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A Computational Design
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Generation of Rigid Origami
Crease Patterns
Today most origami crease patterns used in technical applications are selected from a
handful of well-known origami principles. Computational algorithms capable of generating
novel crease patterns either target artistic origami, focus on quadrilateral creased paper, or
do not incorporate direct knowledge for the purposeful design of crease patterns tailored to
engineering applications. The lack of computational methods for the generative design of
crease patterns for engineering applications arises from a multitude of geometric complex-
ities intrinsic to origami, such as rigid foldability and rigid body modes (RBMs), many of
which have been addressed by recent work of the authors. Based on these findings, in
this paper we introduce a Computational Design Synthesis (CDS) method for the generative
design of novel crease patterns to develop origami concepts for engineering applications.
The proposed method first generates crease pattern graphs through a graph grammar
that automatically builds the kinematic model of the underlying origami and introduces con-
straints for rigid foldability. Then, the method enumerates all design alternatives that arise
from the assignment of different rigid body modes to the internal vertices. These design
alternatives are then automatically optimized and checked for intersection to satisfy the
given design task. The proposed method is generic and applied here to two design tasks
that are a rigidly foldable gripper and a rigidly foldable robotic arm.
[DOI: 10.1115/1.4052847]
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1 Introduction
Origami has received considerable attention in recent decades

when mathematicians, engineers, and artists recognized the
benefits of origami. These benefits are numerous: origami is
scale-independent [1], allows for a compact or flat stowage in the
unfolded state as well as complex three-dimensional motion
during deployment [2]. The deployment can be achieved by a low
number of degrees-of-freedom (DOF), which minimizes the
amount of resources required to actuate the folding motion and
enables a reliable control [3]. The facilitated actuation and the
complex motion then enable programmable structures that can
change mechanical properties, shape, and function on demand
[4,5]. In addition, origami can be produced in the flat state using
additive manufacturing [6], which enhances realization possibilities
and reduces assembly time.
Due to its benefits, the principle of origami offers potential for

various scientific fields that pose different engineering design
tasks. The transformation of origami into engineering applica-
tions includes an entire spectrum of more abstract to more direct
implementations. The abstract end of the spectrum corresponds
to so-called origami-inspired products [7] that fold and exhibit
origami-like geometry but otherwise show little resemblance to
origami. More closely related to traditional origami are origami-
adapted mechanisms [8] that are based on origami crease patterns
but use nonpaperlike materials and accommodate for finite thick-
ness. Finally, origami-applied systems [7] use paperlike material
and exhibit little to no alteration of the underlying crease pattern.

Together, these categories constitute the entire spectrum of origami-
based design [9,10], which finds applications in mathematics [11],
material science [12–15], DNA [16] and biomedical research [17–
21], mechanical engineering [22], robotics [23–26], consumer
goods [27], architecture [28], and space [29–31].
The widespread applicability of origami is accompanied by the

adaptation and introduction of various computational tools
[10,32–38] that facilitate the application of origami in engineering
design tasks. However, despite the trend toward computer-aided
processes, today most crease patterns used in technical applications
are selected from a handful of well-known origami principles [2].
Computational algorithms capable of generating novel crease pat-
terns either target artistic origami [39,40] or shape matching [41]
without guaranteeing rigid foldability, are limited to quadrilateral
creased paper [42] using only one pattern [33] and generation of
origami tessellations with discrete sector angles [43]. Furthermore,
most of the methods do not embed direct design knowledge on how
to generate rigidly foldable crease patterns. Two examples for the
latter case are works by Fuchi et al. [44] and Gillman et al. [45]
that utilize ground structures that only allow for sector angle config-
urations that include angles of 45 deg or multiples thereof, which
offers limited design freedom. This only leads to regular patterns,
and thus resembles an undirected search for feasible solutions
rather than the purposeful design of novel crease patterns that
satisfy given engineering design tasks. In both cases, a ground
structure is used as a genotype, in which each element can be
switched on or off while optimizing using genetic algorithms
(GA). Further approaches that rely on GA and meta-heuristics to
generate solutions are works [46] and [47], respectively. Although
those approaches follow encodings similar to Refs. [44,45], they are
not limited to a fixed ground structure, but the question of how to
perform a search that guarantees rigid foldability of generated can-
didate solutions is still unresolved. In an effort to improve the per-
formance of GA and topology optimization in Ref. [45], the
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subsequent work [48] uses Bayesian optimization to design origami
for a specific task. Rather than focusing on generating patterns, the
focus is set on an efficient response evaluation since nonlinear mate-
rial properties are considered. Again, a predefined ground structure
is used for which the optimization process tunes the locations of
vertices to satisfy the objective function.
The lack of computational methods for the generative design of

crease patterns for engineering applications arises from a multitude
of geometric complexities intrinsic to origami. First, many engi-
neering applications require an origami to fold rigidly for the incor-
poration of rigid materials or electronics. Second, each internal
vertex in a crease pattern exhibits two rigid body modes (RBMs)
that allow for both “upward” and “downward” motion [49,50],
which results in an exponential growth of the number of possible
modes as the number of internal vertices increases. Third, the rela-
tion between kinematic determinacy, DOF, and pattern symmetry is
still largely unexplored in origami. Fourth, real-world applications
do not allow for self-intersection for which there still exist no intrin-
sic conditions. Finally, converting infinitely thin patterns into real-
izations with finitely thick materials imposes problems on crease
pattern and hinge design [51].
In a recent work [52], whose findings will be briefly explained in

Sec. 2, the authors addressed some of the above complexities by
presenting the Principle of Three Units (PTU) that leads to an ana-
lytical, intrinsic condition for the rigid foldability of single degree-n
vertices, where n is the number of crease lines incident to a vertex.
In addition to this condition, the PTU yields an analytical kinematic
model for single vertices to which the RBMs are inputs rather than
the results of simulation [53]. The PTU [52] further offers guide-
lines for the generation of crease patterns whose kinematic
motion can be explicitly determined. The condition for the rigid
foldability of a single vertex can then be extended to each vertex
in the generated crease pattern to achieve global rigid foldability
if the underlying crease pattern is acyclic.
Based on these findings, in this paper we introduce a Computa-

tional Design Synthesis (CDS) method [54] for the generative
design of novel crease patterns to develop origami concepts for
engineering applications. We focus on the generation of simple
crease patterns that fit the scope of engineering applications, and
use the term “concept” to clarify that the method addresses the
abovementioned geometric complexities except the problem of
finite thickness. This leads to a method that generates rigidly fold-
able, infinitely thin, and intersection-free crease patterns that satisfy
a given design task.
Section 2 outlines the PTU and the corresponding findings, after

which the proposed CDS method is presented in Sec. 3. The method
for the generative design of novel origami concepts is then applied
to two engineering tasks that involve the design of rigid origami
grippers and robotic arms are given in Sec. 4. Subsequently, the
results are presented, the method is discussed in Sec. 5, and the con-
tributions and findings of the paper are summarized in Sec. 6.

2 Background
This section describes the PTU and the condition for the rigid

foldability of degree-n vertices, after which the corresponding kine-
matic model is summarized. The section concludes with the impli-
cations for crease pattern generation.

2.1 The Principle of Three Units. The PTU [52] predicates
on the fact that every single degree-n vertex requires n− 3 inputs
and 3 outputs to fold in a kinematically determinable manner
[55]. The inputs are the dihedral angles that drive the motion of
the vertex, here called the driving angles, which need to be pre-
scribed in order to fold the vertex. The outputs are the three remain-
ing dihedral angles, here called the unknown dihedral angles,
whose behavior is determined by the driving angles and the size
of the sector angles around the vertex. As an example, Fig. 1(a)
depicts a degree-8 vertex with five driving angles ρ1−4 and ρ6

assigned to an arbitrary set of crease lines, and the corresponding
unknown dihedral angles ρ5, ρ7, and ρ8.
Independent of the chosen set of driving angles and the degree of

the vertex (for n≥ 4), virtually cutting the vertex at the locations of
the unknown dihedral angles reveals three parts [55] called units u1,
u2, and u3 (Fig. 1(b)) [52]. What remains within these units are the
sector and driving angles determined by the user, allowing for the
entire kinematic behavior of each individual unit to be expressed
analytically. Let a unit ui be denoted with an ordered set comprising
the sector and driving angles within the unit, ui = (αui, ρui ), where
the set of driving angles can be empty if a unit consists of a
single sector. For the example in Fig. 1, this notation results in
u1 = ((α1−5), (ρ1−4)), u2= ((α6, α7), (ρ6)), and u3= (α8).
Each unit ui spans an angle between its first and its last crease line

called a unit angle Ui that can be expressed analytically by alternat-
ingly multiplying the rotation matrices of sector and driving angles
and calculating the angle between the first and the last vector
obtained. Unit angles change their size while folding if their respec-
tive unit contains a driving angle, such as U1(t) and U2(t) in
Fig. 1(c), and they are constant if their respective unit consists of
only a single sector angle, such as U3 in Fig. 1(c). In a rigidly fold-
able state, the surface around a vertex is continuous, i.e., without
cuts, and the unit angles constitute the sides of a single spherical tri-
angle called the vertex triangle (shown in blue in Fig. 1(c)). Con-
versely, if such a vertex triangle exists, then the underlying vertex
is rigidly foldable. By applying the triangle inequality [56], the
PTU leads to the following condition for the rigid foldability of
degree-n vertices:

Umax ≤ Umed + Umin (1)

where Umax, Umed, and Umin are the maximum, the median, and the
minimum value of the unit angles in the set {U1(t), U2(t), U3(t)},
respectively, for each t during the folding motion.

2.2 The Kinematic Model of the Principle of Three Units.
In addition to the condition in Eq. (1), the work in Ref. [52] presents
a kinematic model that derives the analytic expression for the
unknown dihedral angles by applying the law of spherical
cosines. Especially useful about this model is that the RBMs can
be handled as an input, allowing for the design space to be enumer-
ated based on the decision whether a vertex should fold up or down-
ward. Based on this kinematic model, here we introduce the
function

fφ(M, u1, u2, u3) = (φ1(t), φ2(t), φ3(t)) (2)

that takes a RBM M and the three units as inputs and returns the
functions of the three unknown dihedral angles φ1(t), φ2(t), and
φ3(t). The three unknown dihedral angles are adjacent to their
respective units in the counter-clockwise direction as shown in
Fig. 1(d ). For the example given in Fig. 1, applying fφ would
result in ρ5=φ1(t), ρ7=φ2(t), and ρ8=φ3(t).
To be able to assemble the overall kinematics of a crease pattern

once all of its vertices are modeled individually, we introduce
another function

fR(M, u1, u2, u3) = (R1, R2, R3) (3)

that takes the same input as fφ and returns three rotation matrices,
here called the local rotation matrices R1−3, which correspond
to the rotations at the crease lines of the unknown dihedral
angles, as shown in Fig. 1(d ). This calculation always starts
from the first crease line of the first unit that serve as references
for the x-axis and the xy-plane, respectively. For the example
given in Fig. 1, this would result in the following local rotat-
ion matrices R1 = Rz(α1)Rx(ρ1)Rz(α2) · . . . · Rx(ρ4)Rz(α5), R2 =
R1 Rx(φ1)Rz(α6)Rx(ρ6)Rz(α7), and R3 = R2Rx(φ2)Rz(α8).

2.3 Implications for Crease Pattern Generation. Every
crease pattern is perceived as a network of vertices (nodes) that
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transform n− 3 inputs into 3 outputs [55], turning an origami into a
directed graph where the inputs and the outputs are represented
as incoming and outgoing edges, respectively. For an internal
vertex vi of degree ni, its indegree (number of incoming edges)
deg− (vi) = ni − 3 linearly scales with ni and is thus unrestricted
as long as ni≥ 4. However, its outdegree deg+ (vi) (number of out-
going edges) must always satisfy the condition deg+ (vi) = 3. Thus,
any number of incoming edges can be added to a vertex as long as
the vertex has three outgoing edges. This is the first condition that
needs to be satisfied while generating crease pattern graphs. The
second condition stems from the kinematic model of the PTU that
requires a graph to be acyclic in order to model its motion.

3 Method
The proposed CDS method (Fig. 2) represents crease patterns as

graphs and uses a graph grammar system to generate all possible
crease pattern topologies (“Topology” in Fig. 2). The inputs to
the method are an initial graph G0, which serves as a starting
point for the graph grammar generation of origami concepts, and
a maximum number of internal vertices Nmax contained within
these concepts. Both G0 and Nmax are user defined. The generation
uses two different rule types, rule r1: extend vertex, and rule r2:
combine vertices, within a matching process to identify the vertices
to which the two rules can be applied. Simultaneously, the graph
grammar automatically introduces the variables and constraints of
the generated graph topologies for the optimization in subsequent
steps. The generated topologies are then checked for redundancy
and eliminated based on isomorphism. Further elimination criteria
can be supplied manually.
Subsequently, the method steps into a loop (“Geometry” in Fig. 2)

in which a graph is first embedded within three dimensions by asso-
ciating it with the vertex coordinates and the relevant variables to
represent its geometry. Then, each graph is associated with all differ-
ent RBM assignments to its internal vertices, corresponding to the
enumeration of all design alternatives. Using the formulation of a
design task provided by the user that involves an objective function
and other optimization-related inputs, the evaluation step first opti-
mizes each alternative and, if an optimized alternative meets the
design criteria supplied with the design task, subjects it to an intersec-
tion check. A design alternative that fails this intersection check is
discarded, otherwise it is added to the list of feasible origami con-
cepts. In the following subsections (Secs. 3.1–3.4.2), we detail
the method according to the steps in Fig. 2.

3.1 Representation. A crease pattern is represented as a
directed, labeled graph G= (V, E, LV, LE), where V is a nonempty
set of vertices vi and E is a nonempty set of directed edges ei,j
from vertices vi to vj such that i≠ j. Vertices vi are called the

predecessors of vj and vj are called the successors of vi. LV is a non-
empty set of vertex labels and LE is a nonempty set of edge labels.
Let ΣV be a map ΣV:V→ LV that labels each vertex vi to its ordered
predecessors Pi and a type Ti, so that each vertex label Li in LV is an
ordered pair defined as Li= (Pi, Ti). If a vertex vi has no predeces-
sors, Pi = (∅), then vi is a source vertex. Otherwise, Pi is populated
with all predecessors of vi ordered in the counter-clockwise direc-
tion with respect to the crease pattern graph in the neighborhood
of vi. The type Ti of vertex vi adopts the symbol χ when the
vertex can be extended with new outgoing edges, or it adopts the
symbol Ti =∅ when the vertex is either a source or has already
been extended. Let ΣE be a map ΣE: E→ LE that assigns an edge
label Li,j in LE to each directed edge ei,j, where Li,j = (FLi,j , FRi,j )
is an ordered pair of the facets f located on the left and on the
right side of ei,j, respectively. While the sets of vertices and edges
define the topology of a graph, the labels are introduced to
control the generation of new graphs.
To clarify the notation, Fig. 3 shows the simplest possible initial

graph G0. This graph consists of just two vertices v1 and v2 con-
nected by a directed edge e1,2. The vertex label L1 = ((∅), ∅)
denotes that the vertex v1 is a source and cannot be extended,
respectively. The vertex label L2= ((v1), χ) denotes that v1 is the
single predecessor of v2 and that v2 can be extended, respectively.
Finally, the two components FL1,2 = f1 and FR1,2 = f2 of the edge
label L1,2 signify that the edge e1,2 is adjacent to the (yet invisible)
facet f1 on its left and f2 on its right side.
In addition to the initialization associated with the representation

of the topology, the user has to relate the initial graph to its engi-
neering purpose and thus to its geometry. This relation is achieved
by allocating in-plane coordinates xi to all vertices vi and defining a
driving angle ρi,j for every incoming edge incident to a vertex vj
that can be extended. As an example, for the graph in Fig. 3 this
could be defined as x1 = (0, 0), x2 = (1, 0), and ρ1,2= t where t
represents a linear driving angle that goes from zero to some
value tmax∈ [−π, π]. In short, Fig. 3 thus represents an initial
graph with a single extendable vertex (v2), with a geometry
(vertex coordinates), and with a single DOF (driving angle ρ1,2= t).
In general, the definition of the initial graph is an input to the

method and can involve different topologies, including multiple
DOF. However, the two guidelines given above also restrict the def-
inition of possible initial graphs. First, all initial graphs must be
acyclic. Second, the outdegree of all initial vertices must be
smaller than 3; the method models the kinematics of a vertex
while extending a vertex, and it does not extend vertices that
already satisfy deg+ (vi) = 3.

3.2 Generation. The origami graph grammarGG is defined by
the triple GG = (G0, R, ∅) where G0 is the initial graph, R =
(r1, r2) is the set of rules containing r1 and r2, and ∅ is the terminal

Fig. 1 (a) Degree-8 vertex with driving and unknown dihedral angles in black and gray, respectively, which is virtually cut at
the crease lines of the unknown dihedral angles to reveal three units u1−3 (b). The unit angles U1(t), U2(t), and U3 constitute the
vertex triangle (c), with which the kinematic behavior of the unknown dihedral angles φ1−3 and the local rotation matrices R1−3
(d ) can be expressed analytically.
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symbol with respect to the type Ti of a vertex vi that prevents rule r1
from being applied to a vertex with Ti =∅.
The rule setR = (r1, r2) is designed to conform to the two guide-

lines for the generation of rigidly foldable crease pattern graphs.
The first rule r1 extends a vertex by new outgoing edges and

incident vertices and ensures that each extended vertex has three
outgoing edges after the application. The second rule r2 combines
two vertices and their incoming edges to enable the generation of
higher order vertices (degree-5, 6, etc.) while guaranteeing that
the generated graphs stay acyclic. In addition to the graph

Fig. 2 Workflow of the method containing the input, the representation of the topology and
the geometry, the generation, the guidance that enumerates all RBMs, the evaluation that
incorporates both the optimization of design alternatives and the intersection check, as well
as the output of a collection of feasible origami concepts that satisfy the given design task
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transformations, the rules r1 and r2 embed a graph G in the plane,
model extended vertices kinematically, and build or adjust the
sets of the optimization variables and constraints. To automate
this process, the method initializes empty sets for the in-plane coor-
dinates x, the units u, the dihedral angles ρ, the global rotation
matrices R, the optimization variables Φ, and the optimization
constraints ψ. Moreover, the method initializes a set of three-
dimensional vertex coordinates X = {Xi} where Xi are the
in-plane coordinates of all vertices vi contained within the initial
graph G0, which are appended with a zero that represents the
z-coordinate. Then, these sets are automatically filled and adjusted
when the rules r1 and r2 are applied.

3.2.1 Rule r1: Extend Vertex. Rule r1 is a production of the type
r1: LHS1→RHS1, where the LHS1 is a single vertex va to which the
rule is applied and where the RHS1 is the same vertex va with a
number of new outgoing edges and incident vertices. Depending
on the initial graph G0, the outdegree deg

+ (va) on the LHS1 can be
0, 1, or 2, and r1 should accordingly generate 3 − deg+ (va) new
edges and vertices. Thus, rule r1 is parametric with respect to the
number of successors of va on the LHS1, which results in six possible
rule application scenarios r1,1− r1,6. For clarity, only the scenario r1,1
(Fig. 4) is described in detail, whereas all other rule application sce-
narios r1,2− r1,6 are listed in a more concise form in the Supplemen-
tary Material (see Supplemental Figs. 1 and 2 available in the
Supplemental Materials on the ASME Digital Collection, and Sup-
plemental Tables 1 and 2 available on the ASMEDigital Collection).
Figure 4 depicts the case r1,1 in which va has no successors on the
LHS1,1, where LHS1,1 and RHS1,1 are highlighted in red and the
graph surrounding va in gray as a reference. This surrounding
graph consists of any number of predecessors vpm for 1…m
ordered in the counter-clockwise order, where the respective edges
are divided by the sector angles αp1 to αpm−1 .

3.2.2 LHS Matching of r1,1. A match M1,1 of the LHS1,1 is
found if va is extendable as defined by its type Ta= χ and if
deg+ (va) = 0 (which corresponds to this specific scenario).

3.2.3 Graph Transformation of r1,1. On the RHS1,1, rule r1,1
generates three new successor vertices vs1−3 numbered in counter-
clockwise order that are connected to va with directed edges ea,s1−3 .
All generated vertices have identical vertex labels Ls1−3 = ((va), χ),
making them applicable for a successive rule application of r1.
While the edge labels adjacent to existing facets adopt the edge
labels of the corresponding edges (FLp1 ,a

and FRpm ,a in Fig. 4 right),
two new facets are generated and denoted with FLa,s1

and FLa,s2
.

Hence, the edge labels result in La,s1 = (FLa,s1
, FRpm ,a )La,s2=

(FLa,s2
, FLa,s1

), and La,s3 = (FLp1 ,a
, FLa,s2

). All newly generated indices
s1−3 are in accordance with the enumeration of the nodes in G prior
to the rule application. The application of r1 to a graph G, G⇒

r1
G′,

results in the graph G′ = (V ′ = V⊎{vs1−3}, E′ = E⊎{ea,s1−3}, L′V =
LV⊎{Ls1−3}, L′E = LE⊎{La,s1−3}) where ⊎ represents the disjoint
union of sets [57]. In addition, the type of the vertex va is set to T ′

a =
∅ on the RHS1,1 to prevent any further extension of va.

3.2.4 Coordinates and Optimization Variables of r1,1. To
embed the graph G′ within the plane, a set of coordinates is required
to describe the locations of all generated successors. Hence, all new
edges ea,s1−3 are located with their respective sector angles αs1−3
(Fig. 4 right) and assigned with an edge length ls1−3 . Using the nor-
malized direction vector di,j between vertex locations xi and xj of
vertices vi and vj:

di,j =
xj − xi
‖xj − xi‖ (4)

the in-plane locations of the generated successors with respect to the
position xa of va and the predecessors Pa can be expressed as

xs1 = xa + la,s1R(αs1 )da,pm
xs2 = xa + la,s2R(αs1 + αs2 )da,pm
xs3 = xa + la,s3R(−αs3 )da,p1

(5)

where R is the two-dimensional rotation matrix. The locations of
the newly generated vertices are added to the set of in-plane coor-
dinates, x′ = x⊎{xs1−3}.
In addition to the sector angles and edge lengths, all scenarios of

r1 introduce an optimization variableMa that stands for the RBM of
the vertex va. The set of optimization variables is then expressed as
Φ′ = Φ⊎{αs1−3 , la,s1−3 , Ma}.

3.2.5 Kinematic Modeling of r1,1. When r1 is applied, va
becomes an internal vertex of the crease pattern and can be kinemat-
ically modeled using the PTU. According to the scenario of r1,1 in
Fig. 4, the units uia of va are expressed in terms of their respective
sector and dihedral angles as

u1a = ((αs3 , αp1 , . . . , αpm−1 , αs1 ), (ρp1 ,a, . . . , ρpm ,a))

u2a = ((αs2 ))

u3a = 2π −
∑3
i=1

αsi −
∑m
j=1

αpj

( )( ) (6)

If va exhibits only a single predecessor, the sum over αpj is
neglected. Then, the units in Eq. (6) are added to the set of units,
u′ = u⊎{u1a−3a }. By setting these units and the RBM Ma into fφ,
the method determines the dihedral angles φ1a−3a and associates
them with the generated edges, ρa,s1−3 = φ1a−3a , which are then
added to the set of dihedral angles ρ′ = ρ⊎{ρa,s1−3}.
The expression of units and dihedral angles enables the method to

kinematically model each extended vertex individually. However,
the locations of vertices need to be expressed in three-dimensional
space to represent an actual origami, which requires the method to
transfer the individual (local) kinematics to a global kinematic beha-
vior. To do so, the method first finds the local rotation matrices
R1a−3a of va by applying fR. Then, these local rotation matrices
are turned into global rotation matrices, Ra,si = Rp1,aRz(π)Ria ,

Fig. 3 Example of an initial graph G0 comprised two vertices v1
and v2 connected by a directed edge e1,2, vertex labels L1 and L2,
as well as the edge label L1,2

Fig. 4 Rule r1,1 for the specific scenario in which there are no
successors of va on the LHS1: (a) schematic graph transforma-
tion (framed) and (b) LHS1,1 and RHS1,1 (red) and surrounding
graph (gray)
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which are added to the set of global rotation matrices
R′ = R ∪ {Ra,s1−3}. A special case arises when va belongs to the
initial graph since the global rotation matrix Rp1 ,a has not been
determined by an application of r1. In this case, the method sets
Rp1 ,a = Rz(αp) where αp is the angle between the edge ep1 ,a and
the x-axis. As described in Sec. 2, the first crease line of a vertex
is locally associated with the x-axis, with which the method
expresses the three-dimensional coordinates Xsi as
Xsi = Xa + la,si ∗ Ra,si · (1, 0, 0)T. These coordinates are subse-
quently added to the set of three-dimensional vertex coordinates,
X′ = X ∪ {Xs1−3}.

3.2.6 Optimization Constraints of r1,1. Independent of the sce-
nario, two types of optimization constraints are produced by r1, one
defining the boundaries of the optimization variables while the other
pertains to the rigid foldability. The method introduces finite lower
and upper bounds for the sector angles that are greater than zero and
smaller than π, respectively. As a result of the subsequent optimiza-
tion, the shapes of the facets then become less sheared and less thin
than their counterparts without these constraints, which facilitates
the practical realization of crease patterns using finitely thick mate-
rials in the future. Equation (7) lists the optimization constraints
applied to the sector angles as

0 < αmin ≤ αs1−3 ≤ αmax < π

∑3
i=1

αsi +
∑m
j=1

αpj ≤ 2π − αmin

(7)

where the second row relates to the sector angle of the sector corre-
sponding to FLa,s2

in Fig. 4. If va exhibits only a single predecessor,
the sum over αpj in Eq. (7) is neglected. The same reasoning is
applied to the lengths of the generated edges:

lmin ≤ ls1−3 ≤ lmax (8)

The second type of constraint introduced by r1 corresponds to the
condition for rigid foldability in Eq. (1) that states Umax(t)≤Umed(t)
+Umin(t). The difficulty for the application of this condition arises
from the fact that the unit angles change their size over time depend-
ing on the parameter t, which effectively means that Eq. (1) has to
be satisfied for the whole folding motion.
The rule system presented here always adds vertices to “the

outside of” graphs, which results in only one time-dependent unit
u1, whereas u2 and u3 as well as their unit angles U2 and U3 are
constant, analogous to Eq. (6). A set of optimization constraints
that guarantees rigid foldability for the whole folding procedure
thus involves the application of Eq. (1) with both min(U1) and
max(U1). In general, however, it is reasonable to assume that
max(U1) occurs at t= 0, in which case Eq. (1) is satisfied because
of the initial flat state. Then, the unit angle U1 decreases monoto-
nously once t deviates from zero toward t= tmax. This assumption
is fully true for degree-4 vertices [58] and depends on the sector
angle configuration and the RBMs of higher order vertices [52].
Thus, the CDS method examines only the case min(U1) that
occurs at t= tmax:

Umax(tmax) ≤ Umed(tmax) + Umin(tmax) (9)

The constraints in Eqs. (7)–(9) are then added to the set of opti-
mization constraints ψ′ after each application of r1.

3.2.7 Rule r2: Combine Vertices. The second rule r2 is defined
as a production of the type r2:LHS2→RHS2 in Fig. 5, where LHS2
and RHS2 are both shown in red, the surrounding graph is shown in
gray, and adjustments to the constraint system are shown in blue.
Rule r2 accepts two vertices vc1 and vc2 that share an edge label on

the LHS2 and combines them into a single vertex vc1 on the RHS2.
The incoming edges formerly incident to vc2 are reassigned to vc1
and a new constraint is introduced between the reassigned edges
and the edges incident to vc1 . Then, r2 adjusts the set of optimization

variables and constraints by replacing all instances of the lengths
and sector angles corresponding to the reassigned edges, such as
lp2,c2 and αc2 in Fig. 5 left, respectively, with the parts colored in
blue in Fig. 5 right. The vertex vb signifies any vertex that was pre-
viously coupled to the sector angles of the reassigned edge (αc2 ).

3.2.8 LHS Matching of r2. A match M2 of the LHS2 in G
involves four conditions. Both vertices vc1 and vc2 have to be
extendable, Tc1 = Tc2 = χ. This condition guarantees the generation
of acyclic graphs since no vertex can be combined with any of its
predecessors.
The second condition requires that both vertices vc1 and vc2

belong to the same facet. This can be checked by comparing the
edge labels of the incoming edges incident to vc1 and vc2, which is
shown in Fig. 5 on the LHS2 where FRp1 ,c1

= FLp2 ,c2
has to be satis-

fied. Note that while Fig. 5 illustrates the case in which both vertices
vc1 and vc2 each exhibit one predecessor, multiple predecessors to
both vertices are possible. In this case, the method compares the
edge labels of the first and last predecessors of both vertices. Iden-
tifying these first and last predecessors is straightforward since the
predecessors of a vertex are always ordered in the counter-
clockwise direction as explained for rule r1.
To prevent the combination of vertices that share the same prede-

cessor, such as vs1−3 in Fig. 4, the third condition states that vc1 and
vc2 cannot exhibit the same predecessors, Pc1 ∩ Pc2 = {∅}.
Since r2 deletes a vertex, the fourth condition states that vc1 and

vc2 cannot both be contained in the initial graph, which can be
assessed by checking if their in-plane coordinates are dependent
on any optimization variables. If one vertex is contained within
the initial graph, it becomes the “dominant” vertex that is not
deleted, and if neither belongs to the initial graph then either
vertex can be eliminated. The following graph transformation
describes the generic case in which vc1 is dominant.

3.2.9 Graph Transformation of r2. Once r2 is applied,
G⇒

r2
G′′, the RHS2 includes vc1 while vc2 is subtracted from the

set of vertices, V ′′ = V \ {vc2 }. The edge formerly incident to vc2
is subtracted from the set of edges and a new edge is introduced
from the predecessors of vc2 to vc1 , E′′ = (E \ {ep2,c2 })⊎{ep2 ,c1}.
The predecessors of both vertices are united in the correct order
such that the predecessors of the vertex contributing the right side
of the edge label (FRp1 ,c1

in Fig. 5) go first. In addition, vertex vc1
on the RHS2 can still be extended, resulting in the vertex label
L′′c1 = ((vp1 , vp2 ), χ). The edge label Lc2 is then subtracted from the
set of vertex labels, L′′V = LV \ {Lc2}. The edge label formerly corre-
sponding to the edge incident to vc2 is transferred identically to the

Fig. 5 Rule r2 combines two vertices on its LHS2 into a single
vertex on its RHS2: (a) schematic graph transformation
(framed) and (b) parts shown in red belong to the LHS2 and the
RHS2, the surrounding graph is depicted in gray, and adjust-
ments to the constraint system are shown in blue
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reassigned edge, L′′p2 ,c1 = Lp2 ,c2 . Finally, the edge label of the edge
incident to vc2 is subtracted from the set of edge labels,
L′′E = LE \ {Lp2 ,c2}. If vc2 is incident to multiple incoming edges on
the LHS2, the above procedure is applied to all edges and edge
labels.

3.2.10 Coordinates and Optimization Variables of r2. The
in-plane location and thus the coordinates xj of a vertex vj are
always determined by a single sector angle αj and a single edge
length lpi,j . Since r2 deletes the vertex vc2 , the corresponding
sector angle and edge lengths of vc2 are eliminated from the set of
optimization variables, Φ′′ = Φ \ {αc2 , lp2,c2}.

3.2.11 Optimization Constraints of r2. Independent of the
number of predecessors in Pc1⊎Pc2 , r2 introduces one new con-
straint (shown in Fig. 5 in red) on the sector angle between the
edges incident to vp1 and vp2 . Since this sector angle is dependent
on the locations of the vertices involved, it needs to be expressed
as an angle with respect to the in-plane coordinates, ∠xp1xc1xp2 .
The constraint introduced by r2 applies to the upper and lower
bounds equivalent to Eq. (7):

αmin ≤ ∠xp1xc1xp2 ≤ αmax (10)

Equation (10) is then added to the set of optimization constraints
ψ.
Rule r2 eliminates the sector angle and the edge lengths that for-

merly determined the coordinates of vp2 , but the constraints that
apply to these variables are still valid and present in the set of con-
straints ψ. Thus, r2 replaces all instances of these variables within ψ.
Analogous to the constraint introduced above, these variables need
to be expressed in terms of the in-plane coordinates (Fig. 5, blue).
Variable αc2 is replaced with ∠xc1xp2xb and lp2 ,c2 is replaced with
the Euclidean distance ||xc1 − xp2 || between vp2 and vc1 . Hence

ψ ′′ = ψ(αc2 ← ∠xc1xp2xb, lp2 ,c2 ← ||xc1 − xp2 ||) (11)

When vc2 has multiple predecessors on the LHS2, this replace-
ment procedure needs to be analogously performed for all reas-
signed edges. This also applies when the sector angles and edge
lengths are already expressed in terms of the in-plane coordinates,
i.e., when r2 has already been applied to vc2 .

3.2.12 Automatic Graph Generation and Filtering. The rule
set R = (r1, r2) is designed to comply with the guidelines for the
generation of rigidly foldable and acyclic crease pattern graphs
and is compact given the small number of rules required for the gen-
eration of such graphs [52]. Together, the rules r1 and r2 are able to
generate existing crease patterns such as slender origami [59],
origami strings [60], or the gripper in Ref. [61]. To automate the
generation step (Fig. 2), the method applies the two rules whenever
a respective LHS match M1 or M2 is found and enumerates all
possible rule application sequences that arise from the initial
graph G0 and the maximum number of internal vertices Nmax.
However, distinct rule application sequences do not guarantee

distinct graphs [62], which is why the method checks the generated
crease pattern graphs for redundancy and filters them before they
are subjected to the guidance step. For generic design tasks, the
method filters graphs based on isomorphism while filters specific
to a design task have to be introduced manually if required. The fil-
tering of isomorphic graphs is described here, while two additional
filters specific to the design tasks of the gripper and the robotic arm
are explained in Sec. 4.2.
For the rule system presented, two graphs are isomorphic if they

exhibit an edge-preserving vertex bijection. If this condition is satis-
fied, the set of vertex labels LV is guaranteed to coincide, whereas
the set of edge labels LE does not play a role in terms of graph mor-
phology (i.e., there is no difference in kinematics when facets are
numbered differently). Isomorphism checks are implemented in
many standard programs, and the method uses the function Isomor-
phicGraphQ integrated in Mathematica 11.

Both the automated generation of crease pattern graphs and the
isomorphism check are listed in the pseudocode in Supplemental
Table 3 in the Supplementary Material available on the ASME
Digital Collection. In short, the method automatically enumerates
all possible crease pattern graphs that arise from the initial graph
and Nmax by applying both rules r1 and r2 whenever a LHS
match is found. As shown in Fig. 2, after the generation step all
graphs G are forwarded to the guidance step.

3.3 Guidance. The RBMsM contained in the set of the optimi-
zation variables Φ play a special role since everyM only adopts the
discrete states “up,”M↑, and “down,”M↓. Each internal (or extended)
vertex in a graph G contributes one variable M, which results in 2N

different design alternatives for a crease pattern with N internal ver-
tices. Due to the lack ofmore knowledge about the search space asso-
ciated with the RBMs, the method enumerates all possible RBM
assignments and subjects each design alternative to the evaluation.

3.4 Evaluation. As illustrated in Fig. 2, the evaluation
includes both the optimization of a crease pattern as well as an inter-
section check. While all design alternatives are optimized, only the
optimized alternatives that meet the design criteria are subjected to
the intersection check.

3.4.1 Optimization. Much of what is required for the optimiza-
tion is intrinsic to the rule system. By applying the rules, the method
automatically generates the set of optimization variablesΦ and con-
straints ψ of each graph G, both of which are expressed analytically.
What remains to be defined by the user to run the optimization is a
design task involving an objective function Ω and the numerical
values for the variable boundaries lmin, lmax, αmin, and αmax. The
objective function can include and should be dependent on the dihe-
dral angles ρi,j or the three-dimensional vertex coordinates Xi. In
practice, a user defines one or multiple states t= topt∈ [− π, π] at
which the dihedral angles ρi,j(topt) or the vertex coordinates Xi(topt)
should equal certain values or locations, respectively. The definition
of the objective function for the exemplary design tasks is given in
Sec. 4.3.
Depending on the objective function Ω, the proposed method

adjusts the set of optimization variables as a last step before the opti-
mization. For an origami crease pattern, the lengths of the edges that
are incident to degree-1 vertices on the border of the paper do not
influence the kinematics of the crease pattern. Thus, all variables
corresponding to the edge lengths li,j that are present neither in
the objective function nor in the set of constraints ψ are discarded
from the set of optimization variables Φ, resulting in an adjusted
set Φopt. For the subsequent representation of the origami, the dis-
carded edge lengths in the set of three-dimensional vertex coordi-
nates are substituted with the value of the minimum edge length,
X=X(li,j← lmin).
This procedure results in the following optimization scheme to

optimize the geometry of all design alternatives:

min
Φopt

Ω

s.t. ψ
(12)

where Ω is the objective function defined by the user, Φopt are the
optimization variables containing sector angles α and crease line
lengths l, and ψ are the optimization constraints consisting of vari-
able boundaries and constraints for rigid foldability. Both Φopt and
ψ are automatically generated and assigned to Eq. (12) by the
method. Equation (12) is then solved by the function NMinimize
integrated into Mathematica 11, which uses global numerical
solvers to find a set of variables Φ∗

opt that optimizes the objective
function such that Ω(Φ∗

opt) =Ω∗. NMinimize is applied with
default settings in which the nonlinear optimization problem is
first reformulated as an unconstrained problem using penalty func-
tions and then solved with Differential Evolution [63].
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3.4.2 Intersection. If an optimized design alternative satisfies
Ω∗ ≤ ϑ, where ϑ is the target criterion provided by the user in the
design task, the design alternative is subjected to an intersection
check that requires the method to first transform the set of optimized
variables Φ∗

opt into an origami with facets. To do so, the optimized
variables are first substituted into the set of three-dimensional vertex
coordinates X∗=X(Φopt ← Φ∗

opt) that is then only dependent on t. To
find the vertices that constitute a facet, the method iterates through
all edges and for each edge assigns both incident vertices to the
facets contained in the respective edge label. This procedure
results in sets of vertices that represent the facets, and the method
assigns to each of these sets a polygon. By associating each
vertex vi with its three-dimensional coordinates X∗

i , a design alter-
native is represented as a set of polygons that move with respect
to t. Subsequently, the design alternative is subjected to the intersec-
tion check described in Ref. [64]. Since the intersection check is
purely numerical, the method performs the check 16 times through-
out the folding motion from t= 0 to t= tmax in even intervals. The
specific number of checks is determined empirically to achieve an
appropriate trade-off between a low time-consumption and a reli-
able intersection check.

4 Engineering Design Task: Origami Grippers
In this section, the proposed method is applied to two design

tasks that include a gripper and a robotic arm. The principle of
rigid origami has been used for gripping tasks before, such as in
the Oriceps [23] or in Ref. [61], or trajectory following motions
for surgical applications [20]. However, all of these existing
origami-inspired designs were designed by hand. To display the
usefulness of the proposed method, this work additionally intro-
duces an obstacle that lies between the crease pattern and the
point object that the final origami should be able to grip
(Fig. 6(a)). In the robotic arm task, 11 points are approximated so
that the tip of the arm follows a given trajectory (Fig. 6(b)), equiv-
alent to the path generation synthesis of spatial mechanisms [65].
The remainder of the section first defines the input for both
design tasks, and then in addition to the filter based on isomor-
phism, presents two additional filters to check for redundant
graphs within the generation step. The section concludes with the
optimization objectives definition, and the results produced by the
method.

4.1 Input. The design tasks of the gripper and the robotic arm
are illustrated in Figs. 6(a) and 6(b), respectively. The initial graph
G0 (identical for both tasks) with vertices v1 and v2 end edge e1,2 is
shown in black and corresponds to the graph described in Fig. 3

with the same vertex labels L1 = ((∅), ∅) and L2= ((v1), χ), edge
label L1,2= ( f1, f2), as well as in-plane coordinates x1 = (0, 0)
and x2 = (1, 0). The driving angle of the edge e1,2 in both cases
is linear, ρ1,2= t, where t goes from zero to tmax= π/2, applied
mirror-symmetrically with respect to the xz-plane. The actuation
thus corresponds to a single DOF, and the maximum number of
internal vertices for both design tasks is set to Nmax= 3. Note that
graphs with one or two internal vertices are possible, Nmax is just
the upper limit.
The point object PG to grip in Fig. 6(a) is located at PG= (0, 0, 1)

and the obstacle is represented by a cylinder with radius 0.25 whose
axis is coincident with the line segment going from (0, − 1, 0.5) to
(0, 1, 0.5). This setup allows for the generation of only one side of
the gripper that emerges from the initial graph shown in black, after
which the arm is rotated, once optimized, by 180 deg around the
z-axis, which is illustrated in Fig. 6(a) by the graph in gray corre-
sponding to v′2. Figure 6(b) shows the trajectory to approximate
and the 11 points PTi located at (1, 0, 0)+ (2cos ti, 0, 2 sin ti)
where ti goes from 0 to π/2 in steps of π/20.

4.2 Generation: Additional Filters. To facilitate the descrip-
tion of a crease pattern graph, here the following notation is intro-
duced for the rule application sequences: when a vertex vi is
extended by r1, i is added to the sequence, and when vertices vi
and vj are combined by r2, (i, j) is added to the sequence. As an
example, extending vertices v2 and v3 in the given order and then
combining vertices v4 and v8 yields a sequence denoted as 2, 3,
(4, 8).
Since both design tasks illustrated in Fig. 6 are mirror symmetric

with respect to the xz-plane, a graph can be filtered if it is mirror
symmetric to another graph with respect to the x-axis. An
example for the two symmetric graphs 2, 3 and 2, 5 is given in
Fig. 7(a). These two graphs will result in the same (symmetric) opti-
mized configuration, which renders one of the graphs redundant. In
addition, any rule applied to, e.g., 2, 5 will generate a graph that is
symmetric to a graph that can be generated by applying the corre-
sponding rule to 2, 3. Thus, in both design tasks, the method
filters all symmetric graphs and their descendants that result from
applying more rules to symmetric graphs.
The second additional filter for both problems results from the

task that the origami concept must perform. One of the generated
vertices contained in the graphs has to approximate the point to
grip PG in the gripper task or the trajectory points PTi in the

Fig. 6 (a) The gripper design task with the point to grip PG= (0,
0, 1) and the cylinder obstacle with radius 0.25 whose axis is
coincident with the line segment going from (0, −1, 0.5) to (0,
1, 0.5). The vertex v

′
2 shown in gray illustrates that the crease

pattern graph generated with the initial graph is rotated after
the optimization to result in a rotationally symmetric gripper.
(b) The robotic arm design task with all points PTi evenly distrib-
uted on the given trajectory that lies on the xz-plane. Both gripper
(a) and robotic arm (b) start with the same initial graph G0 shown
in black corresponding to the graph described in Fig. 3 with v1
and v2 located at x1= (0, 0) and x2= (1, 0).

Fig. 7 (a) Two crease pattern graphs 2, 3 and 2, 5 that are sym-
metric to each other with respect to the x-axis. Both graphs and
their descendants will result in the same optimized configura-
tion, which is why either graph and its respective descendants
are eliminated. (b) A crease pattern graph 2, 4, 3 that is semanti-
cally invalid.
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robotic arm task. For simplicity, such a vertex is called the gripping
vertex for both tasks. Extending a vertex by r1 only adds value to the
resulting graph, not its descendants, if one of its successors becomes
the gripping vertex, which is why only the successors of the vertex
extended last can perform the gripping task. Figure 7(b) shows the
example of a crease pattern graph 2, 4, 3 that contains unnecessary
vertices and edges, here called a semantically invalid graph [66].
Since v3 is the vertex extended last, v9, v10, or v11 are the gripping
vertex candidates. In this case, extending v4 is semantically invalid
since all of its successors v6, v7, and v8 can be cut from the graph
without changing the performance of the origami gripper. In con-
trast to symmetric graphs, however, the descendants of semantically
invalid graphs can lead to useful crease pattern graphs, which is
why their descendants are not filtered.

4.3 Optimization. As explained in Sec. 4.2, all successors of
the vertex extended last are candidates to grip PG or approximate
PTi , which is why each design alterative is optimized three succes-
sive times with different gripping vertices. These successors of the
vertex extended last are denoted as vl,j and the respective three-
dimensional coordinates are denoted as Xl,j(t) with j= 1, 2, 3.
Thus, the objective function for each optimization in the gripper
design task is the Euclidean distance between PG and the location
of the gripping vertex at topt= tmax= π/2:

Ω =
∥∥∥∥PG − Xl,j

π
2

( )∥∥∥∥ (13)

An optimization of the gripper is considered successful if the
objective value Ω∗ of a design alternative is smaller than or equal
to ϑ = 10−5. In the robotic arm task, each optimization minimizes
the sum of the Euclidean distance between all trajectory points

PTi and the respective locations of the gripping vertex at topt= ti=
(0, π/20, …, 9π/20, π/2):

Ω =
∑11
i=1

‖PTi − Xl,j(ti)‖ (14)

An optimization of the robotic arm is considered successful if the
objective valueΩ∗ of a design alternative is smaller than or equal to
ϑ = 3 ∗ 10−1. The variable boundaries for both tasks are lmin= 0.1,
lmax= 1.5, where αmin= π/18 and αmin= 17π/18. The length bound-
aries prevent the generation of heavily distorted faces, whereas the
sector angle boundaries contribute prevent sickle-like patterns or
trivial folds for α= π, respectively.

4.4 Results. With the initial graph G0 in Fig. 6, Nmax= 3, and
rules r1 and r2, the graph grammar GG generates a total of 291
crease pattern graphs for both design tasks. After filtering isomor-
phic, symmetric, and semantically invalid graphs, 52 of the original
291 graphs remain. The design space of all possible crease pattern
topologies and rule application sequences for both design tasks is
visualized in the search tree in Fig. 8. The filled nodes illustrate
the 52 meaningful graphs generated, whereas both the symmetric
(sym.) as well as the semantically invalid (inv.) graphs are illus-
trated using white nodes. Each level of the search tree contains
the graphs that exhibit the same number of applied rules starting
from one application at the top to seven applications at the bottom.
From the 52 distinct graphs emerge 1170 distinct design alterna-

tives (and as many objective function evaluations) that comprised
the different assignments of RBMs and gripping vertices. While
the topology generation of graphs is instantaneous, the optimization
of a single design and the intersection check of a successful design
takes from a few seconds to minutes depending on the complexity
of the graph. The graphs corresponding to the first three levels in
Fig. 8 each take between 0.5 and 30 s to optimize, graphs generated
by four rule applications take about 10–60 s, and graphs with more
rule applications show an increasing tendency where the maximum
time recorded is 3 min for a single optimization. The intersection
check averages at around 10 s for each design alternative. The
total runtime involving the enumeration of the design space, the
optimization within it, as well as the intersection check, takes
35 h for the gripper task and 40 h for the robotic arm task on an
Intel i7 processor with 8 GB RAM.
With respect to the gripper, 836 of the 1170 design alternatives

are able to grip the target point PG, and thereof, 148 alternatives
do not self-intersect. When the cylinder is present, the number of

Fig. 8 (a) Search tree with 52 meaningful graphs shown as filled
nodes as well as symmetric (sym.) and semantically invalid (inv.)
graphs shown as white nodes, where each level of the search
tree corresponds to the same number of applied rules. (b) A
scaled up section of the search tree shows the effect of the filter-
ing after which the descendants of symmetric graphs are
completely removed, while the descendants of the semantically
invalid graphs can result in meaningful graphs. This search
tree corresponds to both the gripper and the robotic arm
design task.

Fig. 9 Three different origami gripper concepts: (a) gripper with
rule application sequence 2, 3, 4, (8, 9) and grippingmotion along
the cylinder axis, (b) gripper with rule application sequence 2, 3,
8, (7, 9) that is tightly packed beneath the cylinder in its flat state,
and (c) gripper with rule application sequence 2, 3, (4, 8), 4, (7, 8)
and gripping motion perpendicular to the cylinder axis
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feasible origami concepts reduces to 36. The gripping motion of
three such feasible origami concepts is depicted in Fig. 9 at discrete
folding states from left to right. Figure 9(a) shows a gripper concept
with a thin stem and big, arrow-like arms whose motion runs along
the axis of the cylinder. The gripper in Fig. 9(b) occupies little space
because most of its surface in the flat state lies beneath the cylinder,
and its gripping motion is angled at approximately 45 deg to the axis
of the cylinder. The gripper in Fig. 9(c) is larger than the two other
concepts, grips perpendicularly to the cylinder, and contains a
degree-5 vertex. The details involving the optimized vertex loca-
tions for the designs in Fig. 9 can be found in the Supplementary
Material (see Supplemental Fig. 3 available in the Supplemental
Materials on the ASME Digital Collection and Supplemental
Tables 4 and 5 available on the ASME Digital Collection).
With respect to the robotic arm task, 56 of the 1170 design alter-

natives are able to successfully approximate the trajectory points
PTi , and thereof, 29 alternatives do not self-intersect. The folding
motion of three design alternatives is depicted in Fig. 10 from left
to right together with the trajectory points PTi . The three design
alternatives exhibit an objective value of Ω∗ = 2 ∗ 10−2 (a), Ω∗ =
3 ∗ 10−2 (b), and Ω∗ = 4 ∗ 10−2 (c). The details involving the opti-
mized vertex locations for the designs in Fig. 10 can be found in the
Supplementary Material (see Supplemental Fig. 3 available in the
Supplemental Materials on the ASME Digital Collection and Sup-
plemental Tables 4 and 5 available on the ASME Digital
Collection).

5 Discussion
In comparison to related numerical approaches [67] that take

multiple hours for the optimization of a single design alternative,
the graph-based representation offered in this work enables the opti-
mization of a design alternative in seconds to minutes. This is pri-
marily due to the fact that the presented method incorporates the
design knowledge required to conceptualize origami-adapted struc-
tures, involving the condition for rigid foldability, the kinematic
model that determines the motion of all vertices depending on

their RBM assignments, as well as the corresponding rule sets.
The formalized knowledge allows to formulate the search space
of crease pattern topologies, and subsequently exhaustively
searches that space to generate rigidly foldable solution candidates.
Such a generic approach to search space generation and exploration
is not found in related work, e.g., [37,38,45], even including
methods [40,41] that reside to graph-theoretical approaches for
resolving some of the complexity of origami crease pattern genera-
tion. Due to the generality of the presented method, the developed
concepts of the origami-adapted structures can satisfy three-
dimensional design tasks, fold rigidly with the predefined number
of DOF, and are free of self-intersection.
Figure 11(a) plots the distribution of generated design alterna-

tives over the number of rule applications for the gripper design
task. The distribution of the 836 designs that are able to grip PG

peaks at (A) with 311 designs and four rule applications, in contrast
to the total distribution of the 1180 designs having a peak with 432
designs and five rule applications at (B). Figure 8 shows that at four
rule applications, all graphs except one are generated by three appli-
cations of r1 and one application of r2, while only r2 can be applied
thereafter. Rule r2 introduces constraints into the system without
adding variables, which is why the number of designs that can
grip PG steadily decreases from four applications onward. For the
same reason, the percentage of successful gripping designs per
total number of designs is highest at three rule applications (C
divided by D), where five of seven graphs are generated purely
by r1 (Fig. 8, third level of the search tree). The distributions for
the 148 designs without self-intersection and the 36 designs
without any intersection peak at points (E) and (F) with 79 and
14 designs, respectively, showing a behavior similar to the distribu-
tion of the 836 designs that are able to grip PG.
When at first one could have argued not to apply r2 since it only

introduces constraints, the increase in feasible designs from three to
four rule applications show that a certain number of applications of
r2 can drive the optimized designs out of intersecting configura-
tions. Without specific constraints that prevent intersection within
the optimization, r2 thus provides more variability in the crease
pattern graphs that satisfy the design task. However, if r2 is

Fig. 10 (a–c) Folding motion from left to right of three design
alternatives for the robotic arm. The concepts are generated by
the rule application sequences 2, 4, 7, (6, 9), 2, 3, 8, and 2, 4, 7,
(3, 6), (5, 6) in (a–c), respectively.

Fig. 11 (a) Plot corresponding to the gripper design task
showing the distribution of the total number of designs, the
number of designs that can grip PG, that can grip PG without self-
intersection, and that can grip PG without any intersection, over
the number of rule applications. (b) Plot corresponding to the
robotic arm design task showing the distribution of the designs
that are able to approximate the points PTi and that do so
without self-intersection, respectively.
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applied too many times, the designs are either unable to grip PG or
lead to intersection, which leads to zero feasible designs at six (G)
and seven rule applications for the gripper task.
Figure 11(b) refers to the robotic arm task and shows the distri-

bution of the 56 successful designs that are able to approximate
the given trajectory and the 29 designs that in addition do not self-
intersect. The peaks appear at four rule applications (H and J),
which again shows the usefulness of r2. In contrast to the results
of the gripper, for the robotic arm task there are feasible concepts
generated by six rule applications (K), which stems from the
problem formulation (Fig. 10). Although the given trajectory is a
perfect quarter circle that seems straightforward to approximate,
the maximum crease line length lmax= 1.5 prevents a simple solu-
tion, allowing for complex concepts to be generated. The target cri-
teria for both the gripper and the robotic arm task listed in Sec. 4.3
are determined empirically and would slightly change the plots in
Fig. 11 if chosen differently. However, since the method uses a
global optimization, the only influence of the target criteria on the
results are the number of feasible design alternatives, leaving a
choice for the user between precision and variability of the design
alternatives.
Applied to both the gripper and the robotic arm design task, the

enumeration of the design space yields 52 distinct crease pattern
graph topologies depicted in Fig. 8. While the search tree is
narrow at the top where r1 predominates, the midsection of the
search tree becomes broader since more extended vertices offer
more possibilities for the application of r2. The number of possible
rule applications then progressively decreases with each line
because of the maximum number of extended vertices Nmax= 3,
which is why the search tree narrows again at the bottom.
However, even with a small increase in Nmax to 8 vertices, for
example, the maximal number of RBMs for only one particular
topology is 28 making the enumeration of all crease patterns for
their respective RBMs impractical. By adding to the search
space all variants of crease pattern graphs that can be generated
for certain limiting Nmax, the enumeration influences the scalability
of the method significantly and blocks more complex engineering
applications. For example, for Nmax= 8 the design space yields
3123 distinct graphs and 147,078 distinct design alternatives that
needed to be optimized in the subsequent step. To improve the
scalability of the method in the future, a more informed rule appli-
cation should be performed. In both design tasks, there is no sta-
tistical difference in the performance of design alternatives with
respect to the assignment of RBMs; both modes M↑ and M↓ are
equally represented across the range. Considering the search
method, a transfer from the design space enumeration to more effi-
cient search methods, such as branch-and-bound algorithms [68],
is required to expand the application of the method to larger
design spaces.
Another interesting path for future work involves the expansion

of the presented graph grammar. The rule set R = (r1, r2) enables

the generative design of a variety of novel crease patterns such as
the ones shown in Figs. 9 and 10, as well as existing crease patterns
such as slender origami [59], origami strings [60], or the gripper in
Ref. [61]. However, many known crease patterns make use of spe-
cific sector angle configurations and mode assignments that fold
rigidly although they cannot be obtained by using the graph
grammar in this work. To generate such crease patterns, the rule
system presented could be expanded by an adjusted version of
rule r2, here denoted as r′2. Rule r

′
2 would also combine two vertices,

but the vertex v′c1 on the RHS2 in Fig. 5 would lie on the line
segment between the predecessors vp1 and vp2 and would become
a sink vertex (deg+ (v′c1 ) = 0) of the type Tc′1

=∅. Figure 12 illus-
trates how a Miura-ori pattern could be generated by the expansion
of the presented rule system with rule r′2.
The crease pattern graph depicted in Fig. 12(a) can be generated

by the initial graphG0 in Fig. 3 with the rule application sequence 2,
3, 4, 8. By applying r′2 to vertices v9 and v14, resulting in the rule
application sequence 2, 3, 4, 8, (9, 14)′ and the crease pattern
graph shown in Fig. 12(b) that depicts a Miura-ori unit cell. The
generation of the pattern in Fig. 12(b) would require a condition
for the dihedral angles, ρ8,9′ = ρ4,9′ , and thus demand a condition
for the sector angle configuration of the entire crease pattern.
Such a rigidly foldable crease pattern can only be achieved by intro-
ducing some sort of symmetry [69] or by complying with the fold
angle multipliers [70]. Introducing such conditions within the con-
straint system generated by the graph grammar is complex and
requires future work.
Finally, the concepts developed in this paper are of zero thickness

and applying them in real-life scenarios will require adaptations
toward finitely thick materials. Adapting zero thickness concepts
works best for crease patterns that exhibit only degree-4 vertices
and uniform sector angle configurations. To achieve the latter, the
variable boundaries αmin and αmax in Eqs. (7) and (10) can be
defined to lie within a small interval. However, introducing such
intervals might deplete the number of feasible design concepts,
and the user of the method has to estimate the trade-off between
the number and the realizability of these solutions. To achieve the
former, users can select the feasible designs generated only by
applications of rule r1 or a minimum number of applications of
rule r2. Nonetheless, adapting the feasible concepts to finite thick-
ness still requires future work, especially if the adaptations were
to be integrated into the method itself. A range of possible adapta-
tion techniques is given in Ref. [51].

6 Conclusion
In this paper, we introduced a generative method for the genera-

tion of novel origami concepts for engineering design tasks. The
method includes an origami graph grammar that generates rigidly
foldable crease patterns as well as the constraints for both the
boundaries of the optimization variables based on the conditions
for rigid foldability. Although the method generates rather simple
patterns, the enumeration of all possible design alternatives based
on the RBMs to the internal vertices shows a surprising richness
of the underlying search space resulting in a considerable number
of design concepts that have been generated. Finally, the paper
demonstrates that the PTU enables the efficient optimization of
design alternatives even including the self-intersection check. The
future work will involve a development of a more efficient PTU-
based generative method that does not rely on the exhaustive
search and is able to generate origami patterns of increased com-
plexity, involving origami strips, tessellations, and nondevelopable
patterns.
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Fig. 12 (a) Crease pattern graph with rule application sequence
2, 3, 4, 8 that can be generated by the presented graph grammar
and (b) Miura-ori pattern with rule application sequence 2, 3, 4, 8,
(9, 14)′ that could be generated by introducing and applying
rule r′2
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Nomenclature
f = facet
l = crease line length
n = degree of a vertex
r = graph grammar rule
t = time parameter
u = set of units
v = vertex
x = set of in-plane vertex coordinates
d = normalized direction vector
x = in-plane vertex coordinates
E = set of edges
G = graph
M = generic rigid body mode
N = number of internal vertices
R = set of global rotation matrices
V = set of vertices
X = set of three-dimensional vertex coordinates
X = three-dimensional vertex coordinates
G = set of graphs
L = language of a grammar

M = left-hand-side match for graph grammar rules
R = set of graph grammar rules
ei,j = edge from vertex vi to vertex vj
ui = unit, i= 1, 2, 3
fR = function determining local rotation matrices
fφ = function determining unknown dihedral angles
Li = vertex label of vertex vi
Li,j = edge label of edge ei,j
LE = set of edge labels
LV = set of vertex labels
Pi = predecessors of a vertex vi
Ti = type of a vertex
Ui = unit angle, i= 1, 2, 3
Ri = local rotation matrix, i= 1, 2, 3
Ri,j = global rotation matrix of the edge ei,j

FLi,j , FRi,j = facets on the left and right of edge ei,j, respectively
M↑, M↓ = rigid body modes up and down, respectively
PG, PT = point to grip and points of trajectory, respectively

α = sector angle
ρ = set of dihedral angles

ρi,j = dihedral angles
ϑ = target criterion

ΣE, ΣV = maps for edge and vertex labels
φi = unknown dihedral angle, i= 1, 2, 3
Φ = set of optimization variables
χ = symbol for type T meaning vertex can be extended
ψ = set of optimization constraints
Ω = objective function
∅ = empty and terminal symbol
⊎ = disjoint union of sets
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