PERSPECTIVE: A Proposal To Name Four Coronaviruses of Limited Virulence “Common Cold Coronaviruses”

Kenneth McIntosh, Stanley Perlman, Arnold Monto, Janet A Englund
PERSPECTIVE: A Proposal To Name Four Coronaviruses of Limited Virulence “Common Cold Coronaviruses”

Kenneth McIntosh¹, Stanley Perlman²,³, Arnold Monto⁴, Janet A. Englund⁵

¹Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
²Department of Microbiology and Immunology, ³Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
⁴Department of Epidemiology and Global Public Health, School of Public Health, University of Michigan, Ann Arbor, MI, USA
⁵Department of Pediatrics, University of Washington School of Medicine, Seattle Children’s Research Institute, Seattle, WA, USA

Corresponding author:
J. Englund – janet.englund@seattlechildrens.org

Janet Englund, MD
Seattle Children’s Hospital
4500 Sand Point Way NE MA7.234
Seattle, WA 98105 USA

Keywords: Coronaviruses, respiratory tract infection, pneumonia, common cold

Submission type: Perspective

Running title: ccCoV for “Common Cold Coronaviruses”
The ongoing COVID-19 pandemic has greatly increased interest in all nine coronaviruses (CoVs) known to infect humans, including the four CoV (human coronaviruses 229E, OC43, NL63, and HKU1) that are mainly associated with upper respiratory tract infections (URTIs) [1]. Although the CoV’s 229E, OC43, NL63, and HKU1 can cause moderate to severe disease, mainly in high-risk individuals, they are most frequently associated with mild upper respiratory tract infections [1]. However, three of these nine human CoVs including the severe acute respiratory syndrome CoV (SARS-CoV), the Middle East respiratory syndrome CoV and SARS-CoV-2, the causative agent of COVID-19, frequently cause lower respiratory tract disease and/or severe pneumonia [2]. The remaining two CoV, HuPDCoV and HuCCoV, are variants of two CoVs that infect domestic (swine, porcine delta CoV) or companion (dogs/cats, canine/feline CoV) animals [3, 4]. These viruses have been isolated from only a few patients with febrile illnesses (huPDCoV) or pneumonia (HuCCoV) and little is known about their prevalence or complete disease manifestations. Although human populations do not have immunity to these viruses, they have not demonstrated interhuman transmissibility yet and they will not be further considered in this Perspective.

Studies of the four CoV associated with URTIs have proliferated over the past two years as part of efforts to understand SARS-CoV-2 biology, epidemiology and transmission and to gain insight into whether prior infection with any of viruses was protective (or less likely, pathogenic) in patients with COVID-19 [5-7]. Confusingly, these viruses have been referred to in different publications and settings as “human” coronaviruses, in earlier years as “novel” coronaviruses, and also as “seasonal,” “endemic,” ”common,” or “community-acquired” coronaviruses. The nomenclature and strain-specific diseases associated with the coronaviruses differs substantially from other respiratory viruses, such as influenza virus. To simplify this nomenclature, we, all of whom have worked in the coronavirus field and have been authors of the coronavirus chapters in several widely read textbooks of Infectious Diseases, propose that...
these four coronavirus strains be referred to, collectively, as “common cold coronaviruses”, with the abbreviation, “ccCoVs.”

We feel that the name “human coronaviruses”, which is often used, particularly in contexts where non-human coronaviruses are being discussed, is now not accurate, since SARS-coronavirus, MERS coronavirus and SARS-coronavirus-2 are “human coronaviruses” as well. Similarly, while the modifier “seasonal” usually is accurate for the four known common cold coronaviruses, there are places where these viruses are not, in fact, seasonal, and we do not yet know whether in temperate climates SARS-CoV-2 will become seasonal. MERS already shows endemicity in countries on the Arabian Peninsula [8], and SARS-coronavirus-2 may before long establish its own endemicity. Finally, SARS-CoV-2, while still causing the ongoing pandemic, is community acquired. While this has been evident throughout the pandemic, circulation of the highly transmissible Omicron variant in both naïve, vaccinated and previously infected populations has reinforced this point [9]. Clearly there are contexts in which the somewhat cumbersome name, “common cold coronaviruses” is not necessary. However, in other contexts where some modifier is needed, “common cold coronavirus” seems more accurate than the others mentioned above. In addition, the abbreviated form of this appellation (ccCoV) is both short and for the most part accurate.

We make this proposal in a provisional way, for several reasons. First, although ccCoV are most often associated with URTIs, they occasionally cause more serious disease including pneumonia and bronchiolitis in infants, pneumonia in healthy adults and severe pneumonia in aged and immunocompromised populations [10-15]. Second, these viruses are often found in asymptomatic patients and, in co-infection with other respiratory viruses in some patients with clinical illness [16]. Thus, the presence of the virus does not necessarily result in a URTI. Third, SARS-CoV-2 may eventually become a ccCoV. HCoV-229E, OC43, NL63 and HKU-1 all appeared to cross species from progenitor viruses circulating in bats or rodents at times ranging...
from 100-1000 years ago [17]. Intermediary hosts have been identified for HCoV-OC43 (bovids) and HCoV-229E (camelids) [18, 19] but not for HCoV-NL63, HCoV-HKU-1 or SARS-CoV-2. Of particular note, entry of HCoV-OC43 into human populations at the end of the nineteenth century coincided roughly with a worldwide respiratory virus pandemic [18]. There has been speculation, but without supporting data, that this pandemic, termed the ‘Russian flu’ was actually caused by HCoV-OC43 [19]. Whether true for the ‘Russian flu’ or not, we have no understanding of how ccCoV entered immunologically naïve human populations, and whether they initially caused more severe disease, with disease attenuation occurring as a consequence of the development of widespread human immunity and possible viral attenuation. Finally, we also recognize that more formal nomenclature committees, such as the International Committee on Taxonomy of Viruses (ICTV) may or may not agree with us. Nonetheless, we believe a consistent nomenclature for the four common coronaviruses previously circulating in humans would be a useful addition to the current literature.

Potential conflicts of interest:

No COI from K.M. or A.M. S.P. has research support from the NIH (PO1 AI060699, R01AI129269) and two companies, BioAge and ATI. J.A.E. has been a consultant for Sanofi Pasteur, Meissa Vaccines, Moderna, and AstraZeneca, and receives research support from AstraZeneca, GlaxoSmithKline, Merck, and Pfizer, unrelated to this topic.

Funding Sources: None
References

17. Brussow H, Brussow L. Clinical evidence that the pandemic from 1889 to 1891 commonly called the Russian flu might have been an earlier coronavirus pandemic. Microb Biotechnol 2021; 14:1860-70.