
://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
METHODOLOGY

The study area and the input data

The Yuan River Catchment (YRC), displayed in Figure 1, is

located in the middle west of Jiangxi province, China

(113�500–115�320E; 27�220–28�080N). Its elevation varies

from approximately 1,900 m in the southwest mountainous

region to approximately 20 m in the northeast plain

region. The catchment covers an area of 6,223.69 km2 and

is dominated by the subtropical monsoon climate. The

long-term annual precipitation is approximately 1,668 mm,

and the rain season, from April to June, contributes to

43.6% of the total precipitation. The average temperature

ranges from 2.83 �C in January to 34.2 �C in July. The pan

evaporation rate is approximately 1,228 mm (Fang ).

Red and paddy soils dominate 50.3 and 30.7% of the YRC,

respectively. Measured discharge of two hydrometric

stations (LX and JK) was available. The discharges of MZ

in the calibration period were extrapolated from the

regression relation with LX in another period. The long-

term average discharge was 11.5, 100.1, and 115.1 m3/s in

LX, MZ, and JK, respectively. The three stations were

located from the upstream to the mid-downstream of the

catchment; therefore, the YRC can only be calibrated by dis-

charge at the upstream of the JK station. The calibration

period was chosen from 2008 to 2010, and the validation

period was from 2011 to 2014. The input data for the

SWAT model are listed below in Table 1.
The SWAT model

The SWAT is an integrated process-based hydrological

model to predict the long-term impact of land management

practices on the water, sediment, and agricultural chemical

yields on catchments (Neitsch et al. ). The compu-

tational unit of the SWAT is the hydrologic response unit

(HRU) that consists of a certain land-use type, soil type,

and slope in a sub-watershed. The hydrological cycle is

simulated based on the water balance equation. The Soil

Conservation Service (SCS) curve number method quantifies

the daily surface runoff. Each soil layer is assumed to be



Figure 1 | The YRC with DEM, hydrometric stations, and subcatchment clusters.

Table 1 | SWAT model input data of the YRC

Data Resolution or scale Sources

DEM 30 m Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of ScienceYuan River network 1:200,000

Land use in 2010 30 m

Soil type and properties 1,000 m Institute of Soil Science, Chinese Academy of Science

Precipitationa (2008–2014) 12 stations, daily JK Hydropower Station

Climate datab (2008–2014) 1/3�, daily China Meteorological Assimilation Driving Datasets for the SWAT
Model, Chinese Academy of Science

Reservoir discharge (2008–2014) Daily JK Hydropower Station

Industry and domestic water use (2008–2014) Annual average Statistic Year Book of Jiangxi Prov., 2008–2014

Discharge (2008–2010 in LX; 2008–2014 in JK) Two stations, daily Yichun Hydrologic Bureau, JK reservoir power station

aIt only included the region at the upstream of the JK hydrometric station.
bPrecipitation data at the downstream were from the China Meteorological Assimilation Driving Dataset.
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homogeneous horizontally. The Green–Ampt infiltration

method and the storage routing method calculate the infiltra-

tion and percolation rates. The variable storage method was

applied to compute the discharge in the stream. The ground-

water system is simplified by the SWAT model to be a

shallow aquifer and a deep aquifer.

The objectives for multi-objective calibration

Multisite

At the sequential order from upstream to downstream, the

subcatchments were grouped into three subcatchment clus-

ters based on the hydrometric stations (see Figure 1).

Therefore, every parameter had a different value at each

cluster, e.g. parameter CN2 (Table 4) was assigned to LX,

MZ, and JK clusters, as CN2_LX, CN2_MZ, and CN2_JK,

respectively. Subcatchments at the downstream of the JK

station were ungauged and shared similarities of the identi-

cal land-use types (e.g. paddy field and forest) and soil

types (e.g. red soil and paddy soil) with the subcatchments

between MZ and JK; thus, the calibrated parameters in the

JK cluster at the upstream of the JK station were assumed

to be applicable at the ungauged subcatchments.

Multi-objective function

Two objective functions, NSE and inversed NSE (NSE_in)

(Pushpalatha et al. ), were applied to evaluate the per-

formance of the discharge simulation at hydrometric

stations LX, MZ, and JK. When applying the NSE_in,

50 m3/s was added to each value to avoid the high values

obtained by the inversed form of very low-flow values. The

forms of NSE and the adapted NSE_in are listed below.

NSE ¼ 1�
Pn

i¼1 (Y
obs
i � Y sim

i )
2

Pn
i¼1 (Y

obs
i � Yobs

mean)
2 (1)

NSE in ¼ 1�
Pn

i¼1 (1=(Y
obs
i þ 50)� 1=(Y sim

i þ 50))
2

Pn
i¼1 (1=(Y

obs
i þ 50)� 1=(Yobs

mean þ 50))
2 (2)

where Yobs
i and Y sim

i are the observed or simulated values at

time step i, respectively; Yobs
mean is the mean value over the

period n.
://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
Multi-metric

Actual ET. The observed actual ET (AET) was obtained

from the MOD16 ET at a monthly time step from 2008 to

2014. A global average mean absolute error (MAE) of

24.1% was obtained by validating at 46 field-based eddy

covariance flux towers (Running et al. ). Therefore, in

this study, an uncertainty band with MAE at ±24.1% was

applied to the MOD16 ET. The evaluation statistic of the

AET simulation was computed as AETcover, which is the

coverage of the simulated AET by the uncertainty band, as

listed below.

AETcover ¼ No of covered
N

(3)

where N is the total number of simulated AET in a simu-

lation, and No_of_covered is the number of simulated

AET covered by the MOD16 ET uncertainty band.

Baseflow and surface runoff. The ratio of the baseflow to

the discharge and the surface runoff to the discharge was

derived from the separation of the hydrograph by applying

the Lyne–Hollick baseflow filter, which was standardized

by Ladson et al. () and published as an R package

(hydrostats).

The simulated monthly ratio of surface runoff (including

lateral flow) or groundwater return flow to water yield was

computed for each subcatchment cluster. Percent bias

(PBIAS) was used to evaluate the deviation of the simulated

ratio to the observed.

PBIAS ¼
Pn

i¼1 (Y
sim
i � Yobs

i ) × 100Pn
i¼1 (Y

obs
i )

(4)
The calibration approach

Single-objective calibration with Sequential Uncertainty
Fitting ver. 2

SUFI-2 (Sequential Uncertainty Fitting ver. 2) (Abbaspour

et al. ) was the single-objective calibration approach
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applied in the study, and the only objective is the simulated

discharge at JK evaluated by the NSE. The latin hypercube

sampling (LHS) generated the parameter sets for every iter-

ation, which is assumed to be a uniform distribution of the

parameters in their selected value range. Accordingly, a

Jacobian matrix was formed by all the parameter sets, and

the Cremér–Rao theorem updated the parameter values for

the next iteration. In this study, two iterations were per-

formed for the hydrologic calibration and each iteration

contained 2,000 simulations.
Multi-objective calibration with ED

The equation below listed the ED computed to aggregate the

evaluation statistic for each objective.

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
(Obji)

2
h i

=N

r
(5)

where Obji is the evaluation statistic of each objective, and

N is the number of objectives.
Figure 2 | The calibration procedure of NSGA-II for the SWAT model, adapted from Ercan & G

om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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Multi-objective calibration with NSGA-II

NSGA-II (Deb et al. ) evolves (updates) the parameter

values generation (iteration) by generation. The population

size is defined as the constant number of simulations to

run in a generation. The nondominated sorting is to evaluate

if a simulation dominates the other one, and it is defined that

if a simulation S1
⇀

dominates S2
⇀
, then (1) S1

⇀
is no worse than

S2
⇀

in any objective and (2) S1
⇀

has at least one objective

better than S2
⇀
. Via nondominated sorting, the simulations

that are not dominated by any others will form the Pareto

Front.

The procedure of NSGA-II was narrated in detail by

Deb et al. (). The procedure coupling the SWAT and

NSGA-II is displayed in Figure 2. The SWAT model is first

run based on the parameter sets obtained from the LHS

technique as the initial iteration. The nondominated sorting

is then performed to generate the Pareto Fronts, from Rank

¼ 1 to m. The Pareto Front of Rank¼ 1 contains simulations

that are not dominated by any others; the Pareto Front of

Rank¼ 2 contains simulations that are not dominated by

any others, except the ones from Rank¼ 1 and so on. n

simulations (population size) are selected, starting from
oodall (2016).
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the Rank¼ 1 on. When Rank¼ j can only be partially

selected, the priority of the simulations in Rank¼ j will be

determined by the crowding distance that simulations with

distinct performances are preferred. After forming one gen-

eration, parameter sets, respectively, are updated via

mutation and crossover. The diversity of the population is

achieved by the crowding distance, and elitism is main-

tained by the merge of the current and previous

generations for evolution. In this study, the NSGA-II was

executed by R language, with the code adapted from Whit-

taker () and Ercan & Goodall ().

The evaluation of the convergence. The convergence of the

Pareto Front indicates how well the former generation can

surpass the latter generation, which is determined by the

population size and the number of generations. Therefore,

the convergence was used in this study as a sign of whether

more generations are needed for evolution. The conver-

gence is quantified by the C function (Zitzler & Thiele ).

C(Gn�1, Gn) :¼ jS0
⇀

∈ Gn; ∃ S
⇀

∈ Gn�1:S0
⇀

� S
⇀
j

jGnj (6)

where Gn and Gn�1 are n and (n� 1) generations; S
⇀

or S0
⇀

is

a random simulation in Gn or Gn�1; S0
⇀

� S
⇀

means that S0
⇀

is
Table 2 | The standardization of the evaluation statistics

Evaluation statistics Original value range Standardization
Standardized
value range

NSE (�∞, 1) 1�NSE (0, þ∞)

NSE_in (�∞, 1) 1�NSE_in (0, þ∞)

AETcover (0, 1) 1/AETcover (0, 1)

PBIAS (�∞, þ∞) |PBIAS|/100 (0, þ∞)

Table 3 | The summary of the objectives for multi- and single-objective calibrations

Categorized objectives Individual objectives Description

Multisite with NSE NSE_LX; NSE_MZ; NSE_JK NSE_n_: the N

Multisite with
NSE_in

NSE_in_LX; NSE_in_MZ;
NSE_in_JK

NSE_in_: the

Water balance
components

LX_s; MZ_s; JK_s; LX_g;
MZ_g; JK_g; AETcover

_s and _g: the
the discharg
of the AET

Single objective NSE_JK NSE at the JK

://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
dominated or equal to S
⇀
. C(Gn�1, Gn) is a fraction, of which

the denominator is the number of simulation in Gn and the

nominator is the number of simulations in Gn that is

dominated by or equal to simulations in Gn�1. When

C(Gn�1, Gn) equals 1, all simulations in Gn are dominated

by or equivalent to Gn�1.
The standardized evaluation statistics

The original value ranges of the evaluation statistics differed,

and they were thus standardized to enable the optimization

by the nondominated sorting or the ED and to have the opti-

mal value of 0, as listed in Table 2.
The summary of the metrics

To ensure the applicability and the efficiency of the nondo-

minated sorting algorithm, it was proposed in this study to

substitute the 13 individual objectives into three groups of

categorized objectives, which are: (1) NSE for the three

hydrometric stations; (2) NSE_in for the three stations;

and (3) the water balance components. Each categorized

objective is the ED of the individual objectives included.

The categorized objectives are thus the objectives con-

sidered by ED and NSGA-II. All the objectives obtained

for the YRC are summarized in Table 3.
The calibration procedure

Ten sensitive parameters (Table 4) were selected for the cali-

bration and assigned with an individual value to each

subcatchment cluster (see Figure 1), and each approach

thus calibrated 30 parameters in total. The initial iteration
SE of discharge at the LX, MZ, or JK station

inversed NSE at the LX, MZ, or JK station

bias of the simulated surface runoff ratio and the baseflow ratio of
e at LX, MZ, and JK subcatchment clusters; AETcover: the coverage
by the MOD16 ET uncertainty band

station



Table 4 | The 10 parameters selected for the calibration

Parameter Description

OV_N Manning’s n value for overland flow

ESCO Soil evaporation compensation factor

POT_FR The fraction of HRU area that drains into the
pothole

POT_VOL The initial volume of water stored in the pothole
(mm)

DEP_IMP Depth to impervious layer for modeling perched
water tables (mm)

DIS_STREAM Average distance to stream (m)

CN2 SCS runoff curve number for moisture condition
II

SOL_AWC Available water capacity of the soil layer

GWQMN Threshold depth of water in the shallow aquifer
required for return flow to occur (mm)

CH_N2 Manning’s n value for the main channel
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included 2,000 simulations and applied to SUFI-2, ED, and

NSGA-II. Each of the calibration approaches performed

another 2,000 simulations as the next iteration or gener-

ations. Therefore, for each calibration approach, 4,000

simulations were performed in total. The procedure is dis-

played in Figure 3. The best simulation of SUFI-2 is the

one with the lowest NSE (standardized) at JK, and ED is

the one with the lowest ED value. NSGA-II derived the

Pareto Front with optimal simulations, and thus the best

simulation is defined as the one with the lowest ED value.
Figure 3 | The hydrological calibration procedure.

om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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In this study, the Pareto Front contained 31 simulations.

Therefore, to process the comparison, the first 31 simu-

lations according to their performances were also obtained

from SUFI-2 and ED.
RESULTS

The convergence of the NSGA-II

Due to the comparably long time required for the calibration,

i.e. approximately 2 min/simulation (approximately 2.5 days/

2,000 simulations) of NSGA-II and approximately 1.5 min/

simulation (approximately 2 days/2,000 simulations) of ED

or SUFI-2 for a standard PC of core i7, 4.20 GHz, and 16GB

RAM, the number of simulations is a critical factor to deter-

mine the efficiency of the calibration approaches. Therefore,

the population size and generations should be first analyzed.

To be consistent with SUFI-2 and ED, the population size

that reached the convergence within 2,000 simulations was

preferred. Figure 4 displays the total simulations tested for

population sizes of 50 (80 generations and 4,000 simulations),

100 (40 generations and 4,000 simulations), and 200 (10 gen-

erations and 2,000 simulations). Shafii & Smedt ()

proposed to determine the convergence to be reached if the

C function is 1 in consecutive 10 generations. In this study,

due to the preferred lower number of simulations, the conver-

gence was defined to be reached if C function values were

always above 0.8 after this generation.

In Figure 4, though the C function values are fluctuating,

as the generation increases, population sizes of 50 and 100
Figure 4 | The convergence evaluated by the C function of population sizes of 50, 100,

and 200.
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can reach the convergence within 2,000 simulations. With a

population size of 50, when the generations exceeded 40, its

C function value all reached 0.8 with only one exception.

With a population size of 100, when the generation exceeded

20, two exceptions under 0.8 can be observed. However,

within 10 generations, a population size of 200 was not able

to reach the convergence. Therefore, independent from the

number of simulations, the larger the number of generations

was, the higher the possibility of the convergence was reached.

A population size of 50 was thus selected for the study.
Figure 5 | The distribution of the standardized parameter values after calibration.

://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
The parameters for calibration

Figure 5 lists the parameter values of the best and the 31

simulations of SUFI-2, NSGA-II, or ED. The parameter

values were standardized to the range of [0, 1] (parameters

with an absolute value change, e.g. GWQMN) or [�1, 1]

(parameters with a relative value change, e.g. CN2) for

displaying.

The analysis of the standardized parameter values was

focused on interpreting the pattern of the value distribution
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as shown in Figure 5. Among the selected 31 simulations,

none of the parameters was constrained by any calibration

approach into one value; instead, they were all scattered dis-

tributed, indicating that the equifinality resulted from the

integration of multiple processes in one model. However,

certain unique patterns could still be observed among the

approaches. SUFI-2 had the most obvious uniform distri-

bution, and the majority of the parameters still possessed

the original value ranges. On the contrary, the unique pat-

tern was derived by NSGA-II, in which most parameters

were constrained to certain values, e.g. GWQMN_MZ,

OV_N_JK, and OV_N_LX. Other parameters could also

be observed with the narrowest value range, e.g.
Figure 6 | The violin plot of the evaluation statistics of the objectives.

om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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DIS_STREAM_JK, DEP_IMP, and POL_VOL_LX. When

analyzing ED, the parameter uncertainty range was between

NSGA-II and SUFI-2.

The performance of the objectives

The multisite objectives evaluated by NSE and NSE_in

Figure 6 indicates the prediction uncertainty of all the 13

individual objectives of the 31 simulations in the calibration

period by a violin plot. In terms of evaluating the discharge

at the three hydrometric stations, SUFI-2, derived the lowest

NSE_JK value (NSE of the simulated discharge at the JK



Figure 7 | Daily discharge and the monthly baseflow filtered from hydrograph at the JK

station in 2010 from January to June.

Figure 8 | The prediction uncertainty of the individual objectives of the validation.
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station) among the 4,000 simulations, ranged from 0.33 to

0.35 (a standardized value, see Table 2). NSE_MZ (at the

MZ station) of SUFI-2 also showed a relatively low uncer-

tainty. However, NSE_LX of SUFI-2 had an obvious larger

uncertainty range, from approximately 0.29 to 0.78, whereas

ED and NSGA-II had values from approximately 0.29 to

0.51 and a denser distribution can be found at the low

values. If simulations with an NSE (standardized value)

lower than 0.5 are assessed as satisfactory (Moriasi et al.

), SUFI-2 had an unacceptable performance at LX. ED

also had unacceptable simulations at both LX and JK, how-

ever, with a smaller number than SUFI-2, whereas NSGA-II

derived an acceptable NSE at all the three stations. The

NSE_in at the three stations of SUFI-2 also derived a signifi-

cantly larger uncertainty than NSE. On the contrary, ED

and NSGA-II obtained a similar and much narrower uncer-

tainty range of NSE_in at all stations. However, the

NSE_in_MZ of ED and NSGA-II ranged from 0.61 to

0.85. Though they have a lower uncertainty than the

NSE_in_MZ of SUFI-2, the performance was not compar-

able to NSE_in_LX and NSE_in_JK.

The performance of the multi-metric objectives

Consistent with the prediction uncertainty of the discharge,

SUFI-2 also derived a larger uncertainty range of all metrics

(see Figure 6), especially the PBIAS of the surface runoff

ratio (LX_s, MZ_s, and JK_s) and the baseflow (LX_g,

MZ_g, and JK_g) ratio, where the 31 simulations had a

rather scattered distribution of the PBIAS values (the

value ranged from approximately 0 to larger than 1).

NSGA-II derived an overall lower uncertainty at most

metrics, except AETcover, and it also generated the best per-

formance of most metrics, except LX_g. AETcover

demonstrated a more concentrated distribution of all the

three approaches that the value ranged from 0.5 to 0.6.

When analyzing the monthly baseflow filtered from dis-

charge at the JK station in Figure 7, SUFI-2 underestimated

the baseflow of the entire period, whereas ED and NSGA-II

had both overestimation and underestimation periods. The

baseflow index of the observed discharge at JK was 0.48,

and NSGA-II had the lowest bias of baseflow index, which

was 0.57. The baseflow index of ED was 0.65, and SUFI-2

was 0.36. The daily discharge has shown that SUFI-2
://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
derived, except at the peak flow period, lower simulated

values than ED and NSGA-II. When analyzing the discre-

pancy of the simulated discharge to the observed

discharge, none of the calibration approaches were able to

capture the magnitude of the peak flow after April. How-

ever, NSGA-II still derived the least discrepancy during

the most peak flow periods.

The hydrological components were validated from 2011

to 2014. The selected 31 simulations are displayed in

Figure 8 on five objectives, due to the reason that only dis-

charge at JK was available from 2011 to 2014. The

simulated discharge evaluated by NSE or NSE_in was con-

sistent with the calibration period that NSGA-II derived the
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least uncertainty range (approximately 0.4–0.5) and fol-

lowed by ED (approximately 0.4–0.7). For JK_g and JK_s,

ED displayed an equivalent uncertainty range as in the cali-

bration period, whereas NSGA-II indicated a larger range of

the prediction uncertainty. On the contrary, SUFI-2

obtained a lower uncertainty range of JK_g and JK_s in the

validation period than ED or NSGA-II. AETcover can still

be observed with a smaller uncertainty of all calibration

approaches at the validation period.

The best simulation comparison

The radar chart (Figure 9) displayed the best simulation of

SUFI-2, ED, and NSGA-II. It is obvious to visualize the

biased results obtained from SUFI-2 that larger values of

most objectives were obtained. In contrast, though ED and

NSGA-II had higher NSE_JK, JK_s, and AETcover values

than SUFI-2, the remaining objectives showed a significantly

better performance. ED and NSGA-II generated an equival-

ent simulation of the discharge at all stations, and NSGA-II

had a lower bias of baseflow and surface runoff ratios at LX

and JK.

The water balance components were generated at each

subcatchment cluster (see Figure 10). The components

were the annual average value in mmH2O at the HRU
Figure 9 | The radar chart of the best simulation of SUFI-2, ED, and NSGA-II.

om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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level in the calibration period. The simulated AET was

approximately 500 mm without a significant difference

among clusters or calibration approaches. However, the

annual average AET of the MOD16 ET dataset in the YRC

was 839 mm, and the uncertainty ranged from 637 to

1,041 mm, which showed the model’s underestimation of

AET. Beside AET, the lateral flow also obtained a low vari-

ation among calibration approaches. In MZ and JK clusters,

the value ranged from 78 to 190 mm, where the highest lat-

eral flow was derived from ED and the lowest from NSGA-

II; at LX, the lateral flow was from 177 to 242 mm, and

NSGA-II derived the highest values.

In JK and MZ clusters, a larger difference of percolation

can be observed among calibration approaches, S_runoff

(surface runoff) and GW_returnflow (baseflow). SUFI-2

obtained a much higher surface runoff at all the stations

than baseflow. On the contrary, in the MZ cluster, both

NSGA-II and ED indicated a comparable surface runoff

and the baseflow rate. However, in the JK cluster, NSGA-

II obtained a much higher surface runoff and a lower base-

flow rate than ED. The variation of the water balance

components was consistent with the variation of the par-

ameter values (see Figure 5) among the stations and the

calibration approaches. Parameter GWQMN was compar-

ably higher of SUFI-2 at all clusters. The direct impact was



Figure 10 | The catchment average annual water balance components.
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thus the higher threshold for baseflow to occur and, conse-

quently, a lower simulated baseflow than the other two

approaches. A higher POT_VOL and CN2 at JK of NSGA-

II would also contribute to the higher surface runoff rate.
DISCUSSION

The evaluation of the objectives

The multi-metric objectives, excluding AET, were derived

from the existing measured discharge. Multi-objective func-

tion is applied to ensure both low and peak values of the

time series. These two categories were applied in the cali-

bration without the effort of collecting additional

observations. Therefore, the fundamental observations, e.g.

discharge, are likely sources to obtain objectives for catch-

ments without additional observations.
://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
The AET obtained from the MOD16 ET was applied

previously as a reference to assess the model’s perform-

ance, and van Griensven et al. () have concluded an

underestimation of the AET by the SWAT. The MOD16

ET was only validated in limited locations globally, and

the accuracy at the study area can thus not be fully guaran-

teed. Therefore, the percent of the coverage by the

uncertainty band of the MOD16 ET was used for evalu-

ation, aiming at reducing the impact of the observation

uncertainty. However, only 52% of the simulated AET

was covered by the uncertainty band. Moreover, compared

to other objectives, the narrower prediction uncertainty of

AET also indicated the insensitivity of the parameters to

the relevant processes related to the AET. Besides, the

baseflow and surface runoff ratios were only the estimation

based on an empirical approach and cannot fully represent

the real condition. The metrics were thus evaluated at a

monthly step by the PBIAS to reduce the impact of the
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uncertainty. Therefore, when evaluating the calibration

results, higher tolerance of the multi-metric in terms of

the uncertainty and the performance should be considered.

The evaluation of the three calibration approaches

The trade-off among objectives

The trade-off of the single-objective calibration behaved to

optimize the objective of NSE_JK at the sacrifice of the per-

formance at the other sites and metrics. It only ensured the

good performance of NSE_JK and NSE_MZ, which might

be due to the relatively shorter distance and similar magni-

tude of the observed discharge at JK and MZ. For single-

objective calibration, sensitive processes included the sur-

face runoff, which contributed the highest portion to the

discharge in the YRC. As a result, this process was math-

ematically optimized to fit the observations and especially

to the peak values. Meanwhile, the lateral flow and ground-

water return flow were relatively low when compared to the

result from multi-objective calibration at both MZ and JK.

The multi-objective calibration set extra conditions to

ensure the reliability of additional specific processes com-

puted by the SWAT model, therefore, to avoid unrealistic

trade-off among the objectives, which can be observed at

the varied surface runoff and baseflow values in the three

subcatchments (Figure 10). Though the trade-off is still una-

voidable at the processes without outputs calibrated,

compared to single-objective calibration, multiple objectives

showed its advantages by deriving the acceptable perform-

ance of the simulated discharge in terms of the magnitude

and the water balance components at the three catchment

clusters.

The applicability of the NSGA-II

The efficiency of deriving the Pareto Front by the nondomi-

nated sorting was determined by the number of the

objectives. The larger the number is, the less likely a simu-

lation can dominate the others on all the objectives to

generate the Pareto Front. Her & Seong () also pointed

out no significant effect to decrease the parameter uncer-

tainty if the objective functions were more than four.

Therefore, in this study, three categorized objectives were
om http://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
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proposed to substitute the 13 individual objectives. The

applicability of the substitution can be indicated by the

results that NSGA-II derived a reliable simulation with a

narrower uncertainty band of most objectives.

Results showed that in comparison to the number of

generations, the convergence was more independent from

the population size. Whether the population size was 50,

100, or 200, the convergence cannot be reached within 10

generations. The more generations there are, the more

likely the convergence can be reached. Therefore, if the

computational effort is critical, as in this study, a smaller

population should be considered, which enables more gen-

erations to execute. However, since the population size

determines the diversity of the parameter set values, a smal-

ler population size will also likely to derive a smaller

simulation size in the Pareto Front.

Sorting algorithm comparison

When compared to NSGA-II that the parameters were

optimized after each generation, ED is a post-processing

procedure in this study. The value range of each objective

is not identical in this study. Therefore, in comparison to

nondominated sorting, ED is a more subjective approach.

The scalar function of ED is computed based on the absol-

ute value of the evaluation statistic. However, if the

prediction uncertainty ranges of the individual objectives

were too distinct from each other, the emphasis of the sort-

ing will be put naturally on the objectives with the larger

uncertainty range. In comparison, nondominated sorting

only considers whether a value is surpassing the other

instead of the magnitude of the surpassing, and thus the

sorting algorithm is not impacted by the absolute value

of an object. The best simulation derived by ED is the

simulation with the lowest ED. However, NSGA-II with

nondominated sorting would derive multiple simulations

with equivalent performances. Therefore, if only one simu-

lation is to be selected as the calibration result, criteria

should still be set to distinguish simulations at the Pareto

Front. Moreover, the processing time to implement the

nondominated sorting is proportional to the population

size, and the applicability is decreasing as the number of

objectives is increasing. However, when applying ED, the

number of objectives is no longer a limitation to either
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the algorithm or the computational effort, and the compu-

tational effort was equivalent to that of single-objective

calibration.

The parameter uncertainty

Due to equifinality, multiple parameter sets would generate

simulations that meet the requirement of the evaluation cri-

teria. However, the higher the number of the objectives is,

the fewer parameter sets could theoretically be qualified.

Therefore, it resulted in a shorter range of parameter

values of ED and NSGA-II, which might explain the less

reliable validation period. ED screened the simulations

among all simulations, and multiple parameters have kept

the uniform distribution but with a narrower value range.

However, the initial parameter values used by NSGA-II

were only based on the population size. When selecting

the population for the first generation, the value range of

the parameters has already been constrained to the

values that have a good performance in the first iteration

(2,000 simulations) in the study, and the parameter

values of the subsequent generations were evolved based

on the first generation. Though mutation and crossover

were performed, the diversity of the parameter values

was not comparable to SUFI-2 or ED. However, the

larger the population size is, the more diverted the par-

ameter values can be selected. However, to guarantee the

convergence and the stability of the performance of the

last generation within 2,000 simulations, a population

size of 50 was applied. Therefore, comparably more con-

strained parameter value ranges are displayed, and a

narrower prediction uncertainty was also obtained by

NSGA-II. Meanwhile, it should be mentioned that,

though the multi-objective calibration leads to a reduced

parameter and, thus, a prediction uncertainty, it cannot

overcome the uncertainty introduced by the input data

scarcity, e.g. the accuracy of the rainfall data or the

measured hydrometric data, and the model itself, e.g. the

limitation of the empirical SCS curve number method to

capture the surface runoff, as displayed by the relatively

large discrepancy of the simulated peak values in Figure 7,

which also indicates the limits of the calibration

approaches in terms of improving the model’s

performance.
://iwaponline.com/jh/article-pdf/23/2/267/859005/jh0230267.pdf
CONCLUSION

In terms of the comparison between single-objective cali-

bration and multi-objective calibration, the key findings are

summarized as follows:

1. The trade-off is unavoidable among objectives. However,

multi-objective calibration can add extra constraints to

the model to ensure the reliability of the critical internal

processes for model application.

2. The applicability of NSGA-II is also determined by the

proper size of population and generation. If the compu-

tational effort is critical, the smaller size of the

population is preferred.

3. ED and NSGA-II are both suitable multi-objective cali-

bration approaches, represented by a constrained

parameter uncertainty and prediction uncertainty.

Therefore, it is highly recommended to apply the multi-

objective calibration to the process-based hydrological

model, like SWAT, even to the catchment with limited

observations. The multi-objective calibration framework

applied in the study is also provided a practical procedure

for the calibration of catchments similar to the YRC. The

key points include the following:

1. Preparing the observations according to the multisite,

multi-objective function, and multi-metric with the

best use of already obtained datasets, e.g. measured dis-

charge, but not necessarily the objectives applied in the

study.

2. If the ED or NSGA-II is considered as the calibration

approach, their applicability and suitability should be

analyzed according to the processing time, the number

of objectives, the objectivity of the dominance, and the

equifinality.

The advantage of the multi-objective calibration applied

for the process-based hydrological model is clearly illus-

trated in the study, which would be a great benefit for

future application of the model, e.g. an expected improve-

ment of the nutrient load simulation at the inner stations

due to a more reliable simulated discharge. However,

multi-objective calibration cannot overcome the uncertainty

introduced by the model’s approach and the input data;
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therefore, further research contributed to these two aspects

is also highly promoted.
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