Respiratory Syncytial Virus and Asthma Inception: Cause and Effect, or Shared Susceptibility?

Helen E. Groves¹² and Michael D. Shields¹²

¹Wellcome Wolfson Centre for Experimental Medicine, Queens University, and ²Royal Belfast Hospital for Sick Children, Belfast, United Kingdom

(See the major Article by Homaira et al, on pages 550–6.)

Keywords. Respiratory syncytial virus bronchiolitis; asthma inception.

For many asthma patients, the natural history of the disease starts with an initial presentation in infancy or early childhood. Episodes of recurrent wheezing in infancy are very common. For instance, an international study of wheezing in infants identified that 45% of infants <1 year of age had at least 1 episode of wheezing and 20% reported recurrent episodes [1]. For most, these episodes do not persist beyond early childhood but, for some, wheezing episodes progress into later childhood and adolescence with the development of the classical asthma phenotype. Research in this early age group is challenging in view of the important limitations of performing bronchoscopy and studies of airway structure in young infants. While it is well established that a range of allergens, infections, and even exercise can contribute to exacerbations and progression of asthma [2–4], the mechanisms responsible for inception of the asthma phenotype are less clear.

In recent years there has been increased emphasis on the potential role of viral respiratory tract infections (RTIs) in asthma inception. It is recognized that viral RTIs in early life are associated with a greater risk of recurrent wheezing in infancy and the subsequent development of asthma. In particular, severe bronchiolitis is a strong predictor for later development of asthma and there is now a large body of emerging evidence linking both rhinovirus (RV) and respiratory syncytial virus (RSV) bronchiolitis and asthma inception [5]. In infants diagnosed with RSV-related lower RTI, the odds of later developing asthma range from 2 to 13, and in infants with RV-related lower RTI, the odds of later developing asthma range from 2 to 10 [5–8]. The Viral inception of asthma, VINKU-study demonstrated that RV and allergic sensitization were significantly associated with recurrent wheezing in later infancy, and RV-associated wheezing episodes in the first 2 years of life occurred more commonly in infants aged >6 months [9]. Interestingly, the Tennessee Asthma Bronchiolitis Study (TABS) study showed that birth 4 months before the winter virus peak, which correlates strongly with peak RSV bronchiolitis infection, carried a higher risk of later asthma development compared to birth 12 months prior to the peak, suggesting that younger age of bronchiolitis infection may correlate with subsequent asthma risk [10].

In this issue of The Journal of Infectious Diseases, Homaira and colleagues demonstrate on a large population in New South Wales that severe RSV disease is associated with an increased risk of subsequent asthma hospitalization in early childhood [11]. This study adds a novel perspective, showing that the increased risk in this cohort was age related, being at least 2- to 7-fold greater in infants whose first episode of severe RSV disease was after 6 months of age, compared to children whose first RSV hospitalization occurred in the first 6 months of life. While this study was limited to capturing only subsequent asthma hospitalizations and not primary or ambulatory care attendances, it nonetheless adds new and important data on this subject. Interestingly, the authors also noted a dose-response relationship, showing greater rates of asthma hospitalization in later childhood with greater age of first severe RSV disease. Homaira and colleagues postulate a number of possible explanations for this unexpected finding, including waning maternal antibody levels in older infants and greater capacity for modification and airway remodeling in infants <6 months of age. They also speculate that children developing severe RSV-related disease in later infancy may already have begun to manifest an underlying susceptibility that is later evidenced by the subsequent development of asthma [11].

This point underscores one of the greatest challenges in discerning the role played by early-life viral RTIs and asthma inception. As discussed, the evidence of a link is strong. However, it remains unclear whether the occurrence of severe viral RTIs in infancy causes structural and functional changes that later
manifest as asthma, if the association is due to shared innate susceptibility to both viral RTIs and asthma, or indeed if these early viral RTIs are simply the initial appearance of asthma [5]. Specifically in relation to RSV RTI, a number of genetic polymorphisms associated with both RSV and asthma have been identified, many of which are involved in immune responses, raising the possibility of individual immune susceptibility [5]. However, there is also an increasing body of evidence regarding a possible causal relationship. RSV infection leads to a number of long-term changes in immune development and in animal models has been shown to cause pathophysiological changes similar to those noted in asthma [12, 13]. The importance of this debate, as alluded to by Homaira and colleagues, is intertwined with the potential development of a new RSV vaccine or specific therapy to prevent severe RSV infection. If achieved, such interventions might represent an opportunity to modify subsequent asthma development. However, as noted by Feldman et al in their very thorough review on this topic, in all likelihood viral RTIs do not constitute the sole cause for asthma inception, and multiple risk factors, many of which may yet remain unidentified, likely play a role [5]. On the other hand, given that the majority of infants are infected with RSV during the first year of life and it has been estimated that on a population level, 13% of asthma is associated with infant bronchiolitis during RSV season [14], RSV prevention is a tantalizing target. Interestingly, a multicentre trial assessing the causal link between RSV infection during infancy and recurrent wheeze (MAKI, ISRCTN73641710), was extended to look at the effect of RSV immunoprophylaxis in late preterm infants on later asthma development. This demonstrated decreased parental reports of current asthma in the RSV prevention group compared to a placebo group (absolute risk reduction, 7.4% [95% confidence interval, 1.5%–13.2%]) [15]. However, these results should be interpreted cautiously given that the proportion with current physician-diagnosed asthma was similar; indeed, the authors suggest that their results reflect a common predisposition for RSV-related RTI and asthma rather than causation [16].

Therefore, the debate regarding the role of RSV in initial asthma inception continues. Further work on associated immunological mechanisms, such as that by Turi et al, who recently identified distinct clusters of nasal immune-response pathways present at first RSV or RV infection that were associated with subsequent development of wheezing [17], may help more clearly define this relationship. We echo the recent call by Ramilo et al for larger prospective cohort studies to carefully delineate virological and immunological parameters that underpin RSV disease severity and determine the subsequent development of recurrent wheezing [18]. This exciting era of potential novel RSV therapeutic and vaccine strategies may provide an opportunity to modify the severity of RSV disease and, with the possibility of impacting post-RSV-wheezing phenotypes and ensuing asthma inception, that is an aim worth pursuing. One strategy being pursued for RSV prevention is the development of a maternal RSV vaccine to boost antibody protection in the newborn. Several candidate vaccines are being developed and results of a recent phase 3 trial of the Novavax maternal RSV F vaccine candidate are anticipated within in the next year [19]. It is important to note that the decay of maternally transferred antibodies can occur by 4 months of age [20]. Therefore, a maternal vaccine may provide protection against severe RSV-related lower RTI in children younger than this age, but effectiveness could be less for infants >6 months of age. Accordingly, the work by Homaira et al is very timely and highlights that there may be an additional need for an efficacious RSV vaccine in infants aged >6 months if RSV, indeed, plays a causative role in asthma inception.

Notes

Potential conflicts of interest. M. D. S. has received personal fees from Novartis, GlaxoSmithKline, and AstraZeneca. H. E. G. has received personal fees from AbbVie. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References