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ABSTRACT

River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based con-

volutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and

time effectiveness of WLP. It was applied to predict 1/2/3 days ahead the water levels at the Waizhou gauging station of the Ganjiang River

(GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The

results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared

with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937,

respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error

(MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2)

both increased to 0.998. This result indicated that the improved model was more efficient for WLP.
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HIGHLIGHTS

• A WaveNet-based convolutional neural network was proposed for water level prediction.

• WCNN with a lightweight structure and good parallelism achieved better prediction performance.

• WCNN obtained higher accuracy results with the fewest parameters and training time than RNN.

• Influence of different inputs and hyperparameters of models on prediction results was revealed.
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1. INTRODUCTION

The water level is an important hydrological feature of rivers, and accurate water level prediction (WLP) is crucial to flood
control, shipping and water supply planning and management (Deng et al. 2021). However, variations in the water level are
highly nonlinear due to various factors, such as rainfall, runoff, topography, water conservancy projects, and human activities,

which increase the difficulty of accurate prediction (Lai et al. 2013; Zhang et al. 2016).
The WLP models mainly include hydrologic models based on physical processes and machine learning (ML) models based

on a data-driven approach (abbreviations: physical models and ML models). Physical models can obtain the meticulous simu-

lation of water level processes by establishing basic equations to express the interaction mechanism between variables (Lai
et al. 2013). However, the establishment of physical models requires a wealth of professional knowledge, a large number of
basic data and physical parameters, the modelling process is complex, difficult and time-consuming. ML models do not need

to understand the mechanism of physical systems, and they predict the water level by directly detecting correlations between
variables and realizing the mapping of inputs to outputs. The data that ML models require are easy to obtain, and the model-
ling process is relatively simple (Yin et al. 2021).

Various ML models were used in hydrological prediction tasks. For example, in Ahmed et al. (2022), six different ML
algorithms (i.e., linear regression (LR), interaction regression (IR), robust regression (RR), stepwise regression (SR), support
vector regression (SVR), boosted trees ensemble regression (BOOSTER), bagged trees ensemble regression (BAGER),
XGBoost, tree regression (TR), and Gaussian process regression (GPR)) were developed to predict the river’s water

level, on a daily basis based on collected data from 1990 to 2019 which were used to train and test the proposed
models. They found that the GPR model was capable of predicting the water level of the river with high precision and
less uncertainty. In Latif & Ahmed (2020), (2023) and Latif (2023), the LSTM model was used to predict the daily stream-

flow of the Kowmung River at Cedar Ford in Australia, daily reservoir inflow of the Dokan Dam in Iraq and daily pan
evaporation at Sydney airport in Australia, respectively. The results showed the LSTM model outperformed other conven-
tional ML models (e.g., random forest (RF), tree boost (TB), multilayer perceptron neural network (MLP-NN), and boosted

regression tree (BRT)). Huang et al. (2021) built three ML models, namely, an artificial neural network (ANN), a nonlinear
autoregressive model with exogenous input (NARX) and GRU to simulate the daily Poyang Lake level from 2003 to 2016.
They found that ML models with historical memory (i.e., the GRU model) were more suitable for simulating the Poyang

Lake level under the influence of the Three Gorges Dam. In Ho et al. (2022), the LSTM model was proposed to predict
short-term water levels in tidal sluice gates from 6 to 48 h ahead in the Bac Hung Hai irrigation system in Vietnam. The
findings of this study highlighted the performance of LSTM models in providing high-accuracy short-period water level fore-
casts for areas near estuaries. Kima et al. (2022) used ML models such as gradient boosting (GB), support vector model

(SVM), and LSTM to predict the flood water level of the Heungcheon bridge station which was located in the downstream
of Bokha bridge. Rainfall, water level, and discharge data of Bokha bridge station from 2005 to 2020 were collected,
especially the collected rainfall data were classified into 53 rainfall events using Interevent Time Definition (IETD) analysis

of rainfall data. The LSTM model showed the best predictive power and was selected as the optimal model for real-time
floodwater level forecasting in this study. Zhang et al. (2018) built four different neural networks to predict the water
level of the combined sewer overflow structure in Norway, through a comparison of other different neural networks

(e.g., multilayer perceptron (MLP) and wavelet neural network (WNN)), the LSTM and GRU presented superior capabili-
ties for multistep-ahead time series prediction. In Cai et al. (2021), a GRU model was built for groundwater level simulation
in 78 catchments in the central-eastern continental United States, the results showed that the GRU model performed better
in regions where hydrogeological properties could promote more effective responses of groundwater to external changes.

The above shows that the LSTM and GRU models in recurrent neural networks (RNNs) can usually obtain better predic-
tion performance. However, they still have some shortcomings that need to be improved. For example, their internal
recurrent connections required processing inputs according to time sequence, resulting in models that could not be trained

in parallelism and increased training time (Fan et al. 2021). Furthermore, they consumed additional memory to hold long-
term information. For practical problems with very large datasets, the LSTM and GRU models are relatively low in terms of
cost-efficiency.

A convolutional neural network (CNN) is a lightweight structure that has unique advantages in capturing spatial dependen-
cies of input data (Collado-Villaverde et al. 2021). Nevertheless, its performance on time series regression tasks is poor (Yan
et al. 2020). A new convolutional structure named WaveNet, proposed by DeepMind in 2016, has performed well in
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sequential analysis problems (van den Oord et al. 2018). It combines the advantages of dilated causal convolutions, residual,

and skip connections. It not only receives nonfixed-length inputs but also learns complex long-term dependencies of
sequences.

Compared with RNN models, WaveNet has a smaller number of parameters, large receptive fields, and good parallelism. It

has good application prospects in solving sequence analysis problems with large datasets (Borovykh et al. 2019; Rizvi et al.
2021). However, WaveNet was initially proposed for audio generation tasks, and it cannot directly address the time series
regression problem. Many researchers have improved it and achieved better prediction performance than LSTM or GRU in
the prediction tasks on the power load (Wang et al. 2021), traffic flow (Zhang et al. 2021a, 2021b), and air quality (Benhaddi

& Ouarzazi 2021) datasets. However, to the best of our knowledge, WaveNet has not been improved for WLP tasks.
This study aims to develop a highly efficient WLP model of the convolutional structure. A more lightweight CNN, named

WaveNet-based convolutional neural network (WCNN), was built by improving WaveNet on the basis of WLP character-

istics. The GR in China was selected as the study area, the 1/2/3 days ahead water levels were predicted for the Waizhou
gauging station (abbreviation: Waizhou station), and the long-term sequence data of gauging stations could be used for ver-
ification. To make full use of the ability of the WCNN to extract spatial information, the water level and discharge sequences

of three upstream gauging stations were used as auxiliary input features. Two RNN models (LSTM and GRU) were estab-
lished, and the performance of the WCNN model was evaluated by comparing their results on the test set.

2. STUDY AREA AND DATA DESCRIPTION

The GR is the largest river of the Poyang Lake water system in the Yangtze River Basin (Figure 1), and its annual mean runoff
accounts for 46% of the Poyang Lake basin. The GR originates in Wuyi Mountain at the junction of Fujian and Jiangxi

Figure 1 | Ganjiang River basin and distribution location of gauging stations.
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Provinces. The length of the mainstream is 823 km, and the drainage area of the GR is 82,900 km2 (Wen et al. 2019). The GR

crosses through Jiangxi Province from south to north, and it is bifurcated near Nanchang City, which is the provincial capital.
Then it flows into Poyang Lake. The Waizhou station, the catchment area which accounts for 97% of the GR basin, is a more
important gauging station in the lower reach of the GR, and the station is located near Nanchang City. The WLP of this

station is significant to the safety of flood control, shipping and water supply of the Nanchang reach, thus this station is
selected as the prediction station.

Before the 21st century, the hydrological rule of the Nanchang reach was relatively stable. Since the early 2000s, affected by
human activities such as large-scale sand mining in the Nanchang reach, the riverbed descended. From 2001 to 2019, the

topographic elevation of the riverbed cross-section of Waizhou station descended more than 3 m (Figure 2), and the water
level had obviously decreased, resulting in changes in the mapping relationships between the water level and influencing fac-
tors (Yao et al. 2019). In this study, the sequence data of the Waizhou station and upstream gauging stations from 1965 to

2001 (37 years in total) with relatively stable hydrological rules were used to set up the model. Considering the water trans-
mission time and predicted time, Ji’an gauging station with a distance of 230 km was selected as the farthest station in the
upstream of the Waizhou station. The locations of the gauging stations are shown in Figure 1. Specifically, the sequences

of daily average water level and discharge data belonged to Waizhou, Zhangshu, Xiajiang and Ji’an stations (hereafter referred
to as Zwz, Zzs, Zxj, Zja, Qwz, Qzs, Qxj, and Qja, respectively). These data were supplied by the Hydrological Bureau of Jiangxi
Province. The statistical information from 1965 to 2001 is shown in Figure 3, which shows that the distributions of the water

level and discharge at all stations are uneven, and there are many extreme values on the right side of the mean value.

3. METHODS

3.1. Procedure of WLP of models

The procedure of WLP by ML models in this study was as follows: (1) Feature selection was carried out on input data of

models by calculating the maximal information coefficient (MIC), and variables with MIC values larger than 0.6 were
selected to be input features. (2) The input data were divided into the training dataset and the test dataset. The data from
1965 to 1999 were used as the training dataset to train models, and the data from 2000 to 2001 were used as the test dataset

to evaluate the generalization ability of models. Then the Min-Max normalization was performed on the input data. (3) The
WCNN, LSTM and GRU models were established. Based on the training dataset, the grid search method was used to opti-
mize the hyperparameters of models, and the optimal combination of hyperparameters was obtained. 80% of the training
dataset was randomly selected as the training set for the model fitting training, and the remaining 20% were used as the vali-

dation set for calibration to improve the performance of models. (4) The data from 2000 to 2001 were used to test models, and
the l/2/3 days ahead predicted and measured water levels of the Waizhou station were compared. Evaluation metrics of
MAE, RMSE and NSE were calculated to evaluate the performance of models. The flowchart is shown in Figure 4.

Figure 2 | Topographic changes of riverbed cross-section of the Waizhou station from 2001 to 2019.
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3.2. Feature selection

There are highly complex nonlinear correlations between predicted variables and influencing factors, and feature selection by

calculating the MIC between predicted and candidate variables was conducted. The MIC was proposed by Reshef et al.
(2011), which could express the nonlinear correlations between two variables and was widely used in feature selection in
hydrological datasets (Lu et al. 2021; Zhang et al. 2021b). The calculation formula of MIC is shown in Formula (1), and

the results between each variable (Zwz, Zzs, Zxj, Zja, Qwz, Qzs, Qxj, Qja, which are regarded as H ) and predicted variables
(1/2/3 days ahead water levels at the Waizhou station expressed as Zwz

1 , Zwz
2 , Zwz

3 , respectively, which are regarded as L)
from 1965 to 1999 are shown in Table 1. Variables with MIC values larger than 0.6 were selected in the original datasets
to constitute input features. In the three forecast periods, all candidate variables met the requirements. Thus, the input fea-

tures were Zwz, Zzs, Zxj, Zja, Qwz, Qzs, Qxj, and Qja. In addition, Min-Max normalization was used to scale features to [0, 1].

MIC(D, H, L) ¼ max
HL,B(jDj)

maxGI(DjG)
log2min{H, L}

(1)

Figure 3 | Statistics of (a) water level and (b) discharge in the dataset from 1965 to 2001. The coloured box indicates the interquartile range
(IQR), while the orange lines within the IQR represent the median line. Dots outside the lines at both ends (upper and lower edge lines)
indicate extreme values.

Figure 4 | Flowchart of water level prediction by ML models.
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where H¼ {h1,h2,…,hq} and L¼ {l1,l2,…,lq} are independent variables and dependent variables, respectively, and q is the
length of H and L; D is a set of ordered pairs, and D¼ {(hi,li), i ¼ 1,2,…,q}; G is the cells of grid; D|G is the probability dis-
tribution caused by data D on G; I(D|G) denotes mutual information of D on G; B(q)¼ q0.6; and |D| is the size of D.

3.3. The WCNN

WaveNet is a deep network model proposed by DeepMind for generating raw audio waveforms that have large and flexible
receptive fields and good parallelism, and can capture long-term dependencies of sequences (Rethage et al. 2018; van den
Oord et al. 2018). WaveNet can be extrapolated to datasets that are outside of audio, and many achievements have been

made in research on time series prediction (Luo et al. 2021; Rueda et al. 2021; Nie et al. 2022).
In this study, a lightweight CNN framework was proposed based on WaveNet. The variables (X ) and other auxiliary input

features (A) before the tth timestep were used to predict xt (tth timestep predictor), and the mapping formula is shown in
Equation (2). Here, A is treated as the local condition LC, which is received using the ReLU function.

f(XjLC) ¼
YT
t¼1

f(xtjx1, . . . , xt�1, LC) ¼
YT
t¼1

f(xtjx1, . . . , xt�1, ai1, . . . , a
i
t�1) (2)

where X¼ {x1,x2,…,xT�1}, and T is the input length; t ¼ range(1,T); A¼ {a1,a2,…,ap}, ai denotes the ith auxiliary input features,
i ¼ range(1, p), and p is the number of auxiliary input features; and at

i denotes the value of auxiliary input condition ai at the
tth timestep.

Figure 5 shows the network structure of the WCNN, which mainly includes the input layer, residual block and output layer,
as described below.

(1) The input layer received the sequences of predicted variables X and auxiliary input A, and the input shape was [timesteps,
features]. As mentioned in Section 3.2, X was Zwz, and A included Zzs, Zxj, Zja, Qwz, Qzs, Qxj, and Qja in this study. To
implement the residual operation, inputs were first transformed into the output shape of the residual blocks through a

causal convolutional layer.
(2) The main components of the residual block were the convolutional layer and ReLU function. Through these two struc-

tures, the order of data was ensured and the spatiotemporal nonlinear mapping of data was learned. Moreover, a

temporal-excitation (TE) block based on a squeeze-and-excitation (SE) block was proposed to learn the long-term
dependencies of data (Hu et al. 2019). The TE block obtained the global temporal information by explicitly modelling
the relationships between the timesteps of the convolution channel U. The structure is shown in Figure 5. First, the
transpose function Ftr(·) is used to swap the coordinate systems of the temporal features and channel features of the

channel U. Then, the excitation operation Fex(·) is used to capture the temporal dependence of the channel U, generat-
ing a set of modulation weights for each channel. Specifically, a fully connected (FC) layer with a dimensionality-
reduction ratio r (r ¼ 2) and ReLU function are used to parameterize the nonlinearity between the time steps, with

an FC layer that restores the dimension and a sigmoid function that scales the weights, as shown in Figure 5. Finally,
Ftr(·) is used to restore the coordinate system, and a multiplication operation Fmul(·,·) is used to integrate the results into
the backbone network.

Table 1 | MICs between predicted and candidate variables

Water levels of gauging stations Dsicharges of gauging stations

Waizhou
station

Zhangshu
station

Xiajiang
station

Ji’an
station

Waizhou
station

Zhangshu
station

Xiajiang
station

Ji’an
station

1-day ahead water
level Zwz

0.89 0.70 0.64 0.61 0.70 0.71 0.65 0.62

2-day ahead water
level Zwz

0.80 0.65 0.63 0.63 0.64 0.66 0.62 0.62

3-day ahead water
level Zwz

0.73 0.61 0.60 0.60 0.60 0.60 0.60 0.61
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The number and size of the convolution kernels for all residual blocks in the WCNN were the same, which ensured that all
residual blocks outputted a uniform shape. As shown in Figure 5, in the first residual block, the predicted variables X and
condition A are based on a convolution operation and ReLU function to obtain channel U containing temporal and spatial

features. The calculation formula is shown in Equation (3). Subsequently, the TE block is utilized to learn the global temporal
information of the channel U to recalibrate the convolutional channel features, and the calculation formula is shown in
Equation (4). The output of the TE block is fed into the backbone network by multiplying it with U, and then, it is added

to the inputs to obtain the final output of the residual block z1, as shown in Equations (5) and (6). The other residual
blocks receive zk�1 and output zk, and the calculation formulas are as follows in Equations (7)–(10).

For the first residual block (k ¼ 1):

uk ¼ d Wf,k �Xþ b f,k þ
Xp
i¼1

Vi
g � ai þ bg

 !
(3)

sk ¼ Ftr(Fex(Ftr(uk))) ¼ (s(Wk,2 � d(Wk,1 � u0
k þ bk,1)þ bk,2))

0 (4)

ek ¼ uk � sk (5)

zk ¼ ek þXþ
Xp
i¼1

ai (6)

For other residual blocks (k . 1):

uk ¼ d(Wf,k � zk�1 þ b f,k) (7)

sk ¼ Ftr(Fex(Ftr(uk))) ¼ (s(Wk,2 � d(Wk,1 � u0
k þ bk,1)þ bk,2))

0 (8)

ek ¼ uk � sk (9)

zk ¼ ek þ zk�1 (10)

where k ¼ range(1,K) denotes the kth residual blocks, and K is the number of residual blocks; Wf,k and bf,k represent the
weight and bias of the convolutional filters of X in the kth layer, respectively; j¼ range(1,p) is the conditional index; Vg

i

Figure 5 | WCNN network structure. Conv, 1� 1Conv and FC indicate the 1-D convolutional layer, 1� 1 convolutional layer and FC layer,
respectively, while σ is the sigmoid activation function.
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represent the weight of the convolutional filters of ai in the first layer, and bg represent the bias of the convolutional filters in

the first layer; δ is the ReLU function; uk is the output of δ in the kth residual block. Additionally, Wk,1, bk,1 and Wk,2, bk,2
denote the weights and biases of the first and second FC layers in the TE block of the kth residual block; σ is the sigmoid
function; uk

’ is the transpose of uk; sk is the output of the TE block in the kth residual block; ek and zk indicate the intermedi-

ate and final outputs of the kth residual block, respectively; ʘ represents the multiplication of corresponding elements; and
the remaining parameters are the same as in Formula (2).

(3) The output layer is a 1� 1 convolutional layer with linear activation. The output zk of the last residual block first performs
the calculation of the ReLU function and then enters the output layer and outputs O¼ (ot�nþ1,ot�nþ2,…,ot), n is the input
length, and ot denotes the tth timestep prediction, which is the required predicted value. The calculation formula is shown
in Equation (11).

O ¼ Wo � ReLU(zK)þ bo (11)

where zK is the output of the last residual block; Wo and bo represent the weight and bias of the output layer, respectively;
and O refers to the result of the output layer.

The WCNN inherits the advantages of WaveNet. It has a lightweight structure, good learning ability and parallelism, and
can solve network degradation (vanishing/explosion gradient) problems. It differs from the original WaveNet in the following
three points:

(1) Replace the gated activation function in the residual structure with the ReLU function. It can learn nonlinear correlations
of sequences effectively, making the WCNNmore applicable to 1-D sequential regression problems. This replacement has
been proven to be effective in nonstationary and noisy time series forecasting tasks (Borovykh et al. 2019). In addition, the

application of the ReLU function can also reduce the complexity of the model and training time.
(2) Replace the dilated convolutional structure with a TE block. A TE block based on an SE block is proposed to learn the

long-term temporal dependencies of sequences. It obtains global temporal information by capturing the information

between time steps and feeds back this information to the convolutional channel. Thus, the network can select key tem-
poral features for mapping.

(3) For application to 1-D sequential regression studies, the softmax distribution of the output layer is replaced with a linear

function.

3.4. Baseline model

LSTM and GRU are widely used ML models, and have already been applied to various WLP tasks (Zhang et al. 2018; Ren
et al. 2020; Noor et al. 2022). Thus, LSTM and GRU were chosen as the baseline models in this study. LSTM solves the short-
term memory and vanishing gradient problems by setting three gate (e.g., forget, input, and output gate) structures and two

hidden states (e.g., short-term and long-term state). The specific structure and calculation formulas of LSTM are shown in
Gers et al. (1999). GRU is a simplified version of LSTM that combines the two state variables in the LSTM unit into one.
It controls the forget gate and input gate by a single gate controller (Géron 2019).

3.5. Model parameter settings and evaluation metrics

The hyperparameters have a great influence on the prediction performance of the model. The basic network architecture of

WCNN is different from that of LSTM and GRU models, thus, its hyperparameters are also different. The network hyperpara-
meters of the WCNN model include the residual block number, kernel size and filter number of the convolutional layer. The
network hyperparameters of LSTM and GRU models are the recurrent layer number and neurons number in each layer. The
hyperparameters of the three models in the training stage are the same, which are optimizer, epochs, batch size and learning

rate. For the above hyperparameters, the grid search method was used to determine the optimum value. This method selected
one value from the value range of each hyperparameter of the model and combined the parameters to build the model, and
then the training data were used to validate it. The optimal hyperparameter combination was determined by comparing the

loss between the predicted value and the measured value on the validation set under different parameter combinations. The
range of hyperparameters and the optimal parameter configuration of the three models are shown in Table 2. After optimiz-
ation by the grid search method, the optimal parameter configuration of the three models is as follows: the WCNN model
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consists of four residual blocks. The filter number and kernel size of each residual block are 40 and 5, respectively. The LSTM

and GRU models consist of two recurrent layers, the number of neurons in the first and second layers are 100 and 50, respect-
ively. The dropout rate is 0.2. For the hyperparameters of models in the training stage, the optimal parameters of the three
models are the same. Adam is selected to be the optimizer, the batch size is set to 100 and the timestep is 10. The initial learn-

ing rate is set to 0.001, which is reduced by 50% while the validation loss does not decrease in 20 epochs for scheduling.
The number of training parameters is an important measure of model training efficiency. The fewer the training parameters,

the shorter the training time of the model. The number of training parameters of WCNN, LSTM and GRU under the same

input conditions identified in Section 3.2 was calculated, which were 32,937, 73,851, and 55,851, respectively. The WCNN
model had the fewest parameters, and the LSTM model had the most parameters.

MAE was chosen as the loss function of the LSTM, GRU, and WCNN models, as shown in Equations (12)–(14). To reduce
the risk of overfitting, an early stopping technology was employed in three models. The random seed was set to 42 for all

experiments to guarantee reproducibility of the model results. All coding in this study was implemented based on Python
and the deep learning framework of TensorFlow-CPU 2.3.0, and the type of CPU was an Intel(R) Core (TM) i5-9600 K
CPU @3.70 GHz.

LossLSTM ¼ 1
m

Xm
i¼1

jyî � yij (12)

LossGRU ¼ 1
m

Xm
i¼1

jyî � yij (13)

LossWCNN ¼ 1
m

Xm
i¼1

jyî,�1 yi,�1j (14)

where LossLSTM, LossGRU, and LossWCNN represent the loss functions of the LSTM, GRU, and WCNN models, respectively;
m is the batch size of the training set; y^i and yi represent the predicted and measured values of the ith input, respectively; y^i,�1

and yi,�1 represent the last predicted and measured values of the ith input.

Four criteria, the mean absolute error (MAE), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and coef-
ficient of determination (R2) were used to evaluate the performance of different models (Huang et al. 2021; Latif & Ahmed
2023). The closer the values of MAE and RMSE are to 0, and NSE and R2 are to 1, the better the performance of the models.

Table 2 | The optimal parameter configuration of three models

Parameters Optimization range WCNN LSTM GRU

Layers [1, 2, 3] – 2 2

Neurons [50, 100, 150] – [100, 50] [100, 50]

Dropout [0.1, 0.2, 0.3, 0.4, 0.5] – 0.2 0.2

Residual blocks [1, 2, 3, 4, 5, 6] 4 – –

Kernel size [1, 2, 3, 4, 5, 6, 7, 8] 5 – –

Filter number [20, 30, 40, 50, 60] 40 – –

Timesteps or Input Length [6, 10, 17, 30, 45] 10 10 10

Optimizer [SGD,RMSprop,Adam,Nadam] Adam Adam Adam

Epochs [50,100,200,300,400,500] 500 500 500

Batch size [32,64,100,128,256] 100 100 100

Initial learning rate [0.01,0.005,0.001,0.0005,0.0001] 0.001 0.001 0.001
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The formulas for calculating MAE, RMSE, NSE and R2 are as follows:

MAE ¼ 1
N

XN
i¼1

jyî � yij (15)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(yî � yi)
2

vuut (16)

NSE ¼ 1�

PN
i¼1

(yi � y^i)
2

PN
i¼1

(yi � �y)2
(17)

R2 ¼

1
n

Xn
i¼1

(yi � �y)(yî � ŷ)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(yi � �y)2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn
i¼1

(yî � ŷ)
2

s �2

2
66664 (18)

where N is the test set size; y and ŷ are the mean value of the measured and predicted values, respectively; and the remaining
parameters are the same as in Equation (12).

4. RESULTS

4.1. Performance comparison of different models

The WCNN, LSTM and GRU models were built to simulate Zwz for 1/2/3 days ahead, and the results are shown in Table 3.
Compared with the LSTM and GRU models for 1-day ahead prediction of total water levels, the MAE and RMSE of the
WCNN models are improved by 26.30 and 34.98% and by 19.97 and 24.93%, respectively. The NSE and R2 are both

improved to 0.998 on the complete test set.
Figures 6–8 show the hydrographs, deviations and scatter plots of the 1/2/3 days ahead measured and predicted water

levels of three models. It can also be seen from Figure 6 that the WCNN model has the best prediction performance of

Table 3 | Evaluation metrics of the 1/2/3 days ahead predicted water level on the test set of three models

Model & Forecast period

WCNN LSTM GRU

Range of water level Metrics tþ 1 tþ 2 tþ 3 tþ 1 tþ 2 tþ 3 tþ 1 tþ 2 tþ 3

All water levels MAE 0.038 0.115 0.213 0.052 0.127 0.222 0.059 0.131 0.238
RMSE 0.057 0.171 0.333 0.071 0.179 0.337 0.076 0.180 0.348
NSE 0.998 0.979 0.920 0.996 0.977 0.918 0.996 0.977 0.912
R2 0.998 0.980 0.921 0.997 0.979 0.920 0.997 0.979 0.918

Water level, 17 m MAE 0.021 0.047 0.077 0.036 0.077 0.087 0.071 0.092 0.104
RMSE 0.031 0.067 0.102 0.044 0.089 0.112 0.080 0.106 0.130
NSE 0.982 0.916 0.801 0.964 0.848 0.758 0.878 0.786 0.676
R2 0.982 0.922 0.831 0.977 0.914 0.819 0.973 0.904 0.805

17 m�Water level� 19 m MAE 0.041 0.117 0.204 0.052 0.120 0.215 0.048 0.121 0.230
RMSE 0.058 0.153 0.278 0.069 0.159 0.285 0.064 0.159 0.297
NSE 0.990 0.930 0.768 0.986 0.924 0.757 0.988 0.924 0.736
R2 0.990 0.941 0.805 0.987 0.933 0.805 0.989 0.936 0.807

Water level. 19 m MAE 0.059 0.219 0.466 0.078 0.230 0.469 0.071 0.229 0.484
RMSE 0.082 0.297 0.619 0.106 0.306 0.621 0.101 0.301 0.633
NSE 0.985 0.809 0.170 0.976 0.797 0.165 0.978 0.804 0.131
R2 0.986 0.832 0.451 0.979 0.842 0.442 0.978 0.836 0.427

Journal of Hydroinformatics Vol 25 No 6, 2615

Downloaded from http://iwaponline.com/jh/article-pdf/25/6/2606/1334817/jh0252606.pdf
by guest
on 09 July 2025



water levels, and the fitting ability for extreme values is also better. The LSTM and GRU models tend to overestimate the
maximum and underestimate minimum values, especially the GRU model. For 2 days ahead of WLP, the performance of
all models decreased. The MAE of the WCNN, LSTM and GRU model on the complete test set (2000–2001) were increased

from 0.038, 0.052 and 0.059 to 0.115, 0.127 and 0.131, respectively. When the forecast period reaches 3 days, the prediction
error increases further. Overall, the WCNNmodel leads by a narrow margin. In addition, the predicted accuracy of low water
levels (lower than 17 m) by different models is higher than that of middle water levels (between 17 and 19 m). The predicted

Figure 6 | The measured and (a) 1-day ahead, (b) 2-day ahead, and (c) 3-day ahead predicted water levels of three models on the test set
2000–2001.
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accuracy of high water levels (higher than 19 m) is lower than that of middle water levels because there are more maximum

values of water levels.

4.2. Influence of different inputs on results

To further explore the influence of the inputs on the predicted accuracy of the WCNN model, six types of input feature

combinations were set for the experiments, as follows: (1) Input A: [Zwz, Qwz]; (2) Input B: [Zwz, Qwz, Zzs, Qzs]; (3) Input
C: [Zwz, Qwz, Zxj, Qxj]; (4) Input D: [Zwz, Qwz, Zja, Qja]; (5) Input E: [Zwz, Qwz, Zzs, Qzs, Zxj, Qxj]; (6) Input F (recommended
model input): [Zwz, Qwz, Zzs, Qzs, Zxj, Qxj, Zja, Qja]. The parameters of the models were the same in the experiments. Evalu-

ation metrics of the 1/2/3 days ahead predicted water levels on the test set (2000–2001) of the WCNN model under different
inputs are plotted in Figure 9. On the basis of the input data of the Waizhou station (input A), the input data of an upstream
station is added separately (e.g., inputs B, C, D), and the prediction accuracy of the models is all significantly improved.
Especially, when adding the data of Zhangshu, Xiajiang and Ji’an gauging stations to the Waizhou station separately,

which are 92, 170, and 230 km away from the Waizhou station, to predict 1/2/3 days of water levels of the Waizhou station,
the accuracy of the results are improved the most. The result shows that when the forecast period increases, adding the data of
gauging stations farther away from the Waizhou station to the inputs, the prediction accuracy is better. The result also shows

the influence of the water propagation characteristics from upstream to downstream stations on the WLP. On the basis of
input data of two gauging stations (e.g., inputs B, C, D), adding the data of one or two gauging stations to the inputs respect-
ively, and the prediction accuracy of the models are further improved (input B compares with inputs E, F; input C compares

Figure 7 | Absolute deviations between the measured and (a) 1-day ahead, (b) 2-day ahead, and (c) 3-day ahead predicted water levels of
three models on the test set 2000–2001.
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with inputs E, F; input D compares with input F). But with the increase of input features, the increase rate of the prediction
accuracy gradually slows down.

4.3. Influence of hyperparameters

The effect of hyperparameters in the WCNN model was discussed, including input length, layer number, kernel size and filter
number. In each experiment, the other parameters of the models were kept the same. Figure 10 shows the influence of the

above four hyperparameters on the 1-day ahead WLP. It can be seen that there are multiple extreme values in the variation
curve of the validation loss of the input length and filter number, which means that the model is easily trapped in local
optima. Thus, the optimization range of the two parameters should be determined reasonably. The input length and filter

number of the WCNN model were set as 10 and 40, respectively. The validation loss curves for the layer number and the
kernel size are concave, which indicates that there is an optimal choice to optimize the results of the model. Therefore,
the parameter corresponding to the lowest loss is directly selected. Notably, when the input length, layer number, kernel

size or filter number are too small, the performance of the model is limited due to insufficient learning capacity. As hyper-
parameters increase, the training parameters and time of the model will increase. Therefore, under the premise of similar
accuracy, it is of higher priority to choose smaller parameters.

5. DISCUSSION

The proposed WCNN model was compared with LSTM and GRU models in the WLP of l/2/3 days ahead of the Waizhou
station in GR, China. The result shows that the best prediction with the fewest training parameters was achieved in the

WCNN model, which was consistent with the findings of variant models of WaveNet proposed by researchers (Benhaddi
& Ouarzazi 2021; Zhang et al. 2021a) in air quality prediction and other sequence modelling tasks, respectively.
The WCNN model can be generalized to other rivers with different climate conditions. Because the inputs of the model

Figure 8 | Scatter plots of water level prediction results for (a) WCNN(tþ 1); (b) LSTM(tþ 1); (c) GRU(tþ 1); (d) WCNN(tþ 2); (e) LSTM(tþ 2);
(f) GRU(tþ 2); (g) WCNN(tþ 3); (h) LSTM(tþ 3); and (i) GRU(tþ 3) on the test set 2000–2001.
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(i.e., water level and discharge data of the gauging stations) reflect the characteristics of the weather conditions, the data of the

predicted station and its upstream stations are easy to obtain.
On the other hand, according to the propagating physical characteristics of rivers, the water level and discharge sequences

of gauging stations were selected to be the model inputs. The reasonable input features were selected by calculating the MIC

Figure 9 | Evaluation metrics of (a) MAE, (b) RMSE, and (c) NSE of the 1/2/3 days ahead predicted water levels on the test set of the WCNN
model under different inputs.
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of variables, referring to the studies of Lu et al. (2021) and Zhang et al. (2021b). The influence of input features on the pre-
diction results of models was quantified. The results showed that adding variables of high correlation with predicted variables
to model inputs could improve prediction performance. But with the increase of input features, the increase rate of prediction
accuracy gradually slowed down, and the training time of models also increased. Therefore, when selecting input features, it

was necessary to comprehensively consider the relationship between the time cost caused by increasing input features and the
degree of performance improvement. When setting the model parameters, the grid search method was used to optimize the
parameters and determine the optimal values. The influence of the main hyperparameters of the WCNNmodel, such as input

length, layer number, kernel size, and filter number, on the prediction results was analyzed and discussed in section 4.3. At
present, there are various methods for hyperparameter optimization, such as Random Search, Bayesian Optimization, and
Genetic Algorithm. These methods will be selected and adopted for our future research.

In order to compare the performance of the proposed WCNN model with the LSTM and GRU models in training time,
parallelism and simulation accuracy, the hydrological datasets of 1956–2001 that were not affected by riverbed topographic
changes were selected for training and testing models, which could reduce the interference of external factors. For testing the

prediction performance of three models under the condition of riverbed topographic changes in the last 20 years of this cen-
tury, the average daily water level and discharge of Waizhou, Zhangshu, Xiajiang and Ji’an stations from 2002 to 2016 were
selected as the training set, and the 2017–2018 data were set as the test dataset. The parameter configuration used by the three
models is according to Table 2, and the predicted results are shown in Table 4 and Figure 11. It can be seen that the three

models also have good accuracy for 1-day ahead WLP. The RMSE of three models are 0.098, 0.123, and 0.130, respectively.
The R2 are 0.998, 0.997, and 0.996, respectively. However, compared with the WLP results of 2001–2002, the accuracy was
reduced due to the influence of riverbed topographic changes. In further research, the impact of riverbed topographic

changes, tributary inlet, rainfall and water conservancy projects should be considered to improve the prediction accuracy
of models (Zhang et al. 2018; Deng et al. 2021). Furthermore, the multistep ahead WLP could not be significantly improved
by the WCNNmodel, while Borovykh et al. (2019), Benhaddi & Ouarzazi (2021) only studied the variant models of WaveNet

Figure 10 | Influence of (a) input length, (b) filter number, (c) kernel size, and (d) layer number on the 1-day ahead prediction performance of
the WCNN model.

Journal of Hydroinformatics Vol 25 No 6, 2620

Downloaded from http://iwaponline.com/jh/article-pdf/25/6/2606/1334817/jh0252606.pdf
by guest
on 09 July 2025



Table 4 | Evaluation metrics of the 1/2/3 days ahead predicted water level on the test set 2017–2018 of three models

Range of water level Metrics

Model & Forecast period

WCNN LSTM GRU

tþ 1 tþ 2 tþ 3 tþ 1 tþ 2 tþ 3 tþ 1 tþ 2 tþ 3

All water levels MAE 0.063 0.180 0.370 0.088 0.181 0.316 0.097 0.212 0.408
RMSE 0.098 0.267 0.503 0.123 0.281 0.470 0.130 0.284 0.517
NSE 0.997 0.981 0.934 0.996 0.979 0.943 0.996 0.979 0.930
R2 0.998 0.982 0.936 0.997 0.980 0.945 0.996 0.981 0.939

Water level, 14 m MAE 0.047 0.127 0.245 0.099 0.107 0.183 0.079 0.208 0.452
RMSE 0.069 0.164 0.298 0.113 0.147 0.248 0.097 0.235 0.492
NSE 0.970 0.837 0.454 0.921 0.869 0.623 0.941 0.665 0.486
R2 0.975 0.894 0.670 0.972 0.903 0.744 0.957 0.897 0.696

14�Water level� 16 m MAE 0.060 0.172 0.390 0.070 0.179 0.298 0.107 0.173 0.312
RMSE 0.097 0.258 0.516 0.111 0.267 0.411 0.146 0.252 0.418
NSE 0.971 0.792 0.171 0.962 0.778 0.473 0.933 0.802 0.454
R2 0.971 0.809 0.500 0.962 0.815 0.601 0.934 0.824 0.560

Water level. 16 m MAE 0.082 0.245 0.479 0.096 0.261 0.479 0.103 0.261 0.474
RMSE 0.122 0.353 0.641 0.145 0.386 0.670 0.141 0.357 0.633
NSE 0.994 0.946 0.823 0.991 0.936 0.806 0.991 0.945 0.827
R2 0.994 0.949 0.853 0.992 0.942 0.836 0.993 0.948 0.854

Figure 11 | Scatter plots of water level prediction results for (a) WCNN(tþ 1); (b) LSTM(tþ 1); (c) GRU(tþ 1); (d) WCNN(tþ 2); (e) LSTM(tþ 2);
(f) GRU(tþ 2); (g) WCNN(tþ 3); (h) LSTM(tþ 3); and (i) GRU(tþ 3) on the test set 2017–2018.
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to predict 1-day variables. Therefore, follow-up work should be carried out to extend the effective forecast periods of the

model. Considering the poor effect of the sequence-to-value structure, a sequence-to-sequence structure using an encoder–
decoder network (Rueda et al. 2021) should be adopted.

6. CONCLUSIONS

To improve the effectiveness of WLP models under the conditions of large datasets, a new CNN model named WCNN was
proposed by adapting the WaveNet architecture in the audio generation domain. It was applied to predict the water level at
the Waizhou station of the GR in China. The main conclusions are as follows:

(1) For l/2/3 days ahead WLP of the Waizhou station, the WCNN, LSTM, and GRU models all had good predicted accuracy.
Moreover, the WCNN showed better prediction performance than the baseline models of LSTM and GRU. Compared

with the other two models, the model structure of WCNN was lighter, the training parameters were minimal, and the
model had good parallelism, which could significantly reduce the training time of the model. It is a more efficient
method for WLP.

(2) It is recommended to select the water level and discharge of upstream stations that are highly correlated with the predic-

tion station as input features to improve the prediction accuracy. However, when the input features increase to a certain
amount, the increase rate of the prediction accuracy gradually slows down, and the training time of models also increases.
The time and data costs associated with the addition of input features should be considered in combination with the incre-

mental performance improvement.
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