Antimicrobial Peptide Exposure and Reduced Susceptibility to Daptomycin: Insights Into a Complex Genetic Puzzle

William L. Kelley, Daniel P. Lew, and Adriana Renzoni
Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 Rue Gabrielle Perret Gentil, CH 1205, Geneva, Switzerland

(See the major article by Mishra et al, on pages 1160–7.)

Adequate antibiotic treatment of bacterial infections is one of the most important problems of our time, not only because of the incessant development of antibiotic resistance, but also because of diminished development of novel antibacterial products. Attention has been focused on this problem by the recent United Nations World Health Day in April 2011, which highlighted antibiotic resistance and issued calls for urgent action by expert scientific panels tasked to establish priorities and solutions [1]. Among the proposals is a call for enhanced understanding of resistance, including mechanisms and means of predicting its emergence. Obtaining this knowledge will clearly affect the prudent use of antibiotics and drive novel antibiotic discovery and development strategies.

Cationic antimicrobial peptides (CAMPs) are compounds of great pharmacologic and biologic interest, especially because they have nonspecific and multiple modes of action, which are believed to thwart or forestall the development of resistance. CAMPs are widely distributed in nature and constitute key effectors in innate immune responses to infection in organisms ranging from mammals to plants. CAMPs share cationic and amphipathic properties but vary in sequence, secondary structures, and size. Their antimicrobial activity is initiated through a nonspecific electrostatic interaction with the anionic heads of membrane phospholipids, leading to membrane depolarization or pore formation. Increasing evidence indicates that some CAMPs are probably internalized, leading to interaction with intracellular targets, suggesting that membrane damage alone might not be the principal antimicrobial mechanism of CAMPs [2–4].

Although CAMPs are considered promising candidate templates for development of novel antimicrobials, it has recently been shown that bacteria are capable of adapting and resisting CAMPs, perhaps because of co-evolution within their host. These resistance mechanisms include production of peptidases and proteases that degrade antimicrobial peptides, production of compounds that inhibit the action of CAMPs, and reduction of net anionic charge of the bacterial cell envelope [5].

Daptomycin, a calcium-dependent antimicrobial lipopeptide, is used to treat certain skin infections resulting from various gram-positive organisms and especially bloodstream infections due to *Staphylococcus aureus*. In some respects, daptomycin resembles CAMPs because of its peptide content, charge, and mode of action targeting membrane function. *S. aureus* strains displaying reduced susceptibility to daptomycin have been observed both in vivo and in vitro [6–8]. Of interest, cross-resistance between daptomycin and other CAMPs that target the bacterial cell membrane has also been reported. These studies suggest that exposure to daptomycin could confer reduced susceptibility to endovascular host defense antimicrobial peptides, notably thrombin-induced platelet microbicidal proteins (tPMPs) and human neutrophil peptide-1 (hNP-1) [9]. A natural extension of these findings concerning cross-resistance evolution is to consider the consequences of the reciprocal order of exposure.

In this issue of the *Journal*, Mishra and coworkers address this important aspect by asking whether there is a potential priming role of preexposure to endovascular host cationic peptides in the development of early stages of bacterial resistance to daptomycin. Their study relied on a carefully selected set of 47 independent methicillin-resistant *S. aureus* (MRSA) strains collected from
bacteremic episodes, excluding isolates obtained from patients with clinical evidence of endocarditis. Of importance, the archived strain set chosen for the study predated the commercial introduction of daptomycin in 2003, and all strains were, therefore, deemed “daptomycin naïve.” Since exposure to vancomycin can evoke measurable changes in daptomycin susceptibility, the authors were also careful to test the MRSA strain set for vancomycin susceptibility. All strains were vancomycin susceptible.

As a first step, in vitro assays established that bacterial survival following exposure to tPMP and hNP-1 was strongly correlated. In other words, an increased survival after exposure to one peptide was statistically linked to increased survival after exposure to the other peptide in this MRSA strain cohort. Given this correlation, they next asked whether strains showing increased survival to host cationic peptides concomitantly displayed altered daptomycin-susceptibility profiles. A positive correlation would provide evidence that prior exposure to these peptides could conceivably drive selection of daptomycin-resistant strains. Indeed, the authors found that higher daptomycin MICs tracked with increased resistance to daptomycin-resistant strains. Indeed, one of the hallmarks of S. aureus is its imperative arsenal of defense mechanisms that allow it to deter the complement, opsonization, reactive oxygen species, and iron limitation [13–15]. Even selective pressure by host lysozyme has driven the establishment of acquired resistance to this enzyme in all tested pathologic strains of staphylococci [16, 17].

Studies such as this one underscore the need to understand how bacteria acquire reduced susceptibility to CAMPs, compared with how reduced susceptibility to daptomycin occurs. The genetic changes driving resistance to daptomycin are thought to result in altered physiochemical properties of the cell membrane fluidity and surface electrostatic charge. By enhancing net surface positive charge through several mechanisms, notably via reactions catalyzed by MprF and DltA, cationic molecules would be repulsed and would be unable to access the bacterial membrane efficiently. Alterations in MprF, a bifunctional synthase/translocase responsible for lysinylation of phosphatidylycerol, results in a gain of positively charged phospholipid and, thus, enhanced positive surface membrane charge, whereas DltA, an enzyme that adds alanine to polyamionic teichoic acid chains, reduces net negative surface charge. Altered resistance to cationic antimicrobial peptides also appears to be mediated, in part, by MprF and DltABCD-mediated surface modifications [18]. Reports to date would, therefore, suggest that there is reason to expect some mechanistic overlap that would explain the phenomenon of cross-resistance in molecular detail. A key to understanding this linkage is the growing body of evidence linking mutation of the histidine kinase 2-component sensor system GraRS (also called aps) to changes in susceptibility to CAMPs, daptomycin, and glycopeptides.

A search for genes whose overexpression affected glycopeptide resistance in S. aureus first suggested a role for graRS [19]. Subsequent study indicated that point mutations within the gene encoding GraRS could dramatically affect conversion of heterogeneous vancomycin-intermediate S. aureus to intermediate vancomycin resistance [20, 21], and phenotypic analysis suggested that mutation in graR could also affect daptomycin susceptibility [20]. Concurrent studies designed to uncover mechanisms governing susceptibility to various antimicrobial peptides in both Staphylococcus epidermidis and S. aureus showed an important role of GraRS [16, 22–25]. Extensive gene expression analysis has demonstrated that GraRS controls a large regulon in S. aureus, but that, most notably, it modulates the expression of mprF and the dltABCD operon involved in the controlling bacterial surface charge [16, 24, 25–27]. Of interest, only certain CAMPs can activate the GraRS system, which in turn increases resistance to these specific CAMPs [23, 28]. However, resistance to other CAMPs is observed even in the presence of non-inducible GraRS CAMP molecules, suggesting that there are both GraRS-dependent and -independent CAMP resistant pathways [26].

Although the results presented by Mishra et al in the present issue raise some tantalizing possibilities, it is important to consider the findings as preliminary and, as the authors point out, subject to a number of caveats. For instance, the MRSA cohort could
It is clear that future studies will involve determining precisely how exposure to various host defense peptides imparts a selective advantage to S. aureus to promote infection and disease. In addition, it will be imperative to determine whether and to what extent altered resistance to host defense peptides alters the efficacy of daptomycin. Of importance, the mounting evidence of antimicrobial resistance mechanisms shared among CAMPs, daptomycin, and glycopeptides emphasizes the need to pursue detailed knowledge of these mechanisms, because studies are convincingly showing that we face far more complex drug-resistance patterns than previously imagined.

Notes

Financial support. This work was supported by grants from the Swiss National Science Foundation (grant 310030_125109 to D. L. and grant 3100A0-120428 to W. L. K.). In the interest of space and format, we have not endeavored to present a comprehensive mention of the rich genetic literature touching this subject. We apologize to authors whose studies have not been included herein.

Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

19. Cui L, Lian HQ, Neoh HM, Reyes E, Hiramatsu K. DNA microarray-based...


