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ABSTRACT

Scour depth prediction is an important aspect of designing a bridge pier structure in a river. Proper modeling of scour depth ensures the

sustainability of the structure. An attempt is made to develop a scour depth model for the bridge pier using an adaptive network-based

fuzzy inference system (ANFIS) and gene expression programming (GEP). The scour depth is found to be influenced by various independent

parameters such as pier diameter, flow depth, approach mean velocity, critical velocity, Froude number, bed sediment, and geometric stan-

dard deviation of bed particle size. Gamma tests are performed to identify the best input parameter combinations to predict scour depth. In

the present study, two separate models have been developed for clear-water scouring (CWS) and live-bed scouring (LBS). For different ranges

of input parameters, the scour depth ratio is computed and error analysis is performed. Results indicate that the ANFIS model (R2
CWS¼ 0.95,

MAPECWS¼ 9.39% and R2
LBS¼ 0.95, MAPELBS¼ 5.29%) is the most accurate predictive model in both scour conditions as compared to the GEP

model and existing models of previous researchers. However, for the low value of pier diameter (b) to flow depth (y) ratio (,0.25), the present

ANFIS model apportioned unsatisfactory results for LBS only.
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HIGHLIGHTS

• Separate models have been proposed for clear-water scouring and live-bed scouring of bridge piers using ANFIS and GEP.

• The influencing parameters affecting the scour depth are identified using the Gamma test.

• A wide range of data is considered in developing a model for scour depth around bridge piers.

• The performance of the scour depth models is evaluated for various ranges of input parameters such as b/y, U/Uc, and Fr.

NOMENCLATURE

μ fluid dynamic viscosity
b pier diameter
d50 median diameter of sediment
dse scour depth
Fd50 particle densiometric Froude number
Fr Froude number
Frc critical Froude number
g acceleration due to gravity
U approach mean velocity
Uc critical velocity
y flow depth
ρ fluid density
σ geometric standard deviation of bed sediment size
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ABBREVIATIONS

ANFIS adaptive network-based fuzzy inference system
ANN artificial neural network
CWS clear-water scouring
FFBP feed-forward back-propagation
FIS fuzzy interference system
GA genetic algorithm
GEP gene expression programming
GP grid partition
GT Gamma test
IS insertion sequence
LBS live-bed scouring
LR linear regression
MAPE mean absolute percentage error
MFs membership functions
MLP multi-layer perceptron
MLR multivariable linear regression
MSE mean square error
R2 coefficient of determination
RBF radial basis function
RIS root insertion sequence
RMSE root mean square error
SDR scour depth ratio

INTRODUCTION

Scouring around bridge piers is a result of the movement of bed sediment caused by the pier obstruction in the direction of
flow (Kothyari et al. 1992). This obstruction leads to the acceleration of the flow, resulting in the formation of vertices around

the pier that remove sediment from its vicinity. According to various research scholars (Ettema 1980; Melville & Coleman
2000; Kumar et al. 2012), the primary cause of sediment particle entrainment around bridge piers is the formation of vortices.
The horseshoe vortex is not the cause of scouring, but rather a consequence of it and becomes effective in transporting

material away from the scour hole (Breusers & Raudkivi 1991). The vortex formation is triggered by the flow in front of
the pier separating from the bed and generating a scouring vortex due to the strong pressure field created by the pier.
Wake vortices are predominant and act on the downstream side of the pier, causing accelerated side flow behind the pier
and potentially resulting in a massive scour hole in the downstream side (Raudkivi & Ettema 1983). Due to the velocity gra-

dient between the slower flow behind the pier and the faster flow on either side, a horseshoe vortex forms at the bottom of the
upstream side, and a wake vortex forms on the downstream side, keeping sediment suspended. The flow field at a bridge pier
is characterized by down-flow and surface rollers at the upstream side, horseshoe vortices at the bottom, and wake vortices on

the downstream side, as indicated in Figure 1.
Many river bridges have collapsed because of heavy local scouring during high floods. Local scour depth refers to the ero-

sion of dirt and rock particles located around the abutment or pier of a highway bridge that crosses over a water body to a

certain depth. The scour depth is a significant factor in the bridge design as the base collapses due to improper scour depth
estimation. Among two types of local scouring, clear-water scouring (CWS) is caused when the bed material upstream of the
scour area is at rest and the shear stress of flow exceeds the critical shear stress, however, the live-bed scouring (LBS) takes

place when there is general bed load movement and the upstream shear stress is greater than the threshold value. Laursen
(1963) investigated the behavior of clear-water scours with geometry parameters, flow parameters, and sediment size and
developed relationships for the scour in a long contraction, at an abutment, and around a pier. Ettema (1980) defined the
influence of sediment size on scour depth at the circular shape of bridge piers for uniform sediments. Their experimental

results showed that larger depths of clear-water scour can occur at piers placed in beds composed of uniform sediment
armored by a layer of coarser sediment than that of the pier in a bed of uniform sediment. Raudkivi & Ettema (1983) reported
that with smaller values of the flow depth to pier diameter ratio (y/b), the equilibrium scour depth reduces at a faster rate.

They found that the decrease in the equilibrium depth is due to the interference of the water surface roller formed around
the pier with the downward flow into the scour hole. Kothyari et al. (1992) proposed a semi-analytical method for predicting
maximum scour depth at the bridge pier for LBS conditions. They considered the primary vortex in front of the pier to be the
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prime agent causing scour at bridge piers. Sheppard et al. (2004) used a large-size model to explore clear-water local bridge
pier scour and found that the concentration of suspended fine silt (wash load) has a major effect on equilibrium scouring
depths through experiments. According to Raikar & Dey (2005), equilibrium scour depth increases as gravel size decreases

and they found that the depth of scour in gravel beds is generally higher compared to the sand beds. Through experimen-
tation, they found that the variation of equilibrium scour depth with gravel size represents a considerable deviation from
the variation of this depth with sand size. Kothyari et al. (1992) proposed a scour depth model by considering actual and

entrainment densiometric particle Froude numbers. They also developed a relationship for the temporal scour evolution at
bridge foundation elements based on the similitude of Froude by relating the scour depth to the difference between the
actual and the entrainment densiometric particle Froude numbers. From their experimental findings, Aksoy et al. (2017)
reported that the scour depth was increased with pier diameter and flow velocity and developed a scour depth predictive
model using flow velocity and the flow depth to pier diameter ratio (y/b). Pandey et al. (2018) reported the scour hole is cre-
ated through the formation of an armor layer in a non-uniform gravel bed condition. Overall, the scour depth is significantly
affected by the geometry of the pier, flow depth, approach flow velocity, and bed sediment size as it is evident from the lab and

field experiments by different researchers. Hamidifar et al. (2021) investigated and verified different equations to determine
the critical flow velocity ratio which was further used in estimating scour depth. They proposed better combinations of scour
depth predictive model for CWS conditions.

Previously, many artificial intelligence (AI) techniques have been used for scour depth prediction, however, all these
methods are not providing accurate results for different flow, geometry, and roughness conditions as well as for different
types of scouring (Khan et al. 2012; Sharafati et al. 2021; Nil & Das 2023). The literature review of different AI techniques

used in bridge pier scour depth modeling is presented in Table 1.

INFLUENCING PARAMETERS AND SCOUR DEPTH PREDICTION FORMULATIONS

The scour depth at a bridge pier is determined by the fluid flow, bed sediments, and pier characteristics.
Scour depth is described by the functional relationship:

ds ¼ f(r, m, U, Uc, g, y, d50, s, Fr, b) (1)

where ds is the scour depth, ρ is the fluid density, μ is the fluid dynamic viscosity, s is the standard deviation of the bed sedi-
ment, g is the acceleration due to gravity, U is the approach mean velocity, Uc is the critical velocity, d50 is the median
diameter of sediment, y is the flow depth, b is the pier diameter, Fr is the Froude number.

Figure 1 | Schematic diagram of local scour around a bridge pier.
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Table 1 | Previous studies on scour depth modeling using soft computing techniques

Authors
Input parameters and total
number of datasets used Soft computing technique used Remarks

Bateni et al. (2007) b, g, d50, U, Uc, y, ρ, μ
Laboratory data – 263

Artificial neural networks (ANN) – multi-layer
perceptron (MLP), the radial basis function (RBF),
and ANFIS

ANN-MLP had better performance in predicting equilibrium and the
time-dependent scour depth around the bridge piers for CWS
condition only

Firat (2009) b, g, d50, U, Uc, y, ρ, μ
Laboratory data – 165

ANN – radial basis neural network (RBNN), ANFIS,
and Multiple linear regression (MLR)

ANFIS model shows better performance in predicting scour depth.
No mention about clear-water and LBS conditions

Firat & Gungor
(2009)

b, g, d50, U, Uc, y, ρ, μ
Laboratory data – 165

Generalized Regression Neural Networks (GRNNs),
Feed-Forward Neural Networks (FFNNs), and MLR

GRNN model had better performance for the selected data set. No
mention about clear-water and LBS conditions

Kaya (2010) b, h, Kpn, Kpa, Γ, V, y, d50,
Field data – 380

ANN Model is developed for both clear-water and LBS conditions
separately. ANN provide better results for the LBS data as
compared to CWS dataset

Shin & Park (2010) b, h, α*, Kpn, g, V, y, ρ, μ
Field data – 410

ANN-LMBP ANN model provides better results as compared to HEC-18 and other
empirical models. No mention about clear-water and LBS
conditions

Muzzammil &
Ayyub (2010)

b, Fr, y, σg
Laboratory data – 130

ANN-Feed-Forward Back-Propagation (FFBP), Feed-
Forward Cascade Correlation (FFCC), ANN-RBF,
ANFIS and regression model

ANFIS model outperformed other and regression-based models for
predicting scour depth. Pier diameter has a greater influence on
equilibrium scour depth. No mention about clear-water and LBS
conditions

Pal et al. (2011) b, Kpn, Kpa, U, y, d50, and
σg
Field data – 232

ANN-BPNN, ANN-GRNN, and radial basis function-
based support vector regression (SVR-RBF)

SVR-RBF is the better scour depth predictor for their used dataset.
Flow depth and the pier width are two important parameters
affecting the scour depth prediction. No separate model for clear-
water and LBS conditions

Toth &
Brandimarte
(2011)

b, Kpa, Ns*, U, Uc, y, d50
Field data – 215;
Laboratory data – 331

ANN-Newton Levenberg–Marquardt back-
propagation algorithm (ANN-LM)

ANN models had the closest fit to measured scour depth in laboratory
data under clear-water and LBS conditions and did not provide
remarkable results for field data

Khan et al. (2012) b, l, g, U, y, d50, σg
Laboratory data – 529

Gene expression programming (GEP) and ANN GEP performs statistically slight inferior to ANN but significantly
superior to other empirical models. No separate model for clear-
water and LBS conditions

Etemad-Shahidi
et al. (2015)

b, g, U, Uc, y, Fr, ρ, μ, d50
Laboratory data – 283

M5 model tree Provide separate model for clear-water and LBS conditions

Sharafi et al. (2016) b, l, g, U, y, r, n, d50, σg, ρs
Field data – 476

ANN, ANFIS, SVM, and nonlinear regression SVM with polynomial kernel function provided better results. No
mention about clear-water and LBS conditions

Khan et al. (2017) b, U, y, d50
Laboratory data – total
number is not available

ANN, genetic function (GF), and regression analysis Genetic function-based model performed better than ANN and
regression-based models for predicting clear-water scour depth only

Ebtehaj et al.
(2017)

b, h, g, U, y, d50, σg
Laboratory data – 476

Self-adaptive extreme learning machine (SAELM),
ANN, and SVM

SAELM performed better than other scour depth predictive models.
No mention about clear-water and LBS conditions

Particle swarm optimization (PSO)

(Continued.)
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Table 1 | Continued

Authors
Input parameters and total
number of datasets used Soft computing technique used Remarks

Shamshirband
et al. (2020)

b, l, Fr, U, Uc, y, Re, d50,
and σg; Field data – 540
Laboratory data – 552

PSO provide better results compared to other scour depth model for
their clear-water scour data set only. b/y and d50/y were recognized
as the most effective parameters for the laboratory and field data,
respectively

Dang et al. (2021) b, g, U, Uc, y, Re, d50
Laboratory data – 192

ANN-LM, ANN-PSO, ANN-FA (Firefly algorithm) ANN-PSO is better in predicting the equilibrium scour depth as
compared to ANN-LM and ANN-FA. Model is developed for CWS
condition

Sreedhara et al.
(2021)

d50, sediment quantity, U,
and flow time
Laboratory data – total
number is not available

Gradient tree boosting (GBT) and group method of
data handling (GMDH)

GTB model performance was relatively superior to that of GMDH in
the prediction of scour depth around different pier shapes and the
model is developed for both CWS and LBS conditions

Nil & Das (2023) b, U, Uc, y, Fr, d50
Laboratory data – 642

Support vector machine (SVM) SVM with Gaussian and quadradic kernel function shows better
results for CWS and LBS, respectively

b, pier diameter; l, pier length; g, acceleration due to gravity; Fr, Froude number; Re, Reynolds number; h, depth of collar below the free water surface; kpn, pier nose shape factor; kpa, pier alignment factor; U, flow velocity of the

upstream from the pier, Uc, flow critical velocity; w, channel width, σg, standard deviation of grain size distribution; ϕ, dimensionless coefficient about the shape of the pier nose; α*, opening ratio.
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From the previous studies (Johnson 1995; Sheppard et al. 2004; Azmathullah et al. 2005; Nil & Das 2023), it is found that

there are a group of dimensionless variables introduced to produce good results. The following relationship described maxi-
mum scour depth (dse) in terms of dimensionless parameters:

dse

y
¼ f

b
y
,
d50

y
,
U
Uc

, s, Fr
� �

(2)

In the absence of detailed information on the critical flow velocity (Uc), Neill’s formula (Neill 1973) for the mean sediment
size (d50) particles can be used (Toth & Brandimarte 2011). So, this formula is also used here for calculating Uc as follows:

Uc ¼ w0:531:08y1=6d1=3
50 (3)

where y is the flow depth, and the Shields parameter, ϕ, in Equation (3) is computed with Equation (4), originally proposed by

Miller et al. (1977) to relate the grain size to the shear velocity and then modified by Mueller (1996) for estimating the Shields
parameter:

w ¼ 0:0019d�0:384
50 if d50 , 0:0009m

w ¼ 0:0942d0:175
50 if 0:0009m , d50 , 0:020m

w ¼ 0:047 if d50 . 0:020m

(4)

The maximum scour depth to flow depth ratio was chosen as an output, and the five dimensionless parameters were chosen
as inputs during the model development in this study. Different bridge pier scours depth predictive equations for clear-water
and LBS are presented in Table 2, Equations (5)–(12).

In this paper, an attempt has been made to use two AI techniques such as adaptive network-based fuzzy inference system
(ANFIS) and gene expression programming (GEP) in predicting the CWS depth ratio and LBS depth ratio (ds/y), where
ds is scour depth and y is approach flow depth. Also, the most efficient model has been proposed for estimating local

scour depth around the bridge pier.

METHODOLOGY

This section provides an in-depth discussion of the methods used in the present study to develop the ANFIS and GEP models
for predicting scour depth. By reading this section, readers will gain a comprehensive understanding of the background and
context of the model development process.

Gamma test

Agalbjorn et al. (1997) first documented the Gamma test, which was later developed and analyzed in depth by several analysts
(Durrant 2001; Tsui et al. 2002; Das et al. 2020). The base mean square error (MSE) that contributes to input data selections is
measured by gamma test (GT). The chosen input data can be used as part of a nonlinear model’s structure. The logical pur-
poses of intrigue can be found in Agalbjorn et al. (1997) and Noori et al. (2011). Another term is V-ratio, which restores a

scaled invariant clamor evaluate in the vicinity of 0–1 and can be used to arrange the GT performance. The V-ratio can
be described as:

V�ratio ¼ G

s2(y)
(13)

where σ2(y) is the variance of yield ‘y’, which provides a standardized measure of the Gamma statistic and allows a judgment
to be formed independent of the yield range on the issue of how effectively the yield can be depicted by a smooth function.
The V-ratio is a useful statistic to consider when comparing yields or yields from different informational sets because it is inde-

pendent of yield range. When the V-ratio is close to zero, then it indicates that the real yield is consistent (as measured by a
smooth model). In the case where the V-ratio is close to one, then the yield is similar to the irregular commotion in terms of a
smooth model. The GT may be achieved in practice by utilizing the winGamma program (Durrant 2001). This technology is
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quite successful and may be adopted for a variety of hydraulic nonlinear modeling. The V-ratio is a measure for assessing the
predictability of the given yields based on readily available data. The dataset combination with a low mean square error
(MSE) and V-ratio value is regarded as the most suitable input dataset for modeling.

Adaptive neuro-fuzzy inference system

The adaptive neuro-fuzzy inference system (neuro-FIS) uses a set of artificial neural networks (ANNs) and fuzzy systems to
build fuzzy IF-THEN rules with suitable membership functions (MFs) obtained from the training pair, culminating in an infer-
ence. They eliminate the requirement for manual fuzzy system parameter optimization and instead rely on ANN to modify the

system parameters. When ANN and FIS work together, they improve the system operation without requiring administrators
to intervene.

Architecture and basic learning rules

ANFIS is a rule-based fuzzy rationale model whose rules are applied during the model’s training process. This inference fra-
mework is built using five layers, as shown in Figure 2. In this network layout, the input (layer 0) and yield (layer 5) hubs

reflect the input and yield origins, respectively. In the hidden layers, a few fixed and adjustable hubs serve as the MFs and
rules. Two knowledge factors, x, and y have been considered, and a yield variable z is used to explain the methodology of
the ANFIS model. If-then fuzzy rules are used in the ANFIS model to express the relationship between knowledge and

yield and the model contains the two fuzzy rules that can be expressed as follows in terms of Takagi and Sugeno’s form:
Rule 1: If x is A1 and y is B1 then z1 ¼ p1xþ q1yþ r
Rule 2: If x is A2 and y is B2 then z2 ¼ p2xþ q2yþ r

Table 2 | Different scour depth predictive equations used in the present study

Authors and
years Equation Scouring condition

Eq.
no.

Colemon
(1972)

ds

y
¼ 1:39(Fr)0:2

b
y

� �0:9 LBS condition 5

Jain & Fischer
(1979)

ds

y
¼ 1:84

b
y

� �0:7

Fr0:25c , for Fr � Frc , 0,
Both CWS and LBS conditions
For 0, Fr� Frc� 0.2, the larger of the two scour
depths computed from Equation (4) and (5) is
used

6

ds

y
¼ 2

b
y

� �0:5

(Fr � Frc)
0:25, for Fr � Frc � 0:2

7

Johnson
(1995)

ds

y
¼ 2:02

b
y

� �0:98

F0:21
r s�0:24

LBS condition 8

Ettema et al.
(1998)

ds

y
¼ b

y

� �0:38

(Fr)0:2
b
d50

� �0:08 CWS condition 9

Yanmaz
(2001)

ds

b
¼ 1:564

y
b

� �0:405
F0:413
r

LBS condition 10

Kim et al.
(2015)

ds

y
¼ 0:69

b
y

� �0:35 d50

y

� ��0:10

s0:39Fr0:56
CWS condition 11

Sheppard et al.
(2004)

ds

y
¼ 2:5

b
y

� �
f1

y
b

� �
f2

U
Uc

� �
f3

b
d50

� �
, where

f1
y
b

� �
¼ tanh

y
b

� �0:4
� �

,

f2
U
Uc

� �
¼ 1� 1:1:75 ln

U
Uc

� �� �2
, and

f3
b
d50

� �
¼

b
d50

� �

0:4
b
d50

� �1:2

þ 10:6
b
d50

� ��0:13

2
6664

3
7775

CWS condition 12
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The semantic levels are A1, B1, and A2, B2, and the ensuing parameters are p1, q1, r1 and p2, q2, r2. We have a zero-order

TSK fuzzy-model if z1 and z2 are constants rather than linear equations. The ANFIS structure is comprised of five layers
(Figure 2). The following are descriptions of the various layers: Layer 1 is the Fuzzification layer where every node is the flex-
ible node with a node feature. Layer 2 is the Rule layer where every node is a fixed node that acts as the simple multiplier.

Layer 3 is the Normalization layer and every node is an adaptive node with the letter N. The ith node determines the ratio of
the terminating quality of the ith rule to the total of all terminating strengths. The fourth layer is the defuzzification layer and
in this layer, every node has a purpose and is versatile. Layer 5 is the output layer, where a single node is a settled node that

calculates the overall yield by adding all approaching signals.
The training procedure for this architecture aims to optimize two parameter settings so that ANFIS yield organizes the

training data (Jang 1993). Figure 3 indicates the structure of the FIS. According to the ANFIS design, the overall yield ‘z’
may be imparted as a linear mix of the outcome parameters given as the supplied values of the premise parameters. In
light of this discovery, a hybrid learning standard is used to assess the feasibility of the precursor and succeeding parameters,
which combines a back-propagation methodology with a least squares method (Jang 1991, 1993). The hybrid rule is defined in
detail by Jang et al. (1997), who also claimed that it is significantly faster than the conventional back-propagation technique.

The number of input parameters is the primary constraint on the ANFIS model. If there are more than five ANFIS inputs,
the computing time and rule numbers will increase, and ANFIS with grid partitioning will be unable to display yield. The
general structure of the ANFIS forecasting system is shown in Figure 4.

Figure 3 | General structure of the FIS.

Figure 2 | A schematic diagram of the ANFIS structure.
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Grid partition

This methodology builds a Sugeno-type FIS structure from training datasets. Grid partition (GP) divides the input dataset into

different neighboring fuzzy localities using a pivot-paralleled partition depending on a predetermined number of MFs. The
eight types of MFs in the GP strategy are trimf, trapmf, gbellmf, gaussmf, gauss2mf, pmif, dsigmf, and psigmf. Each item of
data can be expressed as a connection with the number of MFs (Muzzammil & Ayyub 2010). Only one yield can be used

in a Sugeno-type. Either a linear or a constant yield function can be used for the selection of FIS type. This methodology gen-
erates the same number of rules as the number of yield MFs. The elective models in this subsection are made up of various FIS
structures created using various MF features like (types and numbers) as the input MFs parameter.

Gene expression programming

GEP was created by Candida Ferreira in 1999 as a new evolutionary AI-based approach. This method is based on Koza’s
genetic programming (GP) methodology (1992). Similar to genetic algorithms (GAs), the genome is encoded as fixed-

length linear chromosomes, which are subsequently represented as phenotypes by GEP in the form of expression trees.
GEP combines the advantages of both of its predecessors, GA and GP, by avoiding some of their disadvantages. GEP is a
full-featured genotype/phenotype approach that separates all elements. As a result, the fully functional genotype/phenotype
system developed by GEP beats the conventional GP system (Ferreira 2002).

The mechanism in GEP, like other evolutionary approaches, begins with the random generation of the initial population. It
consists of individual chromosomes of fixed length. One or more genes can be found on a chromosome. The fitness of each
chromosome in the initial population is then calculated using a fitness function based on MSE. The fitness value of these

chromosomes is then used to pick them by using the roulette wheel selection procedure. The better the chromosomes
match; the more likely they are to be selected in the next generation. After selection, these are replicated with certain genetic
operator modifications. Genetic operators such as mutation, inversion, transposition, and recombination are utilized to

Figure 4 | General structure of the ANFIS forecasting system.
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change GEP. Mutation has been discovered to be the most powerful genetic operator and, in many circumstances, the only

one available for chromosome modifications. The same modification approach is then applied to the new individuals, and the
process is repeated until the maximum number of generations has been reached or the required precision has been obtained
(Ferreira 2002). Several of these genetic operators used for chromosome genetic alteration are explained in the GEP scheme

as follows (Ferreira 2006):
Mutation: Among all the operators, mutation is the most significant and powerful. In GEP modeling, mutations can occur

anywhere in the genome. However, the structural composition of the chromosome should remain the same. In other words,
the leading of a gene can replace the function with one of the other functions or ends, but only the end of the gene can be

changed. When connected to the other terminal, the tail has no function. Thus, all the new individuals created by mutations
are structurally correct programs.

Inversion: Inside the head of the gene, this operator inverts a sequence. It selects the chromosome, the gene to change, and

the start and end points of the inverted head section.
Insertion sequence (IS) transposition: The IS elements are small parts of the genome with first-position function or ter-

mination. This operator randomly selects the chromosome or gene, as well as the beginning and end of the IS variable,

and transposes them to the beginning of the gene immediately after the base.
Root insertion sequence (RIS) transposition: It is a small genomic fragment similar to the IS element, with the exception

that starting point is always a function. It picks a chromosome, a gene to change, and starting and end points of the RIS

element at random, and then transposes it to the gene’s starting point.
Gene transposition: It occurs when the whole gene acts as transposing and transposes to the chromosome’s beginning.

Gene transposition differs from other types of transposition in that the transposon (gene) is deleted at the point of origin.
Single or double crossover/recombination: The parent chromosomes are coupled and the same spot is chosen in a single

crossover. The gene is then swapped between the two chromosomes downstream of the crossover location. Two parent
chromosomes are coupled in a double crossover, and two crossover locations are selected at random. The material that
exists between the crossover locations is subsequently exchanged between parent chromosomes, resulting in the formation

of two new offspring chromosomes (Guven & Aytek 2009).
Gene crossover:Gene fusion occurs when the whole genesis is swapped between the two parent chromosomes, resulting in

the two offspring chromosomes with genes from both parents. Genes that are swapped are selected at random and located in

the same location on parent chromosomes. Figure 5 shows an algorithm for gene expression programming (after Guven &
Aytek 2009).

To create a predictive model for scour depth using AI techniques, it is crucial to establish input and output data sets for the
ANFIS and GEP models to be trained and tested. These data sets have been sourced from published literature and will be

further elaborated upon in the following section.

SOURCES OF DATASET

For the present study, many clear-water and LBS data have been taken from the literature and are presented in Tables 3 and 4
for circular/cylindrical bridge piers. The detailed data set are available in Supplementary file, Appendix A and Appendix B for
CWS and LBS, respectively. Scour in the bridge depends on hydraulic parameters and sediment properties like pier diameter

(b), flow depth (y), approach mean velocity (U ), critical velocity (Uc), median diameter of sediment (d50), Froude number (Fr)
and geometric standard deviation of bed particle size (σ). In the present study, a total of 213 datasets for LBS modeling and
442 datasets are used for CWS modeling. The ranges of different parameters of CSW and LBS collected from the literature are

depicted in Tables 3 and 4. Out of 213 LBS data, about 75% (159 sets) were selected for training and 25% (54 sets) were for
testing. Table 3 shows the range of non-dimensional parameters used for clear-water scour modeling. Out of 442, about 75%
(332 sets) were selected for training and 25% (110 sets) were selected for testing.

RESULTS AND DISCUSSION

Selection of best input parameter combination for modeling

In the present study, 50 different combinations of input parameters have been made in the winGamma software for clear-
water and LBS separately. Out of 50, nine different combinations including the best input combinations are presented in
Tables 5 and 6 for CWS and LBS, respectively. From Table 5, it is observed that the combination of the five parameters
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with mask [11111] can make a proper model for CWS as compared with other combinations due to its lesser values of

Gamma and V-ratio which are very close to zero as compared to the other combination. From Table 6, it is observed that
the combination of four parameters with mask [11011] shows the minimum Gamma and V-ratio values. In this blend, the
U/Uc ratio is not included, however, this ratio is the most important parameter which influences the scour depth (Kothyari

et al. 1992; Sheppard et al. 2004). The combination having five non-dimensional parameters is used for the ANFIS and GEP
model development for clear-water and LBS.

Development of scour depth model using ANFIS

In this section, the scour depth of a bridge pier is modeled using the ANFIS approach is described. The input and yield data
have been normalized to the domain [0.05, 0.95] using Equation (14) (Hsu et al. 2003) to get better accuracy of the model:

anorm ¼ 0:05þ 0:90
(a� amin)

(amax � amin)
(14)

where anorm is the normalized input, a is the original input, amin is the minimum of the input range, amax is the maximum of
the input range

Figure 5 | Flow chart of GEP.
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Table 3 | Different parameters range for CWS collected from the literature

S. no Author b/y d50/y U/Uc σ Fr

1 Chabert & Engeldinger (1956) 0.143–1.500 0.0007–0.0300 0.536–0.976 1.30 0.097–0.597

2 Shen et al. (1969) 0.713–1.299 0.0011–0.0020 0.533–0.882 1.40 0.103–0.213

3 Ettema (1976) 0.166–0.166 0.0009–0.0068 0.949–0.952 1.3–4.6 0.144–0.394

4 Jain & Fischer (1979) 0.498–0.994 0.0244–0.0244 0.808–1 1.30 0.499–0.618

5 Ettema (1980) 0.048–2.399 0.0003–0.1070 0.444–1 1.1–1.3 0.068–0.879

6 Chee (1982) 0.509–0.509 0.0038–0.0038 0.852–0.852 1.2–1.2 0.231–0.231

7 Chiew (1984) 0.151–0.265 0.0014–0.0152 0.795–0.977 1.2–4.3 0.170–0.480

8 Yanmaz & Altinbilek (1991) 0.285–1.486 0.0062–0.0237 0.447–0.737 1.1–1.3 0.230–0.234

9 Dey et al. (1995) 1.140–2.165 0.0052–0.0165 0.744–1 1.3–1.4 0.291–0.374

10 Graf (1995) 0.431–0.647 0.0090–0.0123 0.922–0.926 1.30 0.404–0.448

11 Melville (1997) 0.079–1.665 0.0039–0.0075 0.438–0.820 1.30 0.124–0.267

12 Melville & Chiew (1999) 0.190–1.000 0.0048–0.0136 0.415–0.904 1.30 0.122–0.382

13 Sheppard et al. (2004) 0.090–1.634 0.0001–0.0052 0.689–0.909 1.2–1.5 0.072–0.276

14 Sheppard & Miller (2006) 0.310–0.362 0.0005–0.0019 0.560–0.870 1.30 0.084–0.180

15 Ettema et al. (2006) 0.064–0.406 0.0010–0.0010 0.858–0.858 1.30 0.147–0.147

16 Pandey et al. (2018) 0.400–1.459 0.0024–0.1259 0.220–0.970 1.12–1.23 0.220–0.970

17 Pandey et al. (2020a) 0.471–1.350 0.0250–0.0856 0.708–0.984 1.51–1.88 0.433–0.713

18 Pandey et al. (2020b) 0.550–1.350 0.0395–0.0474 0.660–0.940 1.38–1.38 0.424–0.553

Table 4 | Different parameters range for LBS collected from the literature

S. no Author b/y d50/y U/Uc σ Fr

1 Chabert & Engeldinger (1956) 0.214–1 0.0015–0.0052 1.029–1.309 1.30 0.189–0.378

2 Shen et al. (1969) 0.568–1.500 0.0006–0.0026 1.033–3.941 1.4–2.2 0.198–0.951

3 Jain & Fischer (1979) 0.206–0.994 0.0024–0.0244 1.025–4.690 1.30 0.499–1.498

4 Chee (1982) 0.509–1.021 0.0024–0.0140 1.114–4.298 1.2–1.3 0.302–1.213

5 Chiew (1984) 0.085–0.412 0.0013–0.0152 1.007–3.101 1.2–5.5 0.178–0.881

6 Sheppard et al. (2004) 0.250–1.668 0.0001–0.0012 1.088–1.190 1.5–1.5 0.115–0.223

7 Sheppard & Miller (2006) 0.355–0.757 0.0006–0.0028 1.386–5.360 1.30 0.299–1.260

Table 5 | Selection of the best combination for CWS

Experiment no. Combination of input parameters Gamma Std. error V-ratio Mask

1 All input 0.013 0.0026 0.054 11111

2 All input – d50/y 0.015 0.0029 0.059 10111

3 All input – σ 0.021 0.0043 0.083 11101

4 All input – Fr 0.015 0.0031 0.062 11110

5 All input – d50/y, σ 0.031 0.0067 0.126 10101

6 All input – d50/y, σ, Fr 0.059 0.0056 0.236 10100

7 All input – U/Uc 0.018 0.0030 0.073 11011

8 All input – U/Uc, σ 0.021 0.0029 0.085 11001

9 All input – U/Uc, Fr 0.037 0.0040 0.147 11010
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Performance of ANFIS model for CWS

To check the performance of the present model different statistical error indices like mean absolute percentage error (MAPE)
and coefficient of determination (R2) are utilized as mentioned in Khuntia et al. (2019), Das et al. (2020), Devi et al. (2021)
and Kumar et al. (2023). In Table 7, there are 16 combinations made with different MFs and different MF types for CWS using
normalized data. Out of 16 combinations, the membership function [22222] and MF type (gbellmf) of the fifth number com-
bination shows R2¼ 0.95 which is better than other combinations. The performance of various models of clear-water is

presented in Table 7.

Performance of ANFIS model for LBS

In Table 8, there are 16 combinations made with different MFs and different membership function types for LBS using nor-
malized data. Out of 16 combinations, the membership function [33222] and MF type (gaussmf) of the tenth number

Table 6 | Selection of the best combination for LBS

Experiment no. Combination of input parameters Gamma Std. error V-ratio Mask

1 All input 0.024 0.0036 0.098 11111

2 All input – d50/y 0.024 0.0021 0.095 10111

3 All input – σ 0.024 0.0029 0.096 11101

4 All input – Fr 0.027 0.0037 0.108 11110

5 All input – d50/y, σ 0.024 0.0039 0.098 10101

6 All input – d50/y, σ, Fr 0.039 0.0034 0.156 10100

7 All input – U/Uc 0.022 0.0032 0.087 11011

8 All input – U/Uc, σ 0.024 0.0033 0.095 11001

9 All input – U/Uc, Fr 0.052 0.0106 0.206 11010

Note: Bold values indicate the best model output.

Table 7 | Performance of various ANFIS models of CWS using normalized data

Serial No. Membership function MF type

Training Testing Total dataset

R2 MAPE R2 MAPE R2 MAPE

1 22222 trapmf 0.97 10.246 0.87 16.595 0.95 11.823

2 33222 trapmf 0.98 9.103 0.53 24.533 0.86 12.943

3 33322 trapmf 0.98 8.031 0.25 32.364 0.74 14.162

4 33333 trapmf 0.98 7.110 0.55 24.929 0.87 11.544

5 22222 gbellmf 0.99 6.961 0.86 16.718 0.95 9.395

6 33222 gbellmf 0.99 5.202 0.46 22.083 0.84 9.403

7 33322 gbellmf 0.99 3.621 0.47 30.407 0.83 10.288

8 33333 gbellmf 0.99 2.525 0.63 23.117 0.91 7.673

9 22222 gaussmf 0.99 6.927 0.79 20.017 0.94 10.185

10 33222 gaussmf 0.99 5.572 0.70 21.774 0.92 9.622

11 33322 gaussmf 0.99 4.630 0.73 23.728 0.93 9.405

12 33333 gaussmf 0.99 3.939 0.37 43.416 0.77 13.764

13 22222 gauss2mf 0.98 8.974 0.50 40.079 0.80 16.715

14 33222 gauss2mf 0.99 6.333 0.61 19.160 0.89 9.526

15 33322 gauss2mf 0.99 4.922 0.51 22.856 0.75 9.385

16 33333 gauss2mf 0.99 4.356 0.33 42.769 0.74 13.88

Note: Bold values indicate the best model output.
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combination shows R2¼ 0.95 which is better than other combinations. The performance of various models of CWS is pre-

sented in Table 8.

Development of scour depth model using GEP

In this section, the scour depth of a bridge pier is modeled using the GEP approach is described. The GEP model is developed
for the prediction of the scour depth by incorporating five independent input parameters. GeneXpro Tools 5.0 software pack-

age is used for the present study.

GEP model for CWS

Table 9 shows the performance of the GEP model for CWS using normalized data. Using these data, four attempts have been
done with the variation of chromosome number, fitness function, and number of runs for modeling the CWS and LBS.

Table 9 demonstrates the performance of the GEP model for CWS using normalized data and Table 10 shows the correspond-
ing parameters of the optimized GEP model. In Table 9, the coefficient of determination (R2) and MAPE values are depicted
for the training and testing stage. Here, trial number 2 has been selected as less error is found in terms of R2 and MAPE.

Table 8 | Performance of various ANFIS models of LBS using normalized data

Serial no. Membership function MF type

Training Testing Total dataset

R2 MAPE R2 MAPE R2 MAPE

1 22222 trapmf 0.98 5.439 0.80 13.819 0.93 7.564

2 33222 trapmf 0.99 3.879 0.82 14.017 0.94 6.450

3 33322 trapmf 0.99 3.025 0.66 25.436 0.90 8.707

4 33333 trapmf 0.99 2.269 0.59 22.980 0.86 7.520

5 22222 gbellmf 0.99 3.665 0.28 31.826 0.47 10.605

6 33222 gbellmf 0.99 1.340 0.31 24.369 0.64 7.178

7 33322 gbellmf 0.99 0.800 0.50 23.566 0.82 6.571

8 33333 gbellmf 0.99 0.294 0.69 18.741 0.91 4.903

9 22222 gaussmf 0.99 3.918 0.60 15.288 0.84 6.801

10 33222 gaussmf 0.99 2.776 0.81 12.697 0.95 5.291

11 33322 gaussmf 0.99 1.421 0.41 23.110 0.76 6.920

12 33333 gaussmf 0.99 0.356 0.75 14.347 0.93 3.906

13 22222 gauss2mf 0.99 4.302 0.81 13.727 0.94 6.691

14 33222 gauss2mf 0.99 2.817 0.70 45.011 0.91 5.910

15 33322 gauss2mf 0.99 1.969 0.46 26.170 0.78 8.105

16 33333 gauss2mf 0.99 1.157 0.72 19.587 0.91 5.830

Note: Bold values indicate the best model output.

Table 9 | Performance of the GEP model for CWS using normalized data

Trial No. Chro-somes Fitness function No. of runs

Training Testing Total dataset

R2 MAPE R2 MAPE R2 MAPE

1 30 MSE 65,000 0.817 25.817 0.805 26.764 0.808 26.053

2 30 MSE 100,000 0.885 20.346 0.855 24.468 0.880 21.372

3 30 RMSE 100,000 0.861 23.938 0.716 30.999 0.827 25.695

4 50 MSE 55,000 0.844 24.483 0.821 26.987 0.835 25.106

Note: Bold values indicate the best model output.
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The expression tree for CWS is presented in Figure 6. In this expression tree d0¼ b/y, d1¼ d50/y, d2¼U/Uc, d3¼ σ, d4¼ Fr.
In Sub-ET 1, C8 is a constant and the value is 6.27. The equation of this expression tree is expressed in Equation (15).

The equation obtained from the sub-ETs to form the GEP model for CWS may be expressed as:
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GEP model for LBS

Table 11 depicts the performance of the GEP model for LBS using normalized data and Table 12 shows the parameters of the
optimized GEP model for LBS. The results are presented in Table 11 for LBS. In Table 11, trial number 1 shows a low MAPE

value and high R2 value but the expression tree of trial number 1 is complex. In trial number 2, the R2 and MAPE values are
more than the trial number, however, it has been selected for the present study as the expression tree of trial number 2 is not
very complex as compared to the expression of trial no 1.

The scour depth formula is shown in the form of an expression tree for the live-bed in Figure 7. In this expression tree
d0¼ b/y, d1¼ d50/y, d2¼U/Uc, d3¼ σ, d4¼ Fr. In Sub-ET 1 C5, Sub-ET 3 C5, Sub-ET 3 C8 is constant and the value of
C5¼�0.1, C5¼�0.1 and C8¼ 7.92. The equation of this expression tree is expressed in Equation (16).

The equation obtained from the GEP model for LBS may be expressed as:
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Scour depth ratio (SDR) (¼ds/y) value computed using Equation (17) gives a MAPE value of 12.9% but using Equation (16),
it is found to be 14.2% for the testing case and 15.30% for the total dataset (Table 11). However, the expression of Equation

Table 10 | Parameters of the optimized GEP model for CWS modeling

Serial no. Description of parameter Parameters setting

1 Chromosomes 30

2 Genes 3

3 Head size 8

4 Number of generations 100,000

5 Mutation rate 0.044

6 Inversion rate 0.1

7 Function set (þ, -, *, /, Pow, Exp, In)

8 Crossover frequency 0.5

9 One point recombination rate 0.3

10 Two-point recombination rate 0.3

11 Gene recombination rate 0.1

12 Gene transposition rate 0.1

13 Linking function Addition

14 Program size 26

15 Fitness function MSE
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(16) is simpler than Equation (17) as it contains one logarithmic operator only. Therefore, for this present research, Equation

(16) is suggested to be used in predicting the ds/y value for LBS conditions.
For CWS condition, the result shows (see Tables 7 and 9) that the ANFIS model provides an R2 value of 0.95 and MAPE

value of 9.39% and corresponding values for GEP model are 0.88 and 21.37%. For LBS the result shows (see Tables 8 and

10) ANFIS model provides an R2 value of 0.95 and MAPE value of 5.29% and corresponding values for GEP model are
0.90 and 15.31%. Thus, it has been found that the proposed ANFIS model is providing better results than the present GEP
model. Comparison plots of observed and predicted SDR by different scour depth models for CWS and LBS are shown in

Figures 8 and 9 respectively. In Figure 8, the SDR values obtained from the developed ANFIS lie very close to the best-fit
line (45° line i.e., line of good agreement) as compared to the developed GEP model and other scour depth predictive
models (Jain & Fischer 1979; Ettema et al. 1998; Sheppard et al. 2004; Kim et al. 2015) for CWS condition. The SDR
value obtained from Jain & Fischer (1979) and Sheppard et al. (2004) models lie above the best-fit line indicating the over-

estimation of SDR values. It is observed in Figure 8 that for observed SDR, 1.0, Ettema et al.’s (1998) scour depth model
is overestimating the SDR and for observed SDR. 1.0, it is underestimating. For observed SDR. 0.80, the Kim et al.
(2015) clear-scour depth predictive model results lie below the best-fit line indicating an underestimation of the SDR.

In Figure 9, the SDR values obtained from the developed ANFIS and GEP lie very close to the best-fit line as compared to
other scour depth predictive models (such as Colemon 1971; Jain & Fischer 1979, Johnson 1995; Yanmaz 2001) for LBS con-
dition. The predicted SDR values from all the models are found to be very close to the best-fit line, for low observed values

Figure 6 | Expression tree for CWS.
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(i.e., 0.4–0.6) except for Jain & Fischer’s (1979) scour depth predictive model. For the LBS data set used in the present
research, it is found that the values predicted from the Jain & Fischer (1979) and Johnson (1995) models are higher than

most of the observed SDR values and for Colemon (1972) model, it is lower than the observed values.

Statistical error analysis

The statistical error indices such as MAPE, root mean square error (RMSE), and coefficient of determination (R2) are com-
puted for both the present models i.e., ANFIS and GEP models along with four scour depth predictive equations such as Jain
& Fischer (1979), Ettema et al. (1998), Sheppard et al. (2004), Kim et al. (2015), and was compared to different conditions. By

examining the error for different ranges of b/y, U/Uc, and Fr, it is possible to determine the strength of present models and
other existing equations, which are most useful under various conditions.

In CWS, the following ranges are selected for b/y, U/Uc, and Fr:

(a) b/y, 0.25, 0.25� b/y, 0.5, 0.5� b/y, 1.0, 1� b/y, 1.5 and b/y� 1.5
(b) U/Uc, 0.5, 0.5�U/Uc, 0.7, 0.7�U/Uc ,0.8, 0.8�U/Uc, 0.9, and 0.9�U/Uc ,1.0

(c) Fr, 0.20, 0.20� Fr, 0.40, 0.40� Fr ,0.6, 0.60 �b/y, 0.80, and 0.8� Fr, 1.0

In LBS, the following ranges are selected for b/y, U/Uc, and Fr:

(a) b/y, 0.25, 0.25 �b/y, 0.5, 0.5 �b/y, 1.0, and 1.0� b/y, 1.5
(b) 1.0,U/Uc ,1.2, 1.2�U/Uc, 1.5, 1.5�U/Uc, 2.5, 2.5 �U/Uc ,3.5 and U/Uc� 3.5

Table 11 | Performance of the GEP model for LBS using normalized data

Trial No. Chromosomes Fitness function No. of runs

Training Testing Total dataset

R2 MAPE R2 MAPE R2 MAPE

1 30 MSE 65,000 0.923 15.235 0.875 12.954 0.911 14.657

2 30 MSE 100,000 0.910 15.685 0.870 14.204 0.900 15.310

3 30 RMSE 100,000 0.915 15.991 0.871 14.772 0.904 15.682

4 50 MSE 55,000 0.922 16.697 0.863 14.647 0.910 16.178

Note: Bold values indicate the best model output.

Table 12 | Parameters of the optimized GEP model for LBS modeling

Serial no. Description of parameter Parameter setting

1 Chromosomes 30

2 Genes 3

3 Head size 8

4 Number of generations 125,000

5 Mutation rate 0.044

6 Inversion rate 0.1

7 Function set (þ, �, *, /, Pow, Exp, ln)

8 Crossover frequency 0.5

9 One point recombination rate 0.3

10 Two-point recombination rate 0.3

11 Gene recombination rate 0.1

12 Gene transposition rate 0.1

13 Linking function Addition

14 Program size 28

15 Fitness function MSE
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(c) Fr, 0.25, 0.25� Fr ,0.50, 0.50 �Fr ,0.75, 0.75� b/y, 1.0, and Fr� 1.0

Table 13(a)–13(c) provides the MAPE, RMSE, and R2 values of two present models and four scour depth predictive
equations for selected ranges of b/y, U/Uc, and Fr, respectively. For b/y, 0.25, MAPE is high for Ettema et al. (1998),
Kim et al. (2015), GEP (present model), and Sheppard et al. (2004). In addition, RMSE is high for Jain & Fischer (1979),
GEP (present model), Kim et al. (2015) and Ettema et al. (1998) and R2 is low for Kim et al. (2015) and Jain & Fischer
(1979). For both 0.5� b/y, 1.0 and 1.0� b/y, 1.5, MAPE and RMSE are high for Sheppard et al. (2004), Kim et al.
(2015), Ettema et al. (1998) and Jain & Fischer (1979). For b/y� 1.5, MAPE is high for Jain & Fischer (1979), Sheppard
et al. (2004), and Kim et al. (2015). In addition, RMSE is high for Sheppard et al. (2004), Kim et al. (2015) and Ettema
et al. (1998) and R2 is low for GEP, Kim et al. (2015) and Ettema et al. (1998). At all the ranges of b/y, ANFIS (present

model) performs well with minimum MAPE and RMSE and high R2 value. Table 13(b) provides the MAPE, RMSE, and
R2 values for two present models and four scour depth predictive equations for selected ranges of U/Uc. For U/Uc, 0.5,
MAPE is high for all the approaches. In addition, RMSE is high for Sheppard et al. (2004), Jain & Fischer (1979), GEP (pre-
sent model), Kim et al. (2015), and Ettema et al. (1998), and R2 is low for Kim et al. (2015), Jain & Fischer (1979), however,

the ANFIS model provides R2 value close to 0.90. For both 0.5 �U/Uc, 0.7 and 0.7 �U/Uc ,0.8, Jain & Fischer (1979),
Ettema et al. (1998), Sheppard et al. (2004) and Kim et al. (2015) show R2 value in the range of 0.44–0.68. MAPE and
RMSE are high for Ettema et al. (1998). For 0.8 �U/Uc, 0.9, Jain & Fischer (1979) and Ettema et al. (1998) shows a

very high MAPE which considers the (b/d50) value in their equation. Sheppard et al. (2004) show an R2 value greater
than 0.70 with an RMSE value of 0.52 for 0.9�U/Uc, 1.0. The developed ANFIS model provides MAPE of less than
15% and an R2 value of more than 0.90 for all ranges except U/Uc, 0.5. In Table 13(c), for Fr, 0.2, the least MAPE and

Figure 7 | Expression tree for LBS.
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RMSE are found from the ANFIS model with a high R2 value. Further, the errors are gradually reduced for high values of Fr.
However, the previous models are providing unsatisfactory results with high errors and low R2 values.

Table 14(a)–14(c) provides the MAPE, RMSE, and R2 values found from the present approaches and four scour depth pre-
dictive equations, for selected ranges of b/y, U/Uc, and Fr, respectively. In Table 14(a), it is observed that the Johnson (1995)
model renders less values of MAPE for the low range of b/y (,0.25), and present approaches failed to provide satisfactory

Figure 8 | Comparison of observed vs. predicted SDR by different scour depth models for CWS.

Figure 9 | Comparison of observed vs. predicted SDR by different scour depth models for LBS.
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results, due to fewer numbers of input data sets in this range. For b/y. 1.5, it has been observed that the present ANFIS
model shows an R2 value of 0.67 indicating the poor performance of the model in this domain as there are only 12 input
data sets in the training and testing stage. However, the present GEP model shows less error and high R2 values for all

other ranges of b/y value. Table 14(b) demonstrates that the present GEP model and Colemon (1972) render less values
of MAPE and RMSE for all the ranges of U/Uc. However, the present GEP model shows the least error for all the ranges
of U/Uc value. In Table 14(c), it is observed from the error analysis that for Fr, 0.25, the present GEP model and

Table 13 | (b) Error analysis of different approaches in estimating ds/y in the CWS condition and selected ranges of U/Uc

Different approaches U/Uc, 0.5 0.5�U/Uc, 0.7 0.7�U/Uc, 0.8 0.8�U/Uc, 0.9 0.9 �U/Uc, 1.0

ANFIS (Present model) 48.55 13.84 14.57 14.12 13.38
0.12 0.10 0.15 0.10 0.12
0.89 0.93 0.95 0.98 0.95

GEP (Present model) 94.39 35.10 36.46 26.98 25.38
0.19 0.20 0.27 0.18 0.15
0.70 0.74 0.87 0.91 0.92

Jain & Fischer (1979) 323.44 38.31 69.82 90.30 109.07
0.44 0.36 0.45 0.54 0.56
0.57 0.53 0.60 0.54 0.54

Ettema et al. (1998) 272.29 46.18 74.24 104.72 113.46
0.36 0.24 0.33 0.37 0.38
0.59 0.62 0.68 0.67 0.66

Sheppard et al. (2004) 271.58 39.06 46.82 67.17 87.25
1.72 0.21 0.37 0.49 0.52
0.50 0.53 0.66 0.75 0.74

Kim et al. (2015) 121.64 37.54 55.78 61.01 74.46
0.22 0.31 0.49 0.38 0.35
0.68 0.52 0.44 0.37 0.36

Note: Three values presented in each cell represent MAPE, RMSE, and R2, respectively.

Table 13 | (a) Error analysis of different approaches in estimating ds/y in the CWS condition and selected ranges of b/y

Different approaches b/y, 0.25 0.25� b/y, 0.5 0.5� b/y, 1.0 1�b/y, 1.5 b/y� 1.5

ANFIS (Present model) 23.22 11.25 12.81 12.11 10.81
0.06 0.08 0.12 0.18 0.25
0.87 0.88 0.93 0.89 0.67

GEP (Present model) 45.92 27.71 30.17 21.46 14.29
0.11 0.19 0.22 0.24 0.31
0.74 0.67 0.76 0.79 0.30

Jain & Fischer (1979) 25.44 109.11 151.98 38.10 88.22
0.46 0.84 0.66 0.18 0.11
0.24 0.01 0.02 0.46 0.68

Ettema et al. (1998) 192.19 58.05 109.46 54.61 15.40
0.24 0.25 0.45 0.42 0.32
0.69 0.40 0.29 0.38 0.16

Sheppard et al. (2004) 42.46 43.76 121.76 107.64 34.12
0.09 0.39 0.80 0.84 0.59
0.71 0.16 0.05 0.11 0.48

Kim et al. (2015) 93.55 38.67 74.40 43.26 52.88
0.13 0.24 0.40 0.50 0.95
0.33 0.16 0.02 0.03 0.30

Note: Three values presented in each cell represent MAPE, RMSE, and R2, respectively.
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Yanmaz (2001) render less values of MAPE and RMSE. For 0.25� Fr, 0.50 and 0.75� Fr, 1.0, the present ANFIS
model renders less error than other models. However, the present GEP model shows the least error for other ranges of Fr
value.

Overall, the proposed ANFIS model shows better accuracy for both CWS and LBS and the GEP model shows better accu-
racy for certain definite input ranges of b/y, U/Uc, and Fr in the case of LBS and performed well over the other existing
empirical models.

Table 14 | (a) Error analysis of different approaches in estimating ds/y in the LBS condition and selected ranges of b/y

Different approaches b/y, 0.25 0.25�b/y, 0.5 0.5�b/y, 1.0 1.0�b/y, 1.5

Present model (ANFIS) 24.38 13.67 11.92 13.68
0.11 0.14 0.27 0.25
0.30 0.81 0.84 0.35

Present model (GEP) 23.90 16.39 9.31 12.82
0.09 0.14 0.15 0.18
0.24 0.82 0.88 0.53

Colemon (1972) 24.88 22.16 7.41 19.02
0.09 0.20 0.08 0.24
0.43 0.80 0.86 0.42

Jain & Fischer (1979) 96.10 61.79 9.94 29.75
0.28 0.30 0.14 0.39
0.11 0.58 0.88 0.49

Johnson (1995) 18.46 11.78 9.48 56.66
0.06 0.11 0.22 0.67
0.59 0.85 0.84 0.57

Yanmaz (2001) 52.13 25.28 8.77 14.08
0.15 0.14 0.05 0.22
0.16 0.78 0.85 0.53

Table 13 | (c) Error analysis of different approaches in estimating ds/y in the CWS condition and selected ranges of Fr

Different approaches Fr, 0.20 0.20� Fr, 0.40 0.40� Fr, 0.6 0.60 � b/y, 0.80 0.8� Fr, 1.0

Present model (ANFIS) 20.07 12.99 15.81 10.92 11.20
0.07 0.13 0.11 0.13 0.22
0.90 0.95 0.96 0.88 0.92

Present model (GEP) 44.67 28.54 33.20 18.03 30.52
0.13 0.24 0.19 0.13 0.23
0.68 0.88 0.87 0.89 0.90

Jain & Fischer (1979) 92.16 33.10 135.28 212.72 281.00
0.18 0.25 0.61 0.91 1.18
0.47 0.83 0.49 0.63 0.70

Ettema et al. (1998) 183.69 47.25 123.26 133.19 158.01
0.30 0.23 0.41 0.53 0.63
0.57 0.84 0.54 0.70 0.76

Sheppard et al. (2004) 53.38 43.92 114.94 145.54 146.67
0.12 0.69 0.67 0.71 0.71
0.72 0.47 0.57 0.62 0.86

Kim et al. (2015) 71.35 51.75 79.28 86.68 105.24
0.15 0.49 0.33 0.35 0.48
0.47 0.81 0.42 0.46 0.71

Note: Three values presented in each cell represent MAPE, RMSE, and R2, respectively.
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CONCLUSIONS

In the present study, 442 and 213 data have been used for the modeling of clear-water and live-bed scour depth, respectively.

The Gamma test reveals that pier diameter, flow depth, Froude number, approach flow velocity, critical flow velocity, geo-
metric standard deviation, and median grain size are the most critical parameters to predict the scour depth at the bridge
pier. In this study, for the prediction of clear-water and LBS depths through the ANFIS model, generalized bell membership

Table 14 | (b) Error analysis of different approaches in estimating ds/y in the LBS condition and selected ranges of U/Uc

Different approaches 1,U/Uc, 1.2 1.2�U/Uc, 1.5 1.5�U/Uc, 2.5 2.5�U/Uc, 3.5 U/Uc� 3.5

Present model (ANFIS) 21.59 14.74 17.39 18.31 22.10
0.20 0.14 0.22 0.28 0.35
0.61 0.86 0.86 0.87 0.53

Present model (GEP) 28.23 14.32 14.59 13.01 10.19
0.16 0.10 0.11 0.14 0.18
0.83 0.92 0.92 0.89 0.75

Colemon (1972) 33.42 15.47 16.19 15.45 19.48
0.15 0.15 0.13 0.16 0.27
0.85 0.85 0.90 0.88 0.68

Jain & Fischer (1979) 55.48 54.47 66.80 61.04 41.33
0.22 0.27 0.31 0.37 0.40
0.64 0.80 0.93 0.91 0.76

Johnson (1995) 31.01 28.88 19.03 17.97 14.96
0.22 0.31 0.26 0.29 0.30
0.86 0.86 0.91 0.88 0.68

Yanmaz (2001) 36.33 29.32 29.40 23.62 14.55
0.16 0.15 0.15 0.17 0.18
0.79 0.85 0.93 0.89 0.77

Note: Three values presented in each cell represent MAPE, RMSE, and R2, respectively.

Table 14 | (c) Error analysis of different approaches in estimating ds/y in the LBS condition and selected ranges of Fr

Different approaches Fr, 0.25 0.25� Fr, 0.50 0.50� Fr, 0.75 0.75� Fr, 1.0 Fr� 1.0

Present model (ANFIS) 21.61 19.89 23.14 11.97 24.64
0.29 0.15 0.18 0.16 0.50
0.81 0.84 0.84 0.85 0.66

Present model (GEP) 22.73 14.28 15.74 13.32 14.30
0.16 0.11 0.10 0.15 0.22
0.84 0.90 0.90 0.86 0.75

Colemon (1972) 26.35 21.80 17.37 14.66 19.16
0.19 0.14 0.09 0.18 0.31
0.84 0.86 0.91 0.84 0.34

Jain & Fischer (1979) 41.65 56.19 79.30 34.98 33.98
0.27 0.25 0.33 0.34 0.41
0.68 0.75 0.93 0.86 0.39

Johnson (1995) 30.01 24.27 17.74 24.56 25.13
0.33 0.25 0.20 0.39 0.38
0.88 0.87 0.88 0.83 0.34

Yanmaz (2001) 14.30 26.42 39.20 13.82 19.88
0.17 0.12 0.16 0.15 0.26
0.81 0.86 0.92 0.84 0.40

Note: Three values presented in each cell represent MAPE, RMSE, and R2, respectively.
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function (gbellmf) of size [22222] and Gaussian membership function (gaussmf) of size [33222] have been recommended,

respectively. The coefficient of determination (R2) value using normalized data was found to be 0.95 and 0.95 for clear-
water and LBS, respectively. The MAPE value using normalized data was found to be less than 10 and 6% for clear-water
and LBS, respectively.

In the GEP model for the prediction of scour depth in both clear-water and live-bed conditions, MSE fitness function and
30 chromosomes have been recommended. The coefficient of determination (R2) value using normalized data was found to
be 0.88 and 0.90 for clear-water and LBS, respectively. The MAPE value using normalized data was found to be less than 22
and 16% for clear-water and LBS, respectively. Comparison of the performance of the ANFIS model with a GEP model for

the prediction of clear-water and LBS depth demonstrates that the ANFIS model is more accurate for CWS and GEP model is
more accurate as evident from the error indices.

For different input ranges of b/y, U/Uc, and Fr, the ANFIS model was found to provide less error in terms of MAPE and

RMSE and high R2 value for CWS condition, however, in LBS condition, the GEP model was found to provide less error and
high R2 value for certain ranges of different input parameter.

The limitation of the present approach is the range of data sets used in modeling of CWS and LBS. The model will provide

better results if the input parameter value lies in the same range as mentioned in Tables 3 and 4 respectively for CWS and
LBS. Further research is needed to improve the accuracy of the model by incorporating the impact of bridge pier shapes.
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