Safety and Efficacy of SAB-185 for Non-hospitalized Adults with COVID-19: A Randomized Clinical Trial

Kara W. Chew, MD, MS¹,*, Babafemi O. Taiwo, MBBS²,*, Carlee Moser, PhD³, Eric S. Daar, MD⁴, David Alain Wohl, MD⁵, Justin Ritz, MS⁶, Arzhang Cyrus Javan, MD, MPH, DTM&H⁷, Jonathan Z. Li, MD⁸, William Fischer⁹, Alexander L. Greninger, MD, PhD¹⁰, Christoph Bausch, PhD¹¹, Thomas Luke, MD¹², Robert Call, MD¹³, Gene Neytman, MD¹⁴, Mark J. Giganti, PhD¹⁵, Courtney V. Fletcher, PharmD¹⁶, Michael D. Hughes, PhD¹⁷, Joseph J. Eron, MD¹⁸, Judith S. Currier, MD, MSc¹⁹, Davey M. Smith, MD, MAS²⁰, For the ACTIV-2/A5401 Study Team

¹Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA; ²Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; ³Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁴Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA; ⁵Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill NC, USA; ⁶Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁷National

*Contributed equally

Corresponding Author: Kara W. Chew, MD, MS, Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, 911 Broxton Avenue, Suite 200, Los Angeles, CA, 90024, USA, Telephone: +1-310-825-0796, Fax: +1-310-477-7657, Email: KChew@mednet.ucla.edu

Alternate Corresponding Author: Babafemi Taiwo, MBBS, Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Chicago, IL, 60611, USA, Telephone: +1-312-695-0009, Fax: +1-312-404-0745, Email: b-taiwo@northwestern.edu

Collaborators: ACTIV-2/A5401 Study Team, Study Sites and Investigators (see Appendix)

© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
Institutes of Health, Bethesda, MD, USA; 8Department of Medicine, Harvard Medical School, Cambridge, MA, USA; 9Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill NC, USA; 10Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA; 11SAB Biotherapeutics, Inc. Sioux Falls, SD, USA; 12SAB Biotherapeutics, Inc. Sioux Falls, SD, USA; 13Clinical Research Partners, Richmond, VA, USA; 14Quantum Clinical Trials, Miami, FL, USA; 15Harvard T.H. Chan School of Public Health, Boston, MA, USA; 16UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA; 17Harvard T.H. Chan School of Public Health, Boston, MA, USA; 18Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill NC, USA; 19Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA; 20Department of Medicine, University of California, San Diego, La Jolla, CA, USA

Background: To address the need for novel COVID-19 therapies, we evaluated the fully-human polyclonal antibody product SAB-185 in a phase 3 clinical trial.

Methods: Non-hospitalized high-risk adults within 7 days of COVID-19 symptom onset were randomized 1:1 to open-label SAB-185 3,840 units/kg or casirivimab/imdevimab 1200 mg. Non-inferiority comparison was undertaken for the pre-Omicron population (casirivimab/imdevimab expected to be fully active) and superiority comparison for the Omicron population (casirivimab/imdevimab not expected to be active). Primary outcomes were the composite of all-cause hospitalizations/deaths and grade ≥3 treatment-emergent adverse events (TEAEs) through day 28. Secondary outcomes included time to sustained symptom improvement and resolution.

Results: Enrollment was terminated early due to low hospitalization/death rates upon Omicron emergence. 733 adults were randomized, 255 included in pre-Omicron and 392 in Omicron analysis populations. Hospitalizations/deaths occurred in 6 (5.0%) and 3 (2.2%) of pre-Omicron SAB-185 and casirivimab/imdevimab arms, respectively (absolute difference [95% CI] 2.7% [-2.3%, 8.6%]), inconclusive for non-inferiority; and 5 (2.5%) versus 3 (1.5%) (absolute difference 1.0% [-2.3%, 4.5%]) for Omicron. Risk ratios for grade ≥3 TEAEs were 0.94 [0.52, 1.71] (pre-Omicron) and 1.71 [0.96, 3.07] (Omicron). Time to symptom improvement and resolution were shorter for SAB-185, median 11 vs 14 (pre-Omicron) and 11 vs 13 days (Omicron) (symptom improvement), and 16 vs 24 days and 18 vs >25 days (symptom resolution), p<0.05 for symptom resolution for Omicron only.

Conclusions: SAB-185 had an acceptable safety profile with faster symptom resolution in the Omicron population. Additional studies are needed to characterize its efficacy for COVID-19.

Key words: COVID-19, polyclonal antibodies, outpatient treatment, clinical trial, SAB-185, transchromosomal, casirivimab/imdevimab, ACTIV-2

DOI: 10.1093/infdis/jiae369
INTRODUCTION

The COVID-19 pandemic continues to evolve.[1] Antibody-based therapies, including anti-SARS-CoV-2 monoclonal antibodies (mAbs), have played an important role in the pandemic,[2-9] but no mAbs are currently authorized for COVID-19 treatment due to insufficient in vitro activity against circulating SARS-CoV-2 variants; a single mAb, pemivibart, was recently authorized for pre-exposure prophylaxis.[10] The recommended outpatient therapies for COVID-19 are limited by drug-drug interactions (nirmatrelvir/ritonavir), the resources required to administer an intravenous (IV) infusion daily for 3 days (remdesivir), and lower efficacy (molnupiravir).[11-14] Additional treatment options are needed.[15]

SAB-185 is a fully-human anti-SARS-CoV-2 polyclonal immunoglobulin (IgG) derived from the plasma of transchromosomal bovines carrying an artificial chromosome incorporating the human immunoglobulin gene repertoire and immunized with the SARS-CoV-2 Spike (S) protein.[16-18] This platform can be readily scaled for production of relatively large quantities of purified product (current capacity of 150,000 doses/year).[16, 19] The clinical activity of SAB-185 is expected to be mediated by neutralizing antibodies against Spike epitopes, as well as potentially non-neutralizing antibodies with effector activity.[18, 20] In vitro data have indicated broad neutralizing antibody activity, including against BA.1.1.529, B.2.12.1, and BA.5 Omicron, supported by in vivo data in a small animal prevention model.[17, 18, 21, 22] SAB-185 demonstrated antiviral activity in a phase 2 trial at both high (10240 units/kg) and low (3840 units/kg) doses.[23] While interim analysis of phase 2 data by an independent data and safety monitoring board appointed by the National Institutes of Health concluded that both doses of SAB-185 met prespecified criteria for phase 3 evaluation,[23] the 3840 units/kg (low) dose was selected for further phase 3 safety and efficacy evaluation based on available in vitro neutralization activity against variants of concern (VOCs)/variants of interest (VOIs) and similar clinical antiviral activity between the doses, wherein no justification for using the high dose was apparent. The results of the phase 3 trial are presented here.

METHODS

Trial design and study intervention

ACTIV-2/A5401 was a master protocol designed to evaluate multiple investigational agents for outpatient COVID-19 treatment (see Supplement for protocol and statistical analysis plan).[23-28] For the phase 3 trial of SAB-185 on the ACTIV-2/A5401 platform, participants were randomized 1:1 to open-label SAB-185 (3,840 units/kg) or casirivimab/imdevimab (600 mg/600 mg) given once by intravenous infusion. Randomization was stratified by time from symptom onset at study entry (≤5 versus >5 days, see Supplement for additional details).
At the start of the trial, casirivimab/imdevimab was a standard-of-care treatment for COVID-19\(^4\), and the trial was designed as a non-inferiority (NI) comparison of SAB-185 to casirivimab/imdevimab with planned sample size of 1200; enrollment began in September 2021. The Omicron variant emerged while enrollment was ongoing, and because casirivimab/imdevimab lacked in vitro activity against Omicron,[4] enrollment was paused on January 20, 2022. As SAB-185 was expected to retain activity against Omicron,[21, 22] the study underwent redesign to terminate the NI design and restart as a superiority trial comparing SAB-185 to placebo (with a planned sample size again of 1200). It was specified that previously enrolled participants with Omicron infection would be included in the superiority analysis, considering casirivimab/imdevimab as, functionally, a placebo. At a planned interim review that occurred while enrollment was still paused, the study Data and Safety Monitoring Board (DSMB) recommended enrollment termination due to operational futility—low event rates for the primary outcome of hospitalization or death among those randomized to casirivimab/imdevimab in the Omicron period made it unlikely that a conclusion on the efficacy of SAB-185 could be achieved with the planned sample size. Enrolled participants were followed through study completion. As a result of this sequence of events, all enrolled participants were randomized to receive SAB-185 or casirivimab/imdevimab and none received placebo.

Results are reported separately for pre-Omicron and Omicron populations due to the expected difference in efficacy of casirivimab/imdevimab in these two populations. Participants were assigned to one of two analysis populations, pre-Omicron (NI analysis) or Omicron (superiority analysis), defined by whether they were confirmed or likely to have pre-Omicron or Omicron infection. When variant determination by sequencing was not available, participants were assigned based on calendar date of enrollment. Participants enrolled before December 15, 2021 were assigned to the pre-Omicron population and participants enrolled on or after December 15, 2021 were assigned to the Omicron population. This cutoff date was chosen to likely best distinguish the two populations and determined by the study team upon review of blinded variant results from the trial (Supplementary Table 1).

For US sites, the protocol was approved by a central institutional review board (IRB), Advarra (Pro00045266), and local IRBs as required. Local ethics committee approval was obtained for sites outside the US. All participants provided written informed consent.

Participants

Participants were adults 18 years of age or older with a positive antigen or nucleic acid SARS-CoV-2 test within 10 days and no more than 7 days of symptoms at study entry. Also required were symptoms within 24 hours prior to study entry, a resting peripheral oxygen saturation ≥92%, no indication for hospitalization, and being at high risk of COVID-19 progression (see study protocol for full eligibility criteria).
Assessments

Study visits were on days 0, 3, 7, 14, and 28. Adverse events (AEs) were assessed at all visits. SARS-CoV-2 serostatus was assessed by day 0 serum anti-nucleocapsid (N) and anti-S binding antibodies (Elecsys Anti-SARS-CoV-2, Roche Diagnostics), with seropositivity defined by either being detectable.

Participants completed a diary daily from day 0 (prior to study intervention) through day 28, where they self-reported the maximum severity of each of 13 targeted symptoms in the preceding 24 hours and whether they felt they had returned to their pre-COVID-19 health (see Supplement for the diary).

Study staff collected nasopharyngeal (NP) swabs on days 0 and 3 for quantitative SARS-CoV-2 RNA testing at a central laboratory.[29] The assay limit of detection (LoD) was 1.4 log_{10} copies/mL, lower limit of quantification (LLoQ) was 2 log_{10} copies/mL, and upper limit of quantification (ULoQ) was 8 log_{10} copies/mL. SARS-CoV-2 RNA sequencing and variant calling were performed as described in the Supplement.

Primary and secondary outcome measures

The primary outcome measures were 1) the composite of all-cause hospitalizations or death through day 28 and 2) grade ≥3 treatment-emergent AEs (TEAEs) through day 28. Secondary outcomes included: 1) COVID-19-related hospitalizations or death (adjudication by an independent committee); 2) time to sustained symptom improvement for 2 consecutive days; 3) time to sustained symptom resolution for 4 consecutive days; 4) time to sustained return to health (for 2 and 4 consecutive days); 5) time-averaged total symptom score from day 0 to 28; 6) NP SARS-CoV-2 RNA <LLoQ on day 3; 7) quantitative NP SARS-CoV-2 RNA level on day 3; and 8) grade ≥2 TEAEs through day 28. The symptom outcome measures were selected based on ACTIV-2 analyses that assessed the validity of various symptom improvement and resolution measures.[30] See Supplemental Methods for symptom outcome definitions. Serious AEs (SAEs) and AEs of special interest (AESI) were also assessed. The AESI definition was broader for SAB-185 than for casirivimab/imdevimab as SAB-185 had a less well-defined risk profile: grade ≥1 (SAB-185) or grade ≥2 (casirivimab/imdevimab) infusion-related and allergic/hypersensitivity reactions within 12 hours of administration deemed related to study product.

Statistical analysis

The modified intent-to-treat analysis included all randomized participants who initiated SAB-185 or casirivimab/imdevimab. Due to concerns about data integrity, data from 5 sites were excluded from analyses (Figure 1). The analyses reported here are based on all available data as of September 28, 2023. Power and sample size considerations are given in Supplemental Methods.

In the pre-Omicron population, the absolute difference between arms in proportion hospitalized/died through day 28 was calculated with an exact 95% confidence interval.[31] Non-
inferiority was assessed by determining if the upper bound of the 95% CI was entirely below 3% (the pre-specified NI margin). In the Omicron population, the pre-specified comparison of proportion hospitalized/died through day 28 was evaluated using Fisher’s exact test; an exact 95% CI was calculated as a post-hoc analysis.[31]

To evaluate safety, the proportion of participants experiencing a grade ≥3 or grade ≥2 TEAE was compared between arms using log-binomial regression and summarized with a risk ratio (RR) and corresponding 95% CI.

Distributions of time to sustained symptom improvement, time to sustained symptom resolution, and time to sustained return to health were described using Kaplan-Meier estimates and compared between arms using Gehan-Wilcoxon test. Distributions of time-averaged total symptom scores were compared using a Wilcoxon rank sum test.

The proportion of participants with SARS-CoV-2 RNA <LLoQ at day 3 was compared using Poisson regression with robust variance, adjusted for day 0 log_{10}-transformed SARS-CoV-2 RNA level and summarized with RR and 95% CI. Changes in NPRNA levels from day 0 to day 3 were evaluated with linear regression models for censored data, restricted to those with NPRNA >LLoQ at day 0.[32]

Although a NI margin was pre-defined for the primary efficacy comparison in the pre-Omicron population, there were no pre-specified margins for other outcomes for this population. Thus, 95% CIs for differences in outcomes between arms are provided to allow evaluation of what magnitude of true difference might reasonably be ruled out. All comparisons used a two-sided 5% type-I error rate, and no adjustment was made for the multiple comparisons across outcomes or for interim analyses that led to termination of the study based on operational futility. Statistical analyses were conducted using SAS version 9.4.

RESULTS

Study participants

Seven hundred thirty-three participants were enrolled from September 29, 2021 to January 20, 2022 at 70 sites in the US, Mexico, Argentina, Guatemala, and the Philippines. Ninety-eight percent of pre-Omicron and 89% of Omicron population participants were enrolled in the US. Primary analysis included a total of 647 participants: 255 (121 SAB-185 and 134 casirivimab/imdevimab) pre-Omicron and 392 (198 SAB-185 and 194 casirivimab/imdevimab) Omicron (Figure 1 and Supplementary Table 2).

Baseline characteristics were reasonably balanced across arms within each analysis population (Table 1). The median age was 56 and 53 years for the pre-Omicron and Omicron populations, respectively. Across both populations, 55% were female sex, 52% identified as Hispanic/Latino,
and 83% as White. Most participants enrolled within 5 days of symptom onset (70% pre-Omicron and 78% Omicron), 9% of the pre-Omicron and 20% of the Omicron populations reported a history of SARS-CoV-2 vaccination, and 54% of the pre-Omicron and 74% of the Omicron population were seropositive (Table 1).

Hospitalization/death

In the pre-Omicron population, 6/121 (5.0%) participants in the SAB-185 arm were hospitalized (one [0.8%] later died), and 3/134 (2.2%) casirivimab/imdevimab arm were hospitalized (one [0.7%] died) (Table 2). The absolute difference (95% CI) in the proportion of participants hospitalized/died was 2.7% (-2.3%, 8.6%). With the caveat of limited power, the analysis was inconclusive with respect to non-inferiority as this CI includes the NI margin of 3%.

In the Omicron population, 5/198 (2.5%) were hospitalized (none [0%] died) in the SAB-185 arm, and 3/194 (1.5%) were hospitalized (2 [1%] died) in the casirivimab/imdevimab arm. The absolute difference (95% CI) in the proportion hospitalized/died was 1.0% (-2.3%, 4.5%).

Results were similar for the secondary outcome of COVID-19-related hospitalizations/deaths (Table 2). In each analysis population, all except one hospitalization occurred among participants enrolled ≤5 days from symptom onset (Supplementary Table 3).

Safety outcomes

In the pre-Omicron population, 17 (14.0%) vs 20 (14.9%) participants in the SAB-185 and casirivimab/imdevimab arms, respectively, experienced grade ≥3 TEAEs through day 28 (RR [95% CI] = 0.94 [0.52, 1.71]); and in the Omicron population, counts were 28 (14.1%) vs 16 (8.2%), respectively (RR [95% CI] = 1.71 [0.96, 3.07]) (Table 3 and Supplementary Table 4). No single AE occurred in >5% of participants in a given arm. The most common grade ≥3 TEAEs in SAB-185 recipients (reported for 3 or more participants) were COVID-19 pneumonia, increased creatinine, and increased glucose or diabetes mellitus, and for casirivimab/imdevimab recipients, were fatigue, pain, COVID-19 pneumonia, increased creatinine, increased glucose, and headache (Supplementary Table 4). Rates of grade ≥2 TEAEs were similar between arms in both analysis populations (Table 3). SAEs occurred in 6 (5.0%) participants in the SAB-185 and 4 (3.0%) in the casirivimab/imdevimab arm in the pre-Omicron population, and 5 (2.5%) in the SAB-185 and 3 (1.5%) in the casirivimab/imdevimab arm in the Omicron population. Five participants who received SAB-185 (3 pre-Omicron, 2 Omicron) experienced an AESI (2 “hypersensitivity” events, 2 “infusion-related reactions”, and one “angioedema”); one AESI (“infusion-related reaction”) occurred in a participant who received casirivimab/imdevimab across both populations (Table 3).

Symptom outcomes

For any given study day through day 28, across all participants, 86 to 96% (220-244 of 255 pre-Omicron participants and 350-374 of 392 Omicron participants) completed the diary. In the pre-

DOI: 10.1093/infdis/jiae369
Omicron population, time to 2 days sustained symptom improvement and time to 4 days sustained symptom resolution were shorter for SAB-185, but were non-significant: median (quartiles) 11 (5, 24) for SAB-185 vs 14 (5, 23) days for casirivimab/imdevimab, p=0.05 (symptom improvement) and median (quartiles) 16 (9, >25) for SAB-185 vs. 24 (9, >25) days for casirivimab/imdevimab, p=0.27 (symptom resolution) (Figure 2A-B). The findings were similar across subgroups by days from symptom onset (≤ or > 5 days) at study treatment, with the sample size being more limited for the >5 day subgroup (Supplementary Figure 1A-D). Differences were more modest (1 day) for time to 2 or 4 days return to usual pre-COVID health, also non-significant (Supplementary Figure 2). Time to sustained symptom resolution for 2 days (Supplementary Figure 3) and time-averaged total symptom score from day 0 to 28 (Supplementary Table 5) also favored SAB-185 but were non-significant.

In the Omicron population, for which casirivimab/imdevimab was not expected to be active, time to 2 days sustained symptom improvement and time to 4 days sustained symptom resolution were shorter for SAB-185: median (quartiles) 11 (5, 19) for SAB-185 vs 13 (7, 25) days for casirivimab/imdevimab, p=0.08 (symptom improvement) and 18 (10, >25) for SAB-185 vs >25 (12, >25) days for casirivimab/imdevimab, p=0.006 (symptom resolution), with more participants meeting both outcomes in the SAB-185 arm (Figure 2C-D). The findings were again similar across subgroups by days from symptom onset (≤ or > 5 days), with the sample size being more limited for the >5 day subgroup (Supplementary Figure 4A-D). Time to 2 or 4 days sustained return to usual pre-COVID health was not different and was slightly longer for SAB-185 vs casirivimab/imdevimab, though more participants met the return to health outcome in the SAB-185 arm (Supplementary Figure 5). Time to sustained symptom resolution for 2 days was also significantly shorter for SAB-185 (Supplementary Figure 6) and time-averaged total symptom score from day 0 to 28 favored SAB-185 but was non-significant (Supplementary Table 5).

Virological outcomes

At entry, there was chance imbalance in the proportion of participants with NP SARS-CoV-2 RNA below LLoQ in the pre-Omicron population: 45% (54/119 with measurements) in the SAB-185 arm versus 32% (43/134) in the casirivimab/imdevimab arm (Supplementary Figure 7). At day 3, the proportion with SARS-CoV-2 RNA levels below LLoQ had increased modestly in both arms: to 50% (57/113) for SAB-185 and 43% (51/120) for casirivimab/imdevimab (RR [95% CI] adjusted for baseline of 0.94 [0.83, 1.06] for SAB-185 vs casirivimab/imdevimab) (Supplementary Figure 7 and Supplementary Table 6). Findings were similar examining quantitative viral RNA levels (Supplementary Table 6). Among those with quantifiable SARS-CoV-2 RNA at day 0, the adjusted mean reduction was 0.33 log\textsubscript{10} copies/mL [95% CI: -0.14, 0.80] less for SAB-185 than casirivimab/imdevimab. Among those with RNA below LLoQ at day 0, only one participant had a quantifiable RNA value at day 3. No differences were observed by subgroups based on timing of treatment (≤5 or >5 days of symptoms) (Supplementary Table 7).

DOI: 10.1093/infdis/jiae369
In the Omicron population, the proportion of participants with SARS-CoV-2 RNA below LLoQ at day 0 was 17% (32/190 with measurements) in the SAB-185 arm versus 19% (33/178) in the casirivimab/imdevimab arm (Supplementary Figure 8). At Day 3, the proportion had increased to 28% (47/166 with measurements) in the SAB-185 arm versus 30% (47/158) in the casirivimab/imdevimab arm (RR [95% CI] 1.02 [0.81, 1.29], adjusted for day 0 RNA level) (Supplementary Figure 8 and Supplementary Table 8). Findings were similar examining quantitative viral RNA levels (Supplementary Table 9). Among participants with quantifiable SARS-CoV-2 RNA at day 0, there was no difference between arms in change from day 0 to day 3 in SARS-CoV-2 RNA levels (adjusted mean reduction 0.06 log_{10} copies/mL more for SAB-185 [95% CI: -0.43, 0.31]) or when examining virologic outcomes by time from symptom onset (Supplementary Table 9). Among those with RNA <LLoQ at day 0, only two participants had a quantifiable RNA value at day 3.

DISCUSSION

Here, we present results from a randomized trial of SAB-185, a fully-human anti-SARS-CoV-2 polyclonal antibody produced from the purified plasma of transchromosomic bovines.[16, 18] The trial was conducted during the global transition in the COVID-19 pandemic from Delta to Omicron variant, and prematurely closed to enrollment due to low hospitalization/death rates during the Omicron period. In the primary non-inferiority analysis of the pre-Omicron population, we observed hospitalization/death rates of 5.0% among 121 participants assigned SAB-185 and 2.2% among 134 participants assigned casirivimab/imdevimab. Definitive conclusions about non-inferior efficacy of SAB-185 cannot be made as our analysis includes only 255 of 1200 planned participants. The planned assessment of SAB-185 superiority in the Omicron population was also underpowered due to a small sample size, compounded by low hospitalization/death event rates (2.5% with SAB-185 and 1.5% with casirivimab/imdevimab) as has been observed in other RCTs[33, 34] and cohorts in the Omicron era.[35] Overall, efficacy of SAB-185 on hospitalization/death cannot be determined from our trial. However, the study is of reasonable sample size to support the safety of SAB-185 as previously observed,[23] with few reported infusion-related or hypersensitivity reactions (~2% of treated).

Symptom outcomes, which have become the primary clinical efficacy endpoint in contemporary outpatient COVID-19 trials, were secondary measures in this study. In our trial, results for time to sustained symptom improvement and time to sustained symptom resolution generally favored SAB-185 over casirivimab/imdevimab, and significantly so for the Omicron population (for which casirivimab/imdevimab was not expected to be active), though these were not adjusted for multiple comparisons. While our previous data suggest a strong correlation between time to symptom improvement or resolution and time to return to health in a study population enrolled earlier in the pandemic,[30] SAB-185 did not reduce time to sustained return to pre-COVID-19 health compared
to casirivimab/imdevimab. In aggregate, the available data indicate a need to further evaluate the clinical effects of SAB-185.

Finally, no differences in nasopharyngeal viral levels were observed at day 3 post-treatment for SAB-185 compared to casirivimab/imdevimab in either the pre-Omicron or Omicron population. Nasal viral levels are challenging to interpret for a population in which approximately two-thirds had evidence of prior immunity. In addition, there is now some clinical evidence (noted to be available in a pre-print and not peer-reviewed publication) to suggest that casirivimab/imdevimab may retain modest antiviral activity against Omicron variant despite lack of activity in vitro, which further limits assessment of antiviral activity of SAB-185 as casirivimab/imdevimab may not be a placebo equivalent as treated in the analysis.[36] Thus, our phase 3 data do not exclude antiviral activity of SAB-185, as was observed in the phase 2 trial.[23]

Limitations of the study, in addition to the truncated sample size, include: the open label design; unexpected high rates of non-detection of nasopharyngeal virus at study entry, particularly for the pre-Omicron population, that limited assessment of antiviral effects; the known limitations of nasal and nasopharyngeal compartment virus measures for assessing antiviral activity and as a surrogate for clinical activity;[37, 38] lack of variant determination for a substantial proportion of participants (with risk for contamination of each analysis population, though this impact is expected to be limited based on available variant data); and uncertain generalizability to currently circulating variants.

In conclusion, this trial of SAB-185 exemplifies the challenges of evaluating novel therapeutics for COVID-19 during a rapidly evolving pandemic. While limited in the conclusions on clinical efficacy, the overall safety of SAB-185 was demonstrated, and a potential benefit on COVID-related symptom outcomes was identified. Unlike anti-SARS-CoV-2 monoclonal antibody therapeutics, which target single epitopes and thus render a potentially lower barrier to viral escape and loss of virologic activity, polyclonal SAB-185 antibodies are designed to target multiple extracellular regions of the SARS-CoV-2 Spike protein. This breadth of antigen targeting and the high titer, high avidity antibodies achieved on the platform may result in more durable neutralization of SARS-CoV-2 and clinical activity in the face of continued variant evolution.[18] The data from this trial highlight the potential of the transchromosomic fully-human polyclonal antibody platform for safe and efficacious therapies for COVID-19 and possibly other respiratory viral infections.

Acknowledgements: We thank the study participants, site staff, site investigators, and the entire ACTIV-2/A5401 study team; the AIDS Clinical Trials Group, including Lara Hosey, Jhoanna Roa, and Nilam Patel; the Brigham and Women’s and University of Washington Virology Specialty Laboratories; the ACTG Laboratory Center; Frontier Science; the ACTIV-2/A5401 Community Advisory Board; the Harvard Center for Biostatistics in AIDS Research (CBAR) and ACTG Statistical and Data Analysis Center (SDAC); the National Institute of Allergy and Infectious Diseases (NIAID) / Division of AIDS (DAIDS); the Foundation for the National Institutes of
Health and the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) partnership; and the PPD clinical research business of Thermo Fisher Scientific.

Funding: This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1AI068636 (JSC, KWC, BBT, ESD, DAW, WF, JJE, DMS), UM1AI068634 (MDH, CM, JR, MJG), and UM1AI106701 (JZL, ALG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Investigational product SAB-185 was donated by SAB Biotherapeutics and casirivimab/imdevimab by Regeneron Pharmaceuticals.

Potential conflicts of interest: KWC has consulted for Pardes Biosciences. BT has received honoraria for advisory boards and consulting from Gilead Sciences. ESD receives consulting fees from Gilead Sciences, Merck, and GSK/ViiV and research support through the institution from Gilead Sciences and GSK/ViiV. DAW has received funding to the institution to support research and honoraria for advisory boards and consulting from Gilead Sciences. JZL has consulted for Abbvie. WF has received research funding to the institution from Ridgeback Biopharmaceuticals, served on adjudication committees for Janssen, Syneos, and consulted for Inhaled Biopharmaceuticals and Merck. ALG reports contract testing from Abbott, Cepheid, Novavax, Pfizer, Janssen and Hologic and research support from Gilead and Merck, outside of the described work. JJE is an ad hoc consultant to GSK/VIR, data monitoring committee (DMC) chair for Adagio (now Invivyd) Phase III studies. JSC has consulted for Merck and Company. DMS has consulted for the following companies: Fluxergy, Kiadis, Linear Therapies, VxBiosciences, Model Medicines, and Bayer Pharmaceuticals. Christopher Bausch and Tom Luke are employees of SAB Biotherapeutics. Carlee Moser, Justin Ritz, Arzhang Cyrus Javan, Robert Call, Gene Neytman, Mark J. Giganti, Courtney V. Fletcher, and Michael D. Hughes declare no competing interests.

Author Contributions

Kara W. Chew: Study oversight, design, and implementation, analytic plan development, drafting of manuscript

Babafemi O. Taiwo: Study oversight, design, and implementation, analytic plan development, drafting of manuscript

Carlee Moser: Study design and implementation, analytic plan development, statistical analysis, drafting of manuscript

Eric S. Daar, MD: Study design and implementation, manuscript review and edits

David Alain Wohl: Study design and implementation, manuscript review and edits

Justin Ritz, MS: Study design and implementation, statistical analysis, drafting of manuscript

Arzhang Cyrus Javan: Study design and implementation, manuscript review

DOI: 10.1093/infdis/jiae369
Jonathan Z. Li, MD: Study design, virologic analysis (viral sequencing, variant determination), manuscript review and edits

William Fischer: Study design, manuscript review

Alexander L. Greninger: Virologic analysis (viral RNA quantification), manuscript review and edits

Christoph Bausch: Study design, manuscript review

Thomas Luke: Study design, manuscript review and edits

Robert Call: Study enrollment, manuscript review

Gene Neytman: Study enrollment, manuscript review

Mark J. Giganti: Study implementation, statistical analysis, manuscript review and edits

Courtney V. Fletcher: Study design and implementation, manuscript review

Michael D. Hughes: Study oversight, design, and implementation, analytic plan development, statistical analysis, manuscript review and edits

Joseph J. Eron: Study design and implementation, analytic plan development, manuscript review and edits

Judith S. Currier: Study oversight, design, and implementation, analytic plan development, manuscript review and edits

Davey M. Smith: Study oversight, design, and implementation, analytic plan development, drafting of manuscript

Data availability: The authors confirm that all data underlying the findings are fully available. The next-generation sequencing data generated in this study have been deposited on the NCBI Short Read Archive (SRA) under accession number PRJNA1023880. Other data are available under restricted access due to ethical restrictions. Access can be requested by submitting a data request at https://submit.mis.s-3.net/ and will require the written agreement of the AIDS Clinical Trials Group (ACTG) and the manufacturer of the investigational product. Requests will be addressed as per ACTG standard operating procedures. Completion of an ACTG Data Use Agreement may be required.

Code availability: Not applicable.

DOI: 10.1093/infdis/jiae369
References

Figure 1. CONSORT Diagram. Pre-Omicron Population consists of all participants with a pre-Omicron variant result (‘Confirmed Pre-Omicron’) and, for those without a variant determination, participants enrolled prior to December 15, 2021 (‘Likely Omicron’). Omicron Population consists of all participants with an Omicron variant result (‘Confirmed Omicron’) and, for those without a variant determination, participants enrolled on or after December 15, 2021 (‘Likely Omicron’). Participants who enrolled at sites with data integrity concerns (n=77) were excluded from the analysis. Cas/Imd = casirivimab/imdevimab; mITT = modified intent-to-treat
Figure 2. Time to sustained (2 days) symptom improvement and time to sustained (4 days) symptom resolution by treatment arm. The pre-Omicron population is shown in (A) (symptom improvement) and (B) (symptom resolution), and Omicron population shown in (C) (symptom improvement) and (D) (symptom resolution).

Table 1. Baseline Participant Characteristics by Population and Treatment Arm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pre-Omicron Population</th>
<th>Omicron Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAB-185 (N=121)</td>
<td>Cas/Imd (N=134)</td>
</tr>
<tr>
<td>Age, years, median (quartiles)</td>
<td>56 (47, 62)</td>
<td>56 (45, 62)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td>Female</td>
<td>72 (60)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>49 (40)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td>Cis-gender</td>
<td>121 (100)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOI: 10.1093/infdis/jiae369
<table>
<thead>
<tr>
<th>Ethnicity, n (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>113 (93)</td>
<td>117 (87)</td>
<td>230 (90)</td>
<td>156 (80)</td>
<td>154 (80)</td>
<td>310 (80)</td>
</tr>
<tr>
<td>Black</td>
<td>4 (3)</td>
<td>12 (9)</td>
<td>16 (6)</td>
<td>17 (9)</td>
<td>16 (8)</td>
<td>33 (9)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0)</td>
<td>0 (0%)</td>
<td>0 (0)</td>
<td>4 (2)</td>
<td>1 (1)</td>
<td>5 (1)</td>
</tr>
<tr>
<td>Other(^a)</td>
<td>4 (3)</td>
<td>5 (4)</td>
<td>9 (4)</td>
<td>19 (10)</td>
<td>21 (11)</td>
<td>40 (10)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic/ Latino</td>
<td>62 (51)</td>
<td>55 (41)</td>
<td>117 (46)</td>
<td>117 (59)</td>
<td>100 (52)</td>
<td>217 (55)</td>
</tr>
<tr>
<td>Not Hispanic/ Latino</td>
<td>59 (49)</td>
<td>79 (59)</td>
<td>138 (54)</td>
<td>81 (41)</td>
<td>94 (48)</td>
<td>175 (45)</td>
</tr>
<tr>
<td>Days from symptom onset at study entry median (quartiles)</td>
<td>4 (3, 6)</td>
<td>4 (3, 6)</td>
<td>4 (3, 6)</td>
<td>4 (3, 5)</td>
<td>4 (3, 5)</td>
<td>4 (3, 5)</td>
</tr>
<tr>
<td>(\leq 5) days, n (%)</td>
<td>85 (70)</td>
<td>93 (69)</td>
<td>178 (70)</td>
<td>150 (76)</td>
<td>155 (80)</td>
<td>305 (78)</td>
</tr>
<tr>
<td>> 5 days, n (%)</td>
<td>36 (30)</td>
<td>41 (31)</td>
<td>77 (30)</td>
<td>48 (24)</td>
<td>39 (20)</td>
<td>87 (22%)</td>
</tr>
<tr>
<td>History of SARS-CoV-2 vaccination(^b), n (%)</td>
<td>11 (9)</td>
<td>12 (9)</td>
<td>23 (9)</td>
<td>39 (20)</td>
<td>39 (20)</td>
<td>78 (20)</td>
</tr>
<tr>
<td>SARS-CoV-2 seropositive at day 0(^c), n (%)</td>
<td>65 (57)</td>
<td>64 (51)</td>
<td>129 (54)</td>
<td>137 (73)</td>
<td>128 (75)</td>
<td>265 (74)</td>
</tr>
<tr>
<td>Anti-N positive</td>
<td>31 (27)</td>
<td>29 (24)</td>
<td>60 (25)</td>
<td>46 (25)</td>
<td>45 (26)</td>
<td>91 (25)</td>
</tr>
<tr>
<td>Anti-S positive</td>
<td>64 (56)</td>
<td>61 (48)</td>
<td>125 (52)</td>
<td>133 (72)</td>
<td>122 (73)</td>
<td>255 (72)</td>
</tr>
<tr>
<td>SARS-CoV-2 RNA, log10 copies/ml, median (quartiles)</td>
<td>4.1 (<LOD, 7.0)</td>
<td>5.8 (<LOD, 7.3)</td>
<td>5.4 (<LOD, 7.2)</td>
<td>6.1 (3.5, 7.5)</td>
<td>6.1 (3.8, 7.3)</td>
<td>6.1 (3.7, 7.4)</td>
</tr>
<tr>
<td>(\geq) LLoQ, n (%)</td>
<td>65 (55)</td>
<td>91 (68)</td>
<td>156 (62)</td>
<td>158 (83)</td>
<td>145 (81)</td>
<td>303 (82)</td>
</tr>
<tr>
<td>Detected, <LLoQ, n (%)</td>
<td>2 (2)</td>
<td>2 (1)</td>
<td>4 (2)</td>
<td>9 (5)</td>
<td>11 (6)</td>
<td>20 (5)</td>
</tr>
<tr>
<td><LOD, n (%)</td>
<td>52 (44)</td>
<td>41 (31)</td>
<td>93 (37)</td>
<td>23 (12)</td>
<td>22 (12)</td>
<td>45 (12)</td>
</tr>
<tr>
<td>BMI (kg/m(^2)), median (quartiles)</td>
<td>30.5 (26.4, 35.9)</td>
<td>33.8 (28.3, 37.3)</td>
<td>31.8 (27.3, 36.4)</td>
<td>32.2 (26.5, 37.0)</td>
<td>32.7 (27.9, 36.8)</td>
<td>32.6 (27.4, 36.8)</td>
</tr>
</tbody>
</table>

\(^a\) Other includes participants who self-identified as American Indian or Alaskan, multiple races, or “other”

\(^b\) Defined as at least one dose of an authorized SARS-CoV-2 vaccine received prior to entry

\(^c\) Defined as detectable anti-N (nucleocapsid) or anti-S (spike) antibodies

Cas/Imd = casirivimab/imdevimab; LLoQ = Lower Limit of Quantification; LOD = Limit of Detection; BMI = body mass index
Table 2. Primary and secondary outcomes of all-cause hospitalization/death and COVID-19-related-hospitalization/death through day 28 by treatment arm and analysis population (pre-Omicron and Omicron)

<table>
<thead>
<tr>
<th>Event</th>
<th>Pre-Omicron Population</th>
<th>Omicron Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-inferiority analysis</td>
<td>Superiority analysis</td>
</tr>
<tr>
<td></td>
<td>Pre-Omicron Population</td>
<td>Omicron Population</td>
</tr>
<tr>
<td></td>
<td>(N=121)</td>
<td>(N=198)</td>
</tr>
<tr>
<td>Absolute difference, % (95% CI), SAB-185 vs Cas/Imd</td>
<td>2.7 (-2.3, 8.6)</td>
<td>1.0 (-2.3, 4.5), p=0.72</td>
</tr>
<tr>
<td>Composite of all-cause hospitalizations or death (primary outcome), n (%)</td>
<td>6 (5.0)</td>
<td>5 (2.5)</td>
</tr>
<tr>
<td>Deathsb, n (cause of death)</td>
<td>1c</td>
<td>0</td>
</tr>
<tr>
<td>Composite of COVID-19-related hospitalizations (adjudicated) or all-cause death (secondary outcome), n (%)</td>
<td>6 (5.0)</td>
<td>4 (2.0)</td>
</tr>
<tr>
<td>COVID-19-related hospitalizations, n</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Deathsb, n</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

aFisher’s exact test

bAll deaths followed initial hospitalization

c“COVID-19 pneumonia”, study day 20

d“COVID-19 pneumonia”, study day 14

e“COVID-19/respiratory failure”, study day 3, and “multifocal COVID-19 pneumonia”, study day 26

Cas/Imd = casirivimab/imdevimab; CI = confidence interval
Table 3. Safety through Day 28

<table>
<thead>
<tr>
<th>Event</th>
<th>Pre-Omicron Population</th>
<th>Omicron Population</th>
<th>Risk Ratio (95% CI), p-value</th>
<th>Risk Ratio (95% CI), p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 or higher TEAEs through day 28 (primary safety outcome), n (%)</td>
<td>SAB-185 (N=121)</td>
<td>Cas/Imd (N=134)</td>
<td>SAB-185 (N=198)</td>
<td>Cas/Imd (N=194)</td>
</tr>
<tr>
<td>Deemed related by site investigator, n (%)</td>
<td>17 (14.0)</td>
<td>20 (14.9)</td>
<td>28 (14.1)</td>
<td>16 (8.2)</td>
</tr>
<tr>
<td>Grade 2 or higher TEAEs through day 28, n (%)</td>
<td>40 (33.1)</td>
<td>45 (33.6)</td>
<td>57 (28.8)</td>
<td>60 (30.9)</td>
</tr>
<tr>
<td>Deemed related by site investigator, n (%)</td>
<td>3 (2.5)</td>
<td>1 (0.7)</td>
<td>4 (2.0)</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>TEAEs leading to treatment changes, n</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SAEs through day 28, n (%)</td>
<td>6 (5.0)</td>
<td>4 (3.0)</td>
<td>5 (2.5)</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>SAEs through day 28 resulting in hospitalization, n (%)</td>
<td>6 (5.0)</td>
<td>3 (2.2)</td>
<td>5 (2.5)</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>AESIs through day 28, n (%)</td>
<td>3 (2.5)</td>
<td>1 (0.7)</td>
<td>2 (1.0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Cas/Imd = casirivimab/imdevimab; TEAE = treatment emergent adverse event; SAE = Serious Adverse Event; AESI = adverse event of special interest

a Wald test
b 1 grade 3 “drug hypersensitivity”, 1 grade 2 “infusion-related reaction”
c 1 grade 1 “infusion-related reaction”
d 1 grade 1 “infusion site reaction”, 1 grade 3 “hypertension”
e All hospitalizations deemed COVID-related
f All but one hospitalization deemed COVID-related

The AESI definition was specific to each agent. For SAB-185: grade ≥1 infusion-related reactions and grade ≥1 allergic/hypersensitivity reactions within 12 hours of administration that were deemed related to study product as determined by the site investigator. For casirivimab/imdevimab: grade ≥2 infusion-related reactions and grade ≥2 allergic/hypersensitivity reactions within 12 hours of administration that were deemed related to study product as determined by the site investigator.

DOI: 10.1093/infdis/jiae369