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ABSTRACT

Drought disasters have caused serious impacts on the social economy and ecological environment, which are continuously and increasingly

exacerbated by climate warming and other factors. Drought disaster management usually involves processing a mass of isolated data from

many fields expressed in different terminologies and formats. These heterogeneous data or so-called data silos have greatly hindered

drought disaster management in an information-rich manner. Establishing a drought disaster knowledge graph can facilitate the reuse of

these heterogeneous data and provide references for drought disaster management, and ontology design and named entity recognition

are the two major challenges. Therefore, in this study, we first designed a drought disaster ontology by recognizing the major concepts in

the drought disaster field and their relationships, which was implemented with an ontology modeling language. We next constructed a

drought disaster corpus and an integrated entity recognition model that was built by integrating multiple deep learning methods. Finally,

we applied the integrated entity recognition model to extract information from the CNKI literature database. The integrated model shows

satisfactory results in drought disaster named entity recognition. We thus conclude that combining ontology and deep learning technology

toward establishing a knowledge graph for drought disasters is promising.
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HIGHLIGHTS

• Ontology was used to construct the schema for drought disaster knowledge graphs.

• A corpus of drought disasters was constructed with unstructured documents.

• Automatic drought disaster named entity recognition was achieved by the deep learning method.
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GRAPHICAL ABSTRACT

INTRODUCTION

Drought disasters are among the most serious natural disasters due to their wide and long-lasting profound impacts on the

social economy and ecological environment. It has caused a series of problems, such as reduced agricultural production,
forest fires, land desertification and even social unrest and civilization demise (Zhang et al. 2020; Khiabani et al. 2021).
Affected by global climate warming and other factors, the frequency of drought disasters, especially severe or extremely
severe drought disasters, has increased dramatically (Sheffield & Wood 2008; Luo et al. 2018). Today, the impacts of

drought disasters are becoming increasingly serious worldwide (Sheffield & Wood 2008; Zhang et al. 2019; Wu et al.
2022). Drought disaster management research, including research on drought disaster evolution, temporal and
spatial drought characteristics, early warning and forecast systems, risk assessment, and management measures, has

been a research hotspot among the hydrological community in recent years (Li et al. 2019; Wu et al. 2021). However,
drought disasters involve many internal factors, such as disaster-inducing factors, hazard-inducing environments,
hazard-affected bodies, and disaster prevention and mitigation abilities. The relationships between these factors

are complex and highly uncertain, which poses severe challenges to drought disaster management (Li et al. 2019;
Israel et al. 2021).

One of the most crucial factors contributing to the drought disaster management dilemma is the lack of comprehensive

drought disaster knowledge. Drought disasters involve a mass of data from different fields involving meteorology, hydrology,
agriculture, forestry, ecology, social economy, and many others (Sheffield & Wood 2008; Luo et al. 2018). The terminologies
and formats used to describe and store this information differ in many ways. These multisource heterogeneous data form data
silos (Luo et al. 2018) and thus hinder the comprehensive understanding of drought disasters and inevitably lead to a negative

impact on managing drought disasters in an information-rich manner.
A knowledge graph is a formal description framework of general semantic knowledge (Liu et al. 2018) that Google first

proposed in 2012. Knowledge graphs use visualization technology to describe, mine, analyze, construct and display knowl-

edge and its interrelations. They provide an efficient method for organizing, managing and analyzing massive data, making it
easier to acquire knowledge more conveniently (Abu-Salih 2021). To date, knowledge graphs have been successfully applied
in many fields and have obtained fruitful research results (Weng et al. 2017; Liang et al. 2018; Zhu et al. 2019; Díaz &
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Vilches-Blázquez 2022; Ge et al. 2022). For instance, Ge et al. (2022) proposed a disaster prediction knowledge graph for

disaster prediction by integrating remote sensing information, relevant geographic information and expert knowledge in
the disaster analysis field. Weng et al. (2017) used a contextualized knowledge graph embedding model to construct a tra-
ditional Chinese medicine knowledge graph from Chinese physicians and applied it to the decision-making process.

Establishing a drought disaster knowledge graph can facilitate the reuse of these heterogeneous data and provide references
for drought disaster management (Fan et al. 2020). However, the use of knowledge graphs in the drought disaster manage-
ment field is still challenging due to the complexity of drought disasters and the data silos between different fields. To our
knowledge, no reports are applying the knowledge graph method to drought disaster management.

Ontology design and named entity recognition are the two major challenges that must be overcome to establish a knowl-
edge graph (Zheng et al. 2020). Since ontology has a strong semantic expression ability and can effectively eliminate semantic
discrepancies between data (Matos et al. 2010), some scholars have successfully constructed flood disaster ontologies based

on ontology (Wu et al. 2020; Son et al. 2021). For instance, Son et al. (2021) proposed an ontology for flooding disasters to
resolve the heterogeneity among various disaster data and provided interoperability among domains. Hence, in this study, we
adopted ontology to define concepts, relationships, properties and individuals and designed the drought disaster ontology

accordingly. Another major challenge is automatically extracting information from a large quantity of unstructured docu-
ments through named entity recognition of drought disasters. Named entity recognition is one of the fundamental and key
tasks for knowledge graph construction (Zheng et al. 2020). In general, entity recognition methods can be divided into

three categories: rule-based methods, machine learning methods and deep learning methods (Mu et al. 2020). Since deep
learning methods have shown great potential in natural language processing and have been applied successfully to derive
knowledge from massive unstructured document resources, they have been widely used to implement named entity recog-
nition (Fan et al. 2020; Mu et al. 2020; Zheng et al. 2020). For instance, Fan et al. (2020) proposed a deep learning-based

named entity recognition model to facilitate geological hazard literature reuse and provide a reference for geological
hazard governance.

In this study, we aimed to evaluate a method that combines ontology design and named entity recognition toward estab-

lishing a drought disaster knowledge graph. First, we designed a drought disaster ontology by recognizing the major concepts
in the drought disaster field and their relationships. Then, we implemented the ontology with an ontology modeling
language. Second, we constructed a drought disaster corpus and an integrated model based on a combination of bidirec-

tional encoder representations from transformers (BERT), bidirectional long short-term memory (BiLSTM) and
conditional random field (CRF) to recognize named entities from a large number of unstructured drought disaster
documents.

The main contributions of this paper are as follows:

(1) The concepts and their relationships to the drought disaster ontology were designed, and the ontology was implemented
with an ontology modeling language.

(2) A drought disaster corpus was constructed with unstructured documents and is freely available to the public.
(3) Deep learning methods were adopted to automatically recognize named entities of drought disasters.

METHODS

Drought disaster knowledge graph construction

A drought disaster knowledge graph is established in two phases, i.e., constructing the schema layer and the data layer
(Figure 1). The schema layer is generally constructed top-down. The first task in this phase includes defining hierarchical con-
cepts, attributes of a concept, and relationships among concepts after full consideration of the disaster-inducing factors,
hazard-inducing environment, hazard-affected body, disaster prevention and mitigation ability. The second task is the ontol-

ogy implementation for drought disasters based on an ontology modeling language. In contrast, constructing the data layer
employs a bottom-up method. In this phase, machine learning or deep learning methods are usually employed to recognize
named entities from various data sources (e.g., basic data, journal literature, internet resources and social media). The

relationships of different entities are recognized, and finally, knowledge is fused and stored. In this study, we mainly focused
on the schema layer construction process with ontology and named entity recognition in the data layer using deep learning
methods. The following sections will further elucidate these methods.
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Drought disaster ontology design

Design the hierarchical structure of concepts

Similar to the hierarchical structure of a tree, ontology adopts a hierarchical structure to depict the relationship of concepts. A
concept is equivalent to a tree node, and the relationships between concepts correspond to edges in a tree, thus lending it

great ability and flexibility in representing the hierarchical structure intuitively. The hierarchical structure of drought disaster
ontology is designed by referring to various materials pertaining to drought disasters. According to the drought disaster for-
mation process, drought disaster concepts were divided into four categories: disaster-inducing factors, disaster-inducing

environment, disaster-affected body, and disaster prevention and mitigation ability. A drought disaster ontology conceptual
structure with four levels was defined, as shown in Figure 2.

Identify the relationships between concepts

There are complex relationships among the concepts in the drought disaster ontology. However, these relationships can be

roughly categorized as temporal, spatial and semantic relationships.

(1) Temporal relationships

Subevents can occur simultaneously or successively in the formation of a drought disaster. Sometimes the temporal
relationships between these events can be very difficult to discern, and thus, a comprehensive and accurate definition of tem-

poral relationships is critical for establishing drought disaster ontologies. In this study, we employed six relationships to depict
the temporal relationships between drought disaster subevents (Table 1).

(2) Spatial relationships

According to spatial characteristics, the spatial relationships were defined from three aspects, i.e., relative distance, top-
ology and direction (Figure 3). It was noted that the three relationship categories were used to depict not only the

relationships between subevents in a drought disaster but also the relationships between different drought disasters.

(3) Semantic relationships

In addition to the temporal and spatial relationships, the remaining relationships within concepts or instances and relation-
ships between concepts and instances were defined as semantic relationships (Table 2).

Figure 1 | Construction process of drought disaster knowledge graphs.
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Implementation of the drought disaster ontology

Web ontology language (OWL) is an ontology implementation language recommended by the Worldwide Web Consortium

(W3C) that provides rich semantic elements and has strong semantic expression ability. In this study, OWL was used as the
implementation language, and Protege5.5, a widely used visual tool for ontology construction, was adopted as the develop-
ment tool to implement the drought disaster ontology. The main implementation steps are described as follows.

(1) Define classes and their hierarchy

Based on the concept design of the drought disaster ontology, the basic schema consisting of drought disaster concepts and
their relationships was established. This diagram includes four top-level classes and their corresponding subclasses. The

Figure 2 | Conceptual hierarchical structure diagram of the drought disaster ontology.

Table 1 | Temporal relationships of the drought disaster ontology

Categories Expressions Descriptions

Before Before (A,B) A occurs before B

After After (A,B) A occurs after B

During During (A,B) B occurred later than A but ended earlier than A

Meet Meet (A,B) A ends when B occurs

Overlap Overlap (A,B) When A occurs, B has not yet occurred, while B was not yet over when A ended

Disjoint Disjoint (A,B) The occurrence time of A and B is discontinuous
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subclasses can be further divided into subordinate subclasses. The inheritance relationships between class and subclass are

represented by the hierarchy of classes. For example, the top-level class DroughtDisaster is inherited by the DisasterPreven-
tionMitigation class, and the DisasterPreventionMitigation class, in turn, is the father class of NonEngineeringMeasures,
which is further inherited by the methods, data and region subclasses. These inheritance relationships between classes

form a multilevel inheritance tree.

(2) Define class properties and individuals

The class properties in the ontology include object and data properties. Object properties represent the relationships
between classes. Based on the ontology design of drought disasters, object properties were defined by setting the domain

and range to classes involved in the relationships. Data properties were used to represent the internal data characteristics
of the class, which were determined by the properties of the class in the drought disaster ontology. Individuals were used
to describe the members of a class and represent the instance objects of actual interest in the study field.

Drought disaster named entity recognition

Bidirectional encoder representations from transformers

BERT is a pretraining natural language model based on the transformer encoder proposed by Google in 2018 (Nguyen et al.
2022). The BERT training process includes two stages: the pretraining stage and the dynamic fine-tuning stage. In the

Figure 3 | Spatial relationships of the drought disaster ontology.

Table 2 | Semantic relationships of the drought disaster ontology

Categories Expressions Descriptions

hasSubclass hasSubclass (A,B) A has subclass B

hasIndividual hasIndividual (A,B) Class A has individual B

isPartOf isPartOf (A,B) B is part of A

Homologous Homologous (A,B) A and B are homologous

Amplify Amplify (A,B) The occurrence of A and B simultaneously leads to the occurrence of another disaster

Cause Cause (A,B) Disaster A causes hazard-affected body B

Induce Induce (A,B) A induces B
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pretraining stage, the inputs are composed of token embeddings, segment embeddings and position embeddings. The masked

language model (MLM) and next sentence prediction (NSP) are used to pretrain transformer encoders to generate token
embedding representations with rich semantic features. In the dynamic fine-tuning stage, the token embeddings are dynami-
cally fine-tuned according to the specific task, so the ability of token embedding representation to represent the text context of

the task is further strengthened. In this study, BERT was adopted to encode each character of the drought disaster text to
generate the token embedding sequences of the sentences and dynamically fine-tune the token embeddings according to
the context to generate the token embedding matrix. BERT can solve the problem that traditional token embedding gener-
ation methods cannot adapt to the context of specific tasks effectively.

Bidirectional long short-term memory

Long short-term memory (LSTM) is a typical recurrent neural network that is good at discovering the correlation between

characters, capturing long-term contextual sequence information of a corpus and possessing the ability of a neural network
to fit nonlinearity (Zanfei et al. 2022). It uses gated units to realize long-term memory and solves the gradient disappearance
or gradient explosion problem during the training of cyclic neural networks. It controls the memory unit state using input
gates, forget gates and output gates. The input gates determine the input data that need to be saved to the memory units at

the present moment, the forget gates determine the memory units from the previous moment that need to be retained to
the present moment and the output gates control the current memory units that need to be output. The disadvantage of
LSTM is that it can only contain forward information but cannot obtain backward information. BiLSTM can overcome

the LSTM shortcoming because it is a combination of the forward and backward LSTM, which can obtain the forward
and backward contextual information simultaneously. In this study, BiLSTMwas used to capture the long-distance contextual
information in the drought disaster text. The entities of drought disaster text were recognized from the forward and backward

directions, effectively improving the named entity recognition performance.

Conditional random field

CRF is an undirected graph model of probability. Given the input random variables, it can calculate the conditional prob-

ability distribution of the output random variables (Hiroyuki & Hitoshi 1994). The advantage of the CRF is that it can
fully consider the local features of the adjacent tags in a sentence, learn the constraint information of the adjacent tags
and obtain the optimal tag sequence through data training. Therefore, the combination of BiLSTM and CRF can compensate

for the shortcomings of BiLSTM. The combined model not only has the advantage of long-term memory but also considers
the local dependence among the adjacent tags. In this study, CRF was adopted to predict the entity tags of drought disasters.
The logarithmic likelihood method was used to maximize the likelihood probability of the tag sequence, the group of tag
sequences with the highest overall probability was decoded and the drought disaster entity identification prediction result

was output.

Integrated model

To overcome the disadvantages and take advantage of BERT, BiLSTM and CRF, the three models were combined, and an
integrated model that chains BERT, BiLSTM and CRF was built (Figure 4). The working flows of the integrated model are
depicted as follows. First, the word vectors were calculated from the input drought disaster texts by the pretrained BERT
model. Second, the word vectors were transmitted to the BiLSTM layer, and the BiLSTM further extracted the contextual

features of drought disaster texts and outputted the score of the tags. Finally, the relationships between the tags were con-
strained by the CRF layer to obtain the optimal tag sequence, and the corresponding tag for each drought disaster entity
was calculated.

Experimental setup

Corpus construction

Web crawler technology was used for data acquisition in this study. A total of 498 studies were retrieved from the Chinese
knowledge information gateway (CNKI) database with the search criteria of ‘title¼Drought disaster’. BeautifulSoup (https://
www.crummy.com/software/BeautifulSoup/), a web crawler implemented in Python, was used for data acquisition, and the

acquisition results were saved as ‘.txt’ files. Some irrelevant or invalid studies were filtered, and 422 studies were retained as
the raw materials for the corpus construction. The abstracts of these studies were further extracted from the raw materials.
Specifically, the abstract residing within the span label with an ID of ‘ChDivSummary’ was extracted. For each abstract,
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auxiliary words that appeared repeatedly but with no or little value for textual analysis were further truncated to facilitate the
subsequent extraction of named entities.

In this study, supervised learning based on deep learning methods was adopted for named entity recognition. This deter-
mines that input texts for the named entity recognition model need labeling. In the research literature on drought disasters
(Yang 2018), most of the literature addressed three basic elements: the proposed methods, the data used and the study region.

These three entities are critically important for readers to understand the studied drought disaster event. Therefore, in this
study, we took the subclasses of NonEngineeringMeasures (i.e., methods, data and region subordinate classes) as an example
to demonstrate whether combining ontology and deep learning methods is feasible to establish knowledge graphs for drought
disasters. For named entity recognition, the BIO annotation method is generally used for labeling (Zheng et al. 2020), where

‘B’, ‘I’ and ‘O’ denote whether a text segment is at the beginning, inside or outside of an entity, respectively. Because, in some
cases, two entities may reside right next to each other, and the ‘I’ and ‘O’ labels are not sufficient to separate them. Therefore,
an additional label, ‘B’, is introduced to avoid this issue. In this paper, the BIO annotation method was adopted to annotate

the three named entities (i.e., methods, data and region entities; Table 3).
In the raw corpus, there are certain patterns among the named entities of drought disasters due to the similar syntax of the

abstracts. Using these patterns to design matching rules is helpful for drought disaster named entity extraction, which can

effectively reduce the workload of manual annotation. Considering the study of Fan et al. (2020), regular expressions, as
matching rules, were adopted to obtain named entities. These regular expressions are shown in Table 4.

Figure 4 | Structure diagram of the integrated model. (Note: the input words ‘面板数据模型’ mean ‘panel data model’, which is a method for
studying drought disasters; x1, x2, x3, x4, x5 and x6 are the input word vectors; y1, y2, y3, y4, y5 and y6 are the sequence vectors output by
the BiLSTM; c1, c2, c3, c4, c5 and c6 are the label sequence representations output by the CRF; MD stands for methods; and ‘B’ and ‘I’ denote
whether a text segment is at the beginning or inside of an entity, respectively.)

Table 3 | Tags for named entities (Note: MD, DT and RG are short for methods, data and region, respectively; and ‘B’, ‘I’ and ‘O’ denote
whether a text segment is at the beginning, inside or outside of an entity, respectively.)

Entity type Method Data Region Nonentity

Tags B-MD, I-MD B-DT, I-DT B-RG, I-RG O
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After applying regular expressions to annotate the raw corpus, the results were further manually checked and corrected.

The total number of final annotations was 17,353, and the statistics for each tag are shown in Table 5.

Experimental environment and parameter setting

The experiment was performed on a workstation geared with an RTX 2080Ti GPU, an Inter(R) Core i7-8700K CPU, and two
memory chips with 32 GB memory capacity. The workstation was installed with a Windows 10 64-bit operating system.

Python 3.7 served as the programming environment, and PyTorch served as the deep learning framework to support training
and running the integrated model. To properly train and validate the performance of the integrated model, the experimental
dataset was divided into a training set and a test set with a ratio of approximately 8:2.

The BERT, BiLSTM and CRF integrated model has a large number of parameters. To improve the parameter calibration

efficiency, some insensitive parameters were directly set to values derived from the relevant literature (Tang et al. 2022).
For instance, the number of neurons in the BiLSTM was set to 256, the number of transformer layers was set to 12 and
the length of the text sequence was set to 300. The other parameters, which were sensitive and had remarkable impacts

on the experimental results, were optimized with the Adam optimizer. The learning rate was set to 0.0005, the number of
epochs was 20, the batch size was 32 and the dropout was 0.5 when carrying out the training and validation.

Evaluation indices

Three indices, precision, recall and F1, are usually adopted for evaluating the performance of named entity recognition in

many studies (Fan et al. 2020; Mu et al. 2020; Zheng et al. 2020). Therefore, we also used them to assess the effectiveness
in this paper. The formulas for these indices are given as follows:

Precision ¼ TP
TPþ FP

� 100%

Recall ¼ TP
TPþ FN

� 100%

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

� 100%

In the above formula, TP represents the number of correctly identified entities in the test set; FP represents the number of
entities identified as errors in the test set and FN represents the number of unrecognized entities in the test set. The higher the
precision, recall and F1 values are, the better the prediction effect of model, and vice versa.

Table 4 | Regular expressions used for automatic annotation

Entity
type Regular expressions

Methods ‘.*(provide |apply |improve |utilize |using |put forward |design |invent |set up| construct |achieve |according to |take |base on |
construct |produce |combine |adopt |adopt |by |construct) ([\S]þ) (method |model).*’

Data ‘.*(provide |apply |utilize |using |put forward |design | invent |set up |construct |according to |take |base on |construct |produce |
combine |adopt |adopt |by |construct |collect) ([\S]þ) (data |material |data set).*’

Region ‘.*(located in |in |form |taking) ([\S]þ) (area |region |mountain area |river basin |zone | province |city |county |as the research
object).*’

Table 5 | Statistics of the tags in the corpus (Note: MD, DT and RG are short for methods, data and region, respectively; and ‘B’, ‘I’ and ‘O’
denote whether a text segment is at the beginning, inside or outside of an entity, respectively.)

Tags B-MD I-MD B-DT I-DT B-RG I-RG O

The number of the tags 494 2,916 435 1,900 351 839 10,418
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RESULTS

Implementation results of the drought disaster ontology

The implementation results of the drought disaster ontology are shown in Figures 5 and 6. The implementation results of the

drought disaster ontology were saved to a file with the ‘.owl’ suffix, which is an extensible markup language (XML) file in
essence and thus makes it more efficient in data sharing and data exchange. Drought disaster ontology can visually display
drought disaster domain knowledge from multiple dimensions, such as class, relationship, property and individual, and pro-

vides reliable data support for the subsequent named entity identification of drought disasters.

Named entity recognition performance

The CRF model, the BiLSTM and CR integrated model (BiLSTM–CRF) and the BERT, BiLSTM and CRF integrated model
(BERT–BiLSTM–CRF) were evaluated against the aforementioned corpus. Table 6 shows the performance achieved by these

three models.
More experiments were conducted on three different named entities (i.e., the methods, data and region entities) to further

evaluate the recognition performance of different entities. The experimental results are shown in Table 7.

DISCUSSION

In this study, we proposed a schema to establish a knowledge graph for drought disaster management by integrating the ontol-

ogy design and the named entity recognition. The ontology design was used to depict high-level concepts and their internal
relationships, which are relatively easy to recognize by consulting with experts and/or the directive of drought disaster man-
agement (e.g., the National Drought Management Policy Guidelines of China). On the other hand, named entity recognition

Figure 5 | Drought disaster ontology in the OWL format (only a part of the file is shown for clarity).
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was employed to derive low-level information (instances of high-level concepts) from various unstructured data sources. How-
ever, the named entity recognition approach we adopted is a supervised learning algorithm, which means a significant

amount of manual labor is required to establish the corpus for model training and validation (we did not find any readily
available datasets). Due to the lack of manual labor, the established corpus does not cover all the elements recognized in
the ontology design at this stage. Therefore, in this study, we mainly focused on evaluating the efficiency and effectiveness

of the proposed schema, not on creating a fully functional knowledge graph for drought disaster management. Nevertheless,
when we tried to establish a more comprehensive corpus for named entity recognition (still ongoing), we found that a knowl-
edge graph for drought disaster management, even in its primitive form, can be very useful for guiding for the construction of

the corpus (model training and validation datasets) and establishing linkages among recognized entities using the relation-
ships between the concepts in the ontology and the annotations defined in the corpus.

Figure 6 | Visual display of the drought disaster ontology.

Table 6 | Comparison of the experimental results of different models

Type Precision (%) Recall (%) F1

CRF 62.66 68.55 65.33

BiLSTM–CRF 76.59 81.11 78.69

BERT–BiLSTM–CRF 89.83 92.95 91.21
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An ablation study was conducted to evaluate the performance of the models, i.e., the CRF model, the BiLSTM–CRF model
and the BERT–BiLSTM–CRF model. Compared with that of the CRF model, the F1 value of the BiLSTM–CRF model

increased by 13.36%. This is because the CRF model is weak in terms of capturing long-distance dependencies, and
BiLSTM can effectively capture long-distance text information and compensate for the deficiencies of the CRF model. The
experimental results of the BERT–BiLSTM–CRF model were superior to those of the BiLSTM–CRF model with a 12.52%

F1 score increase. This is because BERT can take the specific context of the task into account by generating dynamic
word embeddings that are tailored to this context. Consistent results can be observed from the overall performance of
these models (Table 6) and the individual performance achieved by these models for specific annotations (Table 7). Similar

to the method adopted in this paper, the BERT–BiLSTM–CRF model has been used to realize named entity recognition in
other fields (Liu et al. 2020; Tang et al. 2022; Xu et al. 2023). For example, Liu et al. (2020) adapted the BERT–BiLSTM–

CRF model to improve the accuracy of the entity information extracted from customer voice consultation questions, with
an F1 value of 91.53%. Tang et al. (2022) developed an entity recognition method based on the same integrated model to

extract the participants of an autonomous transportation system, with an F1 value of 86.81%. The F1 values of the experimen-
tal results in these studies were close to the results of our study. We thus believe that the BERT–BiLSTM–CRF model, with a
well-established corpus, is feasible for extracting low-level entities to establish a knowledge graph for drought disaster

management.
To the best of our knowledge, no knowledge graphs for drought disaster management have been formed to date. This study

proposed a schema to fill this gap. However, this study in its primitive stage does not establish a full-fledged drought disaster

management knowledge graph; still, it contributed toward this goal in many ways. First, we demonstrated that ontology
design can be very useful for recognizing the main concepts and the various relationships between them, and it can provide
important guidelines for establishing a training and validation corpus for the proposed named entity recognition model.
Second, the BERT–BiLSTM–CRF model was proven to be efficient and effective in terms of extracting instances of the con-

cepts outlined in the ontology through our experiments. Third, the merged results of these two processes indicated that
combining ontology and deep learning technology toward establishing a knowledge graph for drought disaster management
is feasible. In addition, we also published our corpus to a public repository, which is not trivial as it can save large amounts of

time for those wanting to train similar models for extracting entities from various unstructured data sources.

CONCLUSIONS AND FUTURE WORKS

In this study, we designed a drought disaster ontology by recognizing the major concepts and their relationships. The ontology
was then implemented with an ontology modeling language. We next prepared a corpus by extracting abstracts from the lit-
erature database of CNKI and then annotating the desired entities in the raw materials. Finally, we established an integrated

entity recognition coupled model that was built by integrating multiple deep learning methods, including BERT, BiLSTM and
CRF. Then, we evaluated the performance of this model in named entity recognition against the prepared corpus by compari-
son with other integrated or individual models. The BERT–BiLSTM–CRF model showed satisfactory results in recognizing

drought disaster named entities, with optimal precision, recall and F1 indices of 89.83, 92.95 and 91.21%, respectively.
We thus concluded that combining ontology and deep learning technology toward establishing a knowledge graph for
drought disasters is promising.

Table 7 | Comparison of experimental results of different annotations

Type Evaluate Precision (%) Recall (%) F1

CRF Method 49.61 60.69 54.59
Data 76.06 76.73 76.40
Region 73.79 75.00 74.39

BiLSTM–CRF Method 67.70 77.27 72.17
Data 89.02 88.60 88.81
Region 77.65 77.41 77.53

BERT–BiLSTM–CRF Method 83.36 93.69 88.22
Data 97.18 91.87 94.45
Region 93.92 92.96 93.44
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This study mainly focuses on schema layer construction and name entity recognition, which are the two fundamental and

key tasks for knowledge graph construction. We will continue to carry out related research on other aspects of data layer
construction (e.g., relationship extraction, knowledge fusion and storage) in the future.
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