Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across Fungi

Brandi N. Celia-Sanchez¹, Brandon Mangum¹, Marin Brewer², Michelle Momany¹*

¹ Department of Plant Biology, University of Georgia, Athens, Georgia, 30606, United States of America
² Department of Plant Pathology, University of Georgia, Athens, Georgia, 30606, United States of America
*Corresponding Author (0000-0001-7110-063X)

Running Title: 4 Fungal groups of Cyp51 proteins

Keywords: Cyp51, Azole Resistance, Cyp51A, Cyp51B, Cyp51C

© The Author(s) (2022). Published by Oxford University Press on behalf of the Genetics Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Azole drugs target fungal sterol biosynthesis and are used to treat millions of human fungal infections each year. Resistance to azole drugs has emerged in multiple fungal pathogens including *Candida albicans*, *Cryptococcus neoformans*, *Histoplasma capsulatum*, and *Aspergillus fumigatus*. The most well-studied resistance mechanism in *A. fumigatus* arises from missense mutations in the coding sequence combined with a tandem repeat in the promoter of *cyp51A*, which encodes a cytochrome P450 enzyme in the fungal sterol biosynthesis pathway. Filamentous members of Ascomycota such as *A. fumigatus* have either one or two of three Cyp51 paralogs (Cyp51A, Cyp51B, and Cyp51C). Most previous research in *A. fumigatus* has focused on Cyp51A due to its role in azole resistance. We used the *A. fumigatus* Cyp51A protein sequence as the query in database searches to identify Cyp51 proteins across Fungi. We found 435 Cyp51 proteins in 295 species spanning from early-diverging fungi (Blastocladiomycota, Chytridiomycota, Zoopagomycota and Mucormycota) to late-diverging fungi (Ascomycota and Basidiomycota). We found these sequences formed 4 major Cyp51 groups: Cyp51, Cyp51A, Cyp51B, and Cyp51C. Surprisingly, we found all filamentous Ascomycota had a Cyp51B paralog, while only 50% had a Cyp51A paralog. We created maximum likelihood trees to investigate the evolution of Cyp51 in Fungi. Our results suggest Cyp51 is present in all fungi with three paralogs emerging in Pezizomycotina, including Cyp51C which appears to have diverged from the progenitor of the Cyp51A and Cyp51B groups.
Introduction

Fungal pathogens caused over 9 million diagnosed infections in 2017 in the United States, but the true fungal burden is hard to estimate since many cases are likely undiagnosed (Benedict et al. 2019; Vallabhaneni et al. 2016). The infections caused by fungal pathogens include severe chronic conditions, complex chronic respiratory conditions, recurrent infections, and many life-threatening invasive diseases (Perlin et al. 2017). Invasive fungal infections generally occur in individuals with suppressed or compromised immune systems (Brown et al. 2012). These infections have a high mortality rate if not treated early with appropriate antifungal drugs (Brown et al. 2012). Major drugs used to treat invasive fungal infections are echinocandins, polyenes, flucytosine, and azole drugs (Pound et al. 2011). Azoles, which target synthesis of the fungal-specific membrane component ergosterol, are among the most highly used antifungal drugs.

Cyp51 proteins, also known as Erg11 in Ascomycota yeast in the Saccharomycotina and Taphrinomycotina subphyla, are in all biological kingdoms and are highly conserved (Lepesheva and Waterman 2011). Cyp51 proteins have 6 substrate recognition sites (SRS), an oxygen-binding motif (AGXDTT), PER and EXXR motifs that create an E-R-R triad within the heme pocket, and a conserved heme-binding motif (FXXGXXXCXG) (Fig. 1) (Lepesheva and Waterman 2007; Cordova et al. 2017). Azole drugs competitively bind to sterol 14 alphademethylase (Cyp51, Erg11), a cytochrome P450 in the ergosterol biosynthesis pathway in fungi. Azole drugs consist of a heterocyclic ring with either two (imidazoles) or three (triazoles) nitrogens and a sidechain. The side chain of azoles interacts with the Cyp51 polypeptide while the nitrogen in the azole heterocyclic ring interacts directly with the sixth ligand of the heme ferric ion, a cofactor of the Cyp51 protein (Jefcoate et al. 1969). Cytochrome P450 proteins conduct a three-step reaction within the sterol biosynthesis pathway leading to the production of cholesterol in animals, sitosterol in plants, and ergosterol in fungi (Dufourc 2008; Schaller 2003). Sterols are integrated into the cell membrane where they aid in membrane fluidity and permeability (Dufourc 2008). The binding of azoles to Cyp51 depletes intracellular ergosterol and causes accumulation of methylated sterols and toxic intermediate sterols within the fungal cell membrane causing arrested growth and cell membrane stress (Cowen and Steinbach 2008).

Many fungi have acquired mutations in \textit{cyp51} that alter the ability of azoles to bind and inhibit Cyp51 (Flowers et al. 2015; Denning and Perlin 2011; Kano et al. 2017; Leroux and Walker 2011). Many missense mutations that have been shown to decrease sensitivity to azoles as determined by minimum inhibitory concentration (MIC) in the human fungal pathogens \textit{Candida albicans}, \textit{Cryptococcus neoformans}, \textit{Histoplasma capsulatum}, and \textit{A. fumigatus} (Flowers et al. 2015; Rodero et al. 2003; Sionov et al. 2012; Wheat et al. 2006; Lockhart et al. 2011) occur in substrate recognition sites causing azoles to interact and bind differently within Cyp51. Increased expression levels of \textit{cyp51A} due to 34-, 46-, 53- and 120-bp tandem repeats in the promoter have occurred in \textit{A. fumigatus} leading to high levels of pan-azole resistance, which is resistance to more than one azole drug (Snelders et al. 2008; Snelders et al. 2010; Hodiamont et al. 2009; Hare et al. 2019). Tandem repeats in the \textit{cyp51A} promoter reduce the affinity of the promoter and the CGAAT binding complex (CBC), which binds to CGAAT in the promoter and downregulates \textit{cyp51A} expression (Gsaller et al. 2016). Although Cyp51A has been the focus of most studies in \textit{A. fumigatus}, a second paralog (Cyp51B) has also been documented to cause resistance through upregulation and missense mutations (Buied et al. 2013; Gonzalez-Jimenez et al. 2020). Like
human pathogens, plant pathogens (such as *Erysiphe necator*, *Mycosphaerella digitatum*, and *Venturia inaequalis*) undergo changes in the *cyp51A* promoter (substitutions, insertions, duplications) and/or mutations in substrate recognition sites to alter expression and binding of Cyp51A (Ghosoph et al. 2007; Delye et al. 1997; Gadoury et al. 2012; Stammler et al. 2009; Canas-Gutierrez et al. 2009; Cools and Fraaije 2013; Cools et al. 2012; Sun et al. 2013; Schnabel and Jones 2001; Pfeufer and Ngugi 2012).

Previous studies were limited to fewer than 86 fungal sequences (Song et al. 2018; Hawkins et al. 2014) or only to *Aspergillus* spp. (Dos Santos et al. 2020; Perez-Cantero et al. 2020). The goal of our study was to better understand the relationships among all fungal Cyp51 proteins.

Materials and Methods

NCBI Protein Blast

A. fumigatus Cyp51A protein sequence (XP_752137.1) was used in an NCBI Protein BLAST to search the reference sequence database for other Cyp51 proteins in Fungi. The following setting were used for the Protein BLAST: Database: Reference Proteins, Exclude: uncultured/environmental sample sequences, Algorithm: blastp (protein-protein BLAST), Max Target Sequences: 1000, Expect Threshold: 0.001, Word size: 6, Max matches in a query range: 0, Matrix: BLOSUM62, Gap Costs: Existence: 11 Extension: 1, and Compositional adjustments: Conditional compositional score matrix adjustment. Sequences with less than 50% coverage and less than 30% percent identity were eliminated. To ensure all clades were represented, the top hit from each clade was used to conduct another protein BLAST search (Table S1). Some clades were not represented in the reference sequence database, so identical settings were used to search and filter the non-redundant protein sequences database. The unfiltered searches resulted in a total of 4404 sequence hits. Sequences were filtered to have greater than 50% coverage and more than 70% percent identity. FASTA files of the 480 sequences resulting from filtering were downloaded and opened in Geneious Prime 2019.1.1. To confirm the sequences were a Cyp51, sequences were checked for the presence of SRS1-6, the oxygen-binding motif AGXDTT, PER and EXXR motifs, and the conserved FXXGXXXCXG heme-binding domain.

The following sequences were eliminated for missing amino acids in SRS1-6 or missing amino acids in conserved motifs: EPZ30787.1, EPZ31936.1, KXN68292.1, RKP07181.1, RKP16598.1, RKP17874.1, RKP18653.1, RKP18926.1, XP_001218650.1, XP_002563403.1, XP_002583031.1, XP_002842283.1, XP_003005233.1, XP_003253692.1, XP_007375289.1, XP_007756389.1, XP_008026031.1, XP_008039623.1, XP_009649122.1, XP_013258864.1, XP_015404015.1, XP_018230821.1, XP_018249826.1, XP_018270027.1, XP_018712692.1, XP_020066776.1, XP_022578172.1, XP_025599710.1, XP_027619241.1, XP_027619242.1, XP_031059536.1, ORZ32486.1, XP_017991977.1, XP_003017020.1, XP_003019064.1, and XP_033461214.1. The following 19 fusion proteins were found in various members in Ascomycota: _A. fumigatus_ was reported to contain three Cyp51 proteins (Paul et al. 2015; Liu et al. 2012), but these were later removed by NCBI (https://www.ncbi.nlm.nih.gov/protein/XP_002383931.1/) (XP_002375123.1, XP_002379130.1,
Some *Aspergillus* spp. have a duplication of Cyp51A or Cyp51B which has previously been called Cyp51C (Perez-Cantero et al. 2020). NCBI refSeq is not exclusively based on whole genome sequences so it should be noted that it is possible that the full complement of Cyp51 orthologs in each of the 295 species was not identified.

Phylogenetic analyses

Protein sequences were aligned once with MAFFT version 7.407 then once with PASTA version 1.8.5 (Katoh and Standley 2013; Mirarab et al. 2015). Maximum likelihood trees were constructed with RAxML version 8.2.11 with a PROTGAMMAAUTO or GTRGAMMA substitution model and 1000 bootstraps (Stamatakis 2014). Interactive Tree of Life (iTOL) was used for visualization and annotation of the trees (Letunic and Bork 2019). Species were represented by a single Cyp51 protein sequence. Subphylum Pezizomycotina was represented by group Cyp51B where duplicate Cyp51B sequences were removed.

Amino Acid Analyses

Geneious Prime (version 2021.2.2) was used to generate pairwise identities and consensus sequences. Similarity tables for the whole protein and motifs are based on pairwise identity in each group, number of similar amino acids divided by the total number of amino acids in the protein or motif. “Weblogo-like” diagrams were created manually for visualization of conservation across groups. The height of one letter amino acid designation was based on frequency across all four consensus sequences. Colors and symbols were used as described in Figure 5 legend to denote conservation within groups.

Results and Discussion

435 fungal Cyp51 proteins were analyzed. Cyp51 proteins were previously defined as having 6 substrate recognition sites (SRS), an oxygen-binding motif (AGXDTT), PER and EXXR motifs that create an E-R-R triad within the heme pocket, and a conserved heme-binding motif (FXXGXXXCXG) (Lepesheva and Waterman 2007; Cordova et al. 2017) (Fig. 1). To understand Cyp51 genes across Fungi, the Cyp51A protein from *A. fumigatus* strain Af293 - a well-studied clinical strain used by multiple labs (Garcia-Rubio et al. 2018; Keizer et al. 2021) - was used as a reference in a protein BLAST (Basic Local Alignment Search Tool) (Altschul et al. 1990). A total of 4404 protein sequences resulted and were filtered to retain those with greater than 50% coverage and greater than 30% percent identity to the reference sequence, resulting in 480 sequences (Table S1). The resulting protein sequences were analyzed for the presence of full length SRS1-6 domains and the four Cyp51 motifs. Of these, 435 proteins had SRS1-6 domains, the oxygen-binding motif AGXDTT, the PER and EXXR motifs, and the conserved heme-binding motif FXXGXXXCXG and were considered to be functional Cyp51 proteins (Table S1). Among the 435 Cyp51 sequences that met our criteria for inclusion, JGI and NCBI listed 15 apparent fusion proteins; 13 between Cyp51B and a kinase immediately upstream and 2 between Cyp51C and an acetyltransferase immediately upstream. To determine whether the 15 apparent fusion proteins were *bona fide* fusion proteins or two separate proteins merged by *in silico* errors, we searched syntenic regions in related species in FungiDB and MycoCosm (Amos et al. 2022; Grigoriev et al. 2012). Syntenic regions showed some separate proteins with intergenic regions between them, some overlapping proteins, and some fused proteins (Amos et al. 2022; Grigoriev et al. 2012). The Cyp51 portions of the fusion proteins were extracted and kept in the analyses.
resulting in a total of 435 Cyp51 proteins from 295 species (Table S1, Table S2). It should be
noted that our search parameters ensure that all 435 sequences we analyzed are true Cyp51
proteins; however, it is possible that the full complement of Cyp51 paralogs in each of the 295
species was not identified because refSeq is not exclusively based on whole genome sequences.

Fungal Cyp51 proteins fall into 4 groups. To investigate how fungal Cyp51 proteins are
related to each other, we used RAxML to create a maximum likelihood tree with 435 fungal
Cyp51 proteins and 2 human Cyp51 proteins to root the tree (Figure S1). To aid in visualization,
we collapsed branches based on phyla, subphyla or classes (Figure 2). We found fungal Cyp51
proteins fell into four major groups which we designated as Cyp51, Cyp51A, Cyp51B, and
Cyp51C based on naming in previous literature (Figure 2, Figure S1) (Perez-Cantero et al. 2020;
Hawkins et al. 2014). Cyp51 in members of Saccharomycotina and Taphrinomycotina are also
known as “Erg11” in the literature. The topology of our Cyp51 protein tree largely followed the
topology of the fungal tree of life (Figure 2, Figure S1, (James et al. 2020b)). Proteins from
early-diverging fungi (Blastocladiomycota, Chytridiomycota, Monoblepharidomycota,
Zoopagomycota and Mucormycota), Basidiomycota, Saccharomycotina, and Taphrinomycotina
fell into group Cyp51. Our phylogenetic analyses show a divergence of three Cyp51 paralogs in
filamentous Ascomycota (Figure 2, Figure S1). Those from Pezizomycotina fell into Cyp51A,
Cyp51B, and Cyp51C. Divergence of Cyp51 from the common ancestor of paralogs Cyp51A,
Cyp51B and Cyp51C has strong support (100% bootstrap support), but divergence of paralogs
Cyp51A, Cyp51B and Cyp51C from each other does not have strong support (41%, 36%, and
41% bootstrap support, respectively).

Most fungal species in our study had one or two Cyp51 paralogs (180/295 and 100/295,
respectively) (Figure 3, Table S2). Fewer had three (14/295) and only one fungus, Basidiobolus
meristosporus, had four copies of Cyp51 (Figure 3). Fungi with one or two Cyp51 proteins were
found across all taxonomic groups (Figure 3). Fungi with three Cyp51 proteins were found in
Basidiomycota and Ascomycota. Members in Pezizomycotina had different combinations of
Cyp51 paralogs (Figure 3). Most species had Cyp51A and Cyp51B paralogs or only Cyp51B
(69/171 and 63/171, respectively) (Figure 3). All members of Pezizomycotina contained a
Cyp51B paralog (Figure 3). As shown in Table S2, we named fungal Cyp51 proteins based on
the group assignment in Figure S1.

We postulate two possible evolutionary paths for Cyp51 paralogs as shown in Figure 4. In the
first possible evolutionary path, shown in 4A, after an initial Cyp51 duplication paralog C
diverged followed by another duplication event and divergence of paralogs A and B. The
divergence of paralogs A (41%), B (36%), and C (41%) has low support. In the second possible
evolutionary path, shown in 4B, the poorly supported nodes are removed so that the three
paralogs diverged after two unresolved duplication events or a triplication event placing them on
the same branch. In either scenario it is possible that subsequent gene loss(es) or duplication(s)
led to species with the different combinations of paralogs shown in Figure 3.

Distinguishing between these possible evolutionary paths is complicated by the small number of
Cyp51C sequences and the relatively low number of characters (414-624 amino acids) in Cyp51
genes resulting in low bootstrap support for some nodes. Our analysis only had 29 Cyp51C
sequences compared to Cyp51A and B with 87 and 171 sequences, respectively. To see if we
could better resolve the relationships among Cyp51A, Cyp51B, and Cyp51C, we analyzed pairwise conservation of all Cyp51 protein sequences using Geneious Prime (Table S3). We found that individual members of the Cyp51 group varied the most from each other, with only 46% similarity. Similarity within the Cyp51A, Cyp51B, and Cyp51C groups was much higher (64.7%-68.8%). Comparing between groups, members of the Cyp51 group were 45-50% similar to members of Cyp51A, Cyp51B, or Cyp51C groups while members of Cyp51A, Cyp51B, and Cyp51C groups were roughly 60% similar to each other (Table S3). We then examined conservation within the highly conserved motifs (SRS 1-6, AGXDTT, PER, EXXR and FXXGXXXXCIG) (Table S4). Once more the general trend was that motifs within the Cyp51 group were more variable that those in other groups.

Consensus sequences from the four Cyp51 groups were compared to each other to create a visual representation of differences in motifs across groups (Figure 5, Table S4). The most conserved regions (>95% across all Cyp51 proteins) are in the EXXR, PER, and FXXGXXXXCIG motifs (Figure 5, Table S4). These three motifs are presumably highly conserved due to their roles in Cyp51 structure and function. The EXXR and PER motif form the E-R-R triad that stabilizes the core structure of Cyp51, while the FXXGXXXXCIG motif is a heme-binding domain that is essential for Cyp51 function (Sezutsu et al. 2013; Deng et al. 2007). Out of the 17 amino acids within these three motifs, 13 are more than 95% conserved (Figure 5, Table S4). Looking at all motifs, there are 59 amino acids shared between the four consensus sequences with 39 having greater than 95% conservation (Figure 5, Table S4). Cyp51A and Cyp51B have the highest amount of shared amino acids in motifs (88%) (Figure 5, Table S4). Cyp51C has 23 amino acids across motifs that are unique compared to 15 in Cyp51, 8 in Cyp51A, and 5 in Cyp51B, suggesting Cyp51C may be a specialized group, though the low number of Cyp51C sequences included in the analysis might also explain the pattern (Figure 5).

Research on Cyp51 in filamentous Ascomycota tends to be focused on the Cyp51A paralog because of its role inazole resistance in fungal pathogens of plants and animals. To our surprise, we found Cyp51A in only half of the species of filamentous Ascomycota we analyzed (86/171) and Cyp51B in all species (Figure 3, Table S2). The low bootstrap support we saw for divergence of Cyp51A from Cyp51B suggests they may play very similar roles with Cyp51B being the essential paralog and the possible Cyp51 ortholog (Figure 4A). Indeed, in A. fumigatus, Cyp51A and Cyp51B act in a compensatory manner; when one paralog is knocked out expression of the other paralog increases (Roundtree et al. 2020). Our results confirm and expand previous work by Hawkins et al (Hawkins et al. 2014) that compared 86 fungal Cyp51 proteins in 54 different species and found all species of filamentous Ascomycota retained a Cyp51B paralog, but Cyp51A had been lost in multiple lineages, and Cyp51C was only found in Fusarium spp. (Becher et al. 2011; Hawkins et al. 2014; James et al. 2020a). Previous publications have identified Cyp51C in A. flavus (Paul et al. 2015; Liu et al. 2012); however, these sequences were removed from NCBI (https://www.ncbi.nlm.nih.gov/protein/XP_002383931.1/). Other Aspergillus spp. have been reported to have a Cyp51C, but these were a duplication of Cyp51A or Cyp51B (Perez-Cantero et al. 2020). Cyp51C was subsequently reported in Fusarium spp., Gibberella zeae, and Nectria haematococca (Becher et al. 2011; Hawkins et al. 2014). We found Cyp51C in 9 other genera (Table S2). Interestingly, all are pathogens of plants or animals (Table S2). Cyp51C has been shown to be necessary for invasion of plant host tissues in Fusarium (Fan et al. 2013). This
raises the interesting possibility that it could play a similar role in other genera, though further functional studies are needed to test the role of Cyp51C in invasion and virulence.

Maximum likelihood analysis suggested two possible evolutionary paths for Cyp51 paralogs: 1) Cyp51C diverged before Cyp51A and Cyp51B (Figure 4A); 2) Cyp51A, Cyp51B, and Cyp51C diverged from each other at the same time (Figure 4B). Based on the higher amino acid conservation between Cyp51A and Cyp51B, the evolutionary path shown in Figure 4A seems more likely; that is to say Cyp51C is a specialized group of proteins that diverged first (Figure 4A, Figure 5, Table S4). More functional studies are needed to understand shared and unique roles Cyp51A, Cyp51B, and Cyp51C paralogs play in fungi.

Data availability
All Cyp51 sequences used are listed in Table S2 and are publicly available through NCBI (https://www.ncbi.nlm.nih.gov/).

Funding
This work was supported by the Centers for Disease Control and Prevention (CDC; contract 200-2017-96199 to M.M. and M.T.B.) and United States Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA AFRI grant 2019-67017-29113 to M.T.B. and M.M.). B.N.C-S. was also supported by the National Science Foundation under Grant No. DGE-1545433.

Conflicts of interest
The authors declare that there is no conflict of interest.
References

Figure Legends

Figure 1: Typical organization of Cyp51 domains. Cyp51 proteins contain six substrate recognition sites (SRS 1-6), an oxygen binding motif (AGXDTT), PER and EXXR motifs, and a conserved heme-binding motif (FXXGXXXCXG). Black boxes represent SRS domains. Gray shading represents other motifs. Diagram is based on *A. fumigatus* Cyp51A (XP_752137.1) and is shown to scale.

Figure 2: Cyp51 protein tree for Fungi. Maximum likelihood tree of 435 Cyp51 proteins with collapsed branches based on phyla, subphyla or classes. Branch colors match the colors used for taxonomic clades in the Fungal Tree of Life (James et al. 2020b). Branches for Blastocladiomycota, Chytridiomycota, Monoblepharidomycota, Zoopagomycota, Mucoromycota, Basidiomycota, and Ascomycota are represented by gray, orange, blue, green, red, yellow, and teal, respectively. Branches with bootstrap support of at least 90 are in bold. Collapsed branches represent phyla, subphyla and classes and are named accordingly. Shapes represent subphyla and classes in Ascomycota. Filled triangles represent subphylum Orbiliomycotina. Empty triangles, filled circles, empty circles, filled squares, and empty squares represent classes Leotiomycetes, Dothideomycetes, Xylonomycetes, Eurotiomycetes, and Sordariomycetes, respectively. The innermost ring shows phyla Basidiomycota (yellow) and Ascomycota (teal). The second ring shows subphylum Pezizomycotina (dark teal). The outer ring shows human Cyp51 proteins used as the outgroup (grey) and 4 groups of fungal Cyp51 proteins – Cyp51, Cyp51C, Cyp51B, and Cyp51A represented by orange, blue, black and red, respectively.

Figure 3. Fungal species have different numbers of Cyp51 paralogs. Overview of 435 Cyp51 paralogs in 295 fungal species based on Table S2 and Figure S1 maximum likelihood tree. Orange, red, black, and blue circles show number of Cyp51, Cyp51A, Cyp51B, and Cyp51C paralogs, respectively. For ease of viewing, where multiple strains represent a species in the maximum likelihood tree, all paralogs were combined in a single entry for that species. Branch colors match the colors used for taxonomic clades in the Fungal Tree of Life (James et al. 2020b). Branches for Blastocladiomycota, Chytridiomycota, Monoblepharidomycota, Zoopagomycota, Mucoromycota, Basidiomycota, and Ascomycota are represented by gray, orange, blue, green, red, yellow, and teal, respectively.

Figure 4. Possible Cyp51 homolog evolutionary paths. Simplified diagrams of possible Cyp51 evolutionary paths based on Figure 2. The Cyp51 branch in early diverging fungi, Basidiomycota, Saccharomycotina and Taphrinomycotina is colored orange. Filamentous Ascomycota (Pezizomycotina) Cyp51A, Cyp51B, and Cyp51C branches are colored red, black and blue, respectively. Numbers represent bootstrap support.

Figure 5. Conservation of motifs in Cyp51 proteins across Fungi. Consensus sequences for each of the four Cyp51A groups are shown arranged from the N- to C-terminus. Amino acids conserved across all 435 Cyp51 protein sequences are denoted by an *. Amino acids found in more than 95% of all Cyp51s are denoted by >. Lower than 95% conservation in all Cyp51s are denoted by #. Numbers represent amino acid position within motifs.
Figure 1: Typical organization of Cyp51 domains. Cyp51 proteins contain six substrate recognition sites (SRS), an oxygen binding motif (AGXDTT), a PER and EXXR motif, and a conserved heme-binding motif (FXXGXXXCGX).