Response of Rainbow Trout (*Oncorhynchus mykiss*) Growing from 50 to 200 g to Supplements of Dibasic Sodium Phosphate in a Semipurified Diet¹,²,³

MARKUS RODEHUTSCORD

Institut für Tierernährung der Universität Bonn, D-53115 Bonn, Germany

ABSTRACT Effects of increasing dietary concentrations of phosphorus on growth, feed intake, feed conversion, composition of gain and concentration of inorganic phosphate in plasma were studied in rainbow trout. Twelve groups of 20 trout initially weighing 53 ± 0.6 g/fish were fed semipurified diets containing 19.6 MJ digestible energy per kilogram of dry matter. Twelve levels of phosphorus ranging from 1.03 to 10.96 g/kg dry matter were achieved by replacing inorganic sodium phosphate in 11 graded levels. Nonlinear responses of trout to increasing dietary phosphorus concentration determined over 53 d were described using exponential functions. Feed intake, growth rate and feed conversion ratio as well as plasma inorganic phosphorus concentration increased with increasing dietary phosphorus concentration. The concentrations of phosphorus, calcium, magnesium and potassium in weight gain increased, whereas concentrations of lipids and energy in weight gain decreased with increasing dietary phosphorus concentration. Concentrations of protein and sodium in weight gain were unaffected. Different concentrations of dietary phosphorus were required for achieving 95% of the plateau value determined for desired traits. In growth rate and phosphorus deposition, the required phosphorus concentrations were 3.7 and 5.6 g/kg dry matter, respectively. However, dietary phosphorus was utilized most efficiently (88%) at a dietary concentration of 2.5 g/kg dry matter. At the dietary phosphorus concentration that resulted in maximum phosphorus deposition (5.6 g/kg dry matter), phosphorus utilization was about 60%. Supplemental phosphorus from dibasic sodium phosphate was completely available to trout which must be considered in formulating recommendations. Based on this work, 0.25 g available phosphorus/MJ digestible energy is recommended for trout diets. J. Nutr. 126: 324–331, 1996.

INDEXING KEY WORDS:
- requirement
- rainbow trout
- phosphorus
- blood plasma
- body composition

Effects of different levels of dietary phosphorus (P) in trout were studied by Ogino and Takeda [1978] using fish weighing a maximum of 3.6 g. The authors concluded that the level of available P required to maintain a normal growth was 7 to 8 g/kg of the fish diet. So far, the P requirement of heavier trout has not been studied, which might explain why the NRC (1993) recommends 6 g P/kg trout feed according to studies performed with Atlantic salmon.

In trout fed diets sufficient in P, concentration of inorganic phosphate (Pᵢ) in blood serum or blood plasma varies widely between 2.3 and 6.5 mmol/L according to the studies of Björnsson and Haux [1985], Cowey et al. [1977] and Knox et al. [1981 and 1982]. Several factors could cause this wide range, e.g., feeding intensity, duration of the fastening periods or stress situations before blood sampling. Dietary P concentration, however, obviously did not affect concentration of Pᵢ in plasma of fish fed above the phosphorus requirement [Cowey et al. 1977]. Response in plasma Pᵢ concentration to low dietary P supply in trout has not yet been described. From studies in rats [Harrison et al. 1986], swine [Fox et al. 1978, Sømmerville et al. 1985] and ruminants [Rodehutscord et al. 1994], it is apparent that the concentration of Pᵢ in plasma or serum drastically decreases when diets low in P are fed.

It was the objective of the present work to study the effects of increasing dietary concentrations of P in heavier trout with body mass up to 200 g. Rates of feed intake and growth as well as composition of gain and plasma Pᵢ concentrations were determined.

² With the financial support of the Deutsche Forschungsgemeinschaft.
³ The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.
MATERIALS AND METHODS

Semipurified diets were fed with wheat gluten (2.5 g P/kg dry matter) and crystalline amino acids as the only sources of amino acids to arrive at a low P concentration in the basal diet (Table 1). A very similar diet containing extruded corn instead of gelatinized wheat starch was shown to enable growth and protein retention in trout comparable to diets based on fish meal as the main source of amino acids (Rodehutscord et al. 1995c). In eleven graded levels, dibasic sodium phosphate (Na₂HPO₄) was added to the basal diet, replacing corresponding amounts of the inorganic binder. Hence, analyzed concentration of P ranged from 1.03 to 10.96 g P/kg dry matter. Analyzed concentrations of crude protein [N × 6.25] and lipids were 300 and 207 g/kg dry matter, respectively. Concentration of digestible energy (DE) was 19.6 MJ/kg dry matter, as calculated from concentrations of DE in individual components determined previously in our department. Fish oil, sunflower oil and warmed beef tallow were stirred with the binder before being added to the other components in a drum mixer. Mixtures were moistened in a cutter to a sticky paste which was pelleted by forcing it through 3-mm screens of a mincer. The moist pellets were stored at -18°C until feeding.

Two hundred sixty rainbow trout (Oncorhynchus mykiss) initially weighing 53 ± 0.6 g/fish (mean ± se) were taken from the population reared in our department. Up to the beginning of the experiment, trout had been fed a commercial diet (Aminoforte, Rheinkrone, Wesel, Germany). Groups of 20 trout each were placed in twelve 250-L round plastic tanks which were part of a circulatory system and which were continuously supplied with water in parallel. Approximately 70% of the outflowing water recirculated after clarification and aeration. Water temperature ranged between 16.5 and 17.5°C. Concentration of P in communal water used here was always lower than 5 mg/L, and Ca concentration ranged between 40 and 50 mg/L. Body mass of all fish in each group was recorded at the beginning of the experiment after the fish were anesthetized in a solution of 1,1,1-trichloro-2-methyl-2-propanol-hemihydrate and at the end of the experiment after the fish had been killed in 4-ethyl-amino benzoate. Thirty-six hours before killing, feed was withheld. In the five largest fish of each experimental group, blood was withdrawn from the heart muscle immediately after killing using a heparinized syringe. Blood was centrifuged for 20 min with 10,000 × g and plasma was stored at -18°C for analyses.

One additional group of trout was killed for baseline measurements at the beginning of the experiment. After freezing at -18°C, fish of the experimental groups as well as of the base-line group were cut into small pieces by use of a ribbon saw, forced repeatedly through a mincer, homogenized in a cutter and freeze-dried. The composition of gain of experimental groups was calculated from differences between experimental groups and the base-line group as described previously (Rodehutscord et al. 1995c).

Each group was fed one of the experimental diets for 53 d. Trout were fed to satiation twice daily during the week and once daily on weekends. Thawed feeds were offered by hand until pellets were first seen to sink to the bottom of the tank. Thus, feed losses could be avoided almost completely. General care, handling and maintenance of trout followed the procedures approved by the Animal Welfare Commissioner of the University of Bonn in accordance with the German Animal Welfare Law.

In diets and body homogenates, dry matter (105°C), ash (550°C), total N (macro-Kjeldahl), lipids (petroleum ether extract after HCl treatment) and heat of combustion (adiabatic bomb calorimetry) were determined according to the official methods (Naumann and Bassler 1976). Analyses of elements were done in filtered ash solutions. Phosphorus was determined photometrically as orthophosphate using the vanado-molybdate method (Naumann and Bassler 1976). Calcium, magnesium, sodium and potassium were determined by atomic absorption spectrophotometry. Plasma was deproteinized with trichloroacetic acid and concentration of P was determined using the vanado-molybdate method described in the test kit No. 124974 (phosphorus/phospholipids) of Boehringer, Mannheim, Germany.

Exponential functions were calculated to fit the experimental data because the response to a limiting di-
FIGURE 1 Effect of dietary phosphorus on body weight gain and dry matter intake of trout during the 53 d of the experiment (initial body mass 53 g/fish). Each point represents a group of 20 fish. The parameters of equations are summarized in Table 2.

The dietary component is nonlinear. For traits which increased with increasing dietary concentration of P, the equation employed for describing the respective response was

\[y = a(1 - e^{-bx+c}) \]

Lipid and energy concentration in gain, on the contrary, reacted negatively to increasing dietary P concentration. Therefore, the equation employed was

\[y = a + de^{-bx} \]

where \(x \) = dietary concentration of P (g/kg dry matter), \(a \) = plateau value of the respective curve, \(b \) = parameter characterizing the steepness of the curve, \(c \) = dietary P concentration at \(y = 0 \), and \(d \) = maximum response to supplemental dibasic sodium phosphate.

Model parameters were estimated by the least-squares principle (Rawlings 1988, Seber and Wild 1989). The resulting nonlinear equations were solved iteratively by the Levenberg-Marquard method (Press et al. 1987). Calculations were performed using the program BFIT (H. P. Helfrich, Seminar of Mathematics, Faculty of Agriculture, University of Bonn), which implements this method.

RESULTS

In each of the groups fed diets containing 1.03, 2.75 and 10.96 g P/kg dry matter, one fish died after 37, 21 and 36 d, respectively. In the group fed 1.81 g P/kg dry matter, one fish died after 34 d and two fish died after 47 d.

Figures 1, 2, 3 and 4 show the response of trout to increasing levels of dietary phosphorus for some of the traits investigated. All results are summarized in Table 2, where estimated parameters are listed for all traits in which a response was detectable. Concentrations of protein and sodium in weight gain were not influenced by dietary phosphorus; the concentrations were [mean ± se] 160 ± 1.6 and 0.82 ± 0.01 g/kg, respectively. Body weight gain as well as dry matter intake [Fig. 1] and feed conversion ratio increased with increasing dietary phosphorus concentration and clearly reached a plateau within the investigated range of dietary phosphorus. The phosphorus concentration in weight gain increased from ~0.5 g/kg in fish fed the basal diet to 3.8 g/kg in fish fed sufficient phos-

FIGURE 2 Effect of dietary phosphorus on concentration of phosphorus and calcium in gain of trout after 53 d of the experiment (initial body mass 53 g/fish). Each point represents a group of 20 fish. The parameters of the equation are listed in Table 2.

FIGURE 3 Effect of dietary phosphorus on concentration of protein [N × 6.25] and lipids in gain of trout after 53 d of the experiment (initial body mass 53 g/fish). Each point represents a group of 20 fish. The parameters of equations are summarized in Table 2.
FIGURE 4 Effect of dietary phosphorus on concentration of inorganic phosphate \([P_i] \) in blood plasma of trout sampled 36 h after the last meal of the experiment [five fish per treatment, mean and se]. The parameters of the equation are given in Table 2.

phosphorus [Fig. 2], and total phosphorus deposition increased from 25 mg/fish to ~550 mg/fish. Concentrations of calcium, magnesium and potassium also increased, whereas concentrations of lipids [Fig. 3] and energy decreased concurrently. Concentration of \(P_i \) in blood plasma of trout rose from 1.1 mmol/L when the basal diet was fed to a plateau of 4.7 mmol/L [Fig. 4].

DISCUSSION

Nonlinear equations are regarded as most appropriate for evaluating results of dose-response experiments [Cowey 1992, Fuller and Garthwaite 1993, Kirchgeßner et al. 1992, Mercer et al. 1989]. Efficiency of supplemented P decreased with increasing dietary P concentration, resulting in plateaus which could be described by exponential functions. Theoretically, leaching of P from the diets into the tank water might have influenced responses of trout. However, feed was introduced very carefully by hand into the tanks and was ingested immediately by trout which means that water could not enter the pellets. Therefore, reduction in either absorption rate or intermediary utilization of absorbed P or both must be the reason for plateaus in performance, resulting in increased excretion of either unabsorbed or endogenous P or both.

Unlike the broken-line model [Robbins et al. 1979], the exponential function does not give a well-defined value for "requirement" but leaves space for interpretation. For each of the traits evaluated with exponential functions, plateau values were calculated which describe a theoretical maximum or minimum that can be approached by continuously increasing the dietary phosphorus concentration [Parameter a in Table 2]. As efficiency of supplementing P decreases with increasing dietary concentration of P, the respective phosphorus concentration required to approach a certain percentage of this theoretical maximum or minimum was calculated from these equations. Alternate calculations were arbitrarily done for 90, 95 and 98% of the plateau value [summarized in Table 3] but can also be done for any chosen level using the parameters listed in Table 2. Obviously, the P concentration required for reaching a certain percentage of the plateau depends on the trait chosen. As a consequence of increased concentration of P in the diet, concentrations of P, Ca and Mg in weight gain reach a plateau later

| TABLE 2 |
| Parameters estimated by fitting the experimental data to an exponential curve
<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(r^2)</th>
<th>Root MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter intake [g/fish]</td>
<td>156</td>
<td>1.08</td>
<td>0.35</td>
<td>—</td>
<td>0.82</td>
</tr>
<tr>
<td>Body weight gain [g/fish]</td>
<td>144</td>
<td>1.0</td>
<td>0.68</td>
<td>—</td>
<td>0.93</td>
</tr>
<tr>
<td>Feed conversion ratio [g gain/g dry matter]</td>
<td>0.93</td>
<td>1.07</td>
<td>0.20</td>
<td>—</td>
<td>0.89</td>
</tr>
<tr>
<td>Concentrations in body weight gain:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [MJ/kg]</td>
<td>12.4</td>
<td>0.40</td>
<td>—</td>
<td>3.20</td>
<td>0.82</td>
</tr>
<tr>
<td>Lipids [g/kg]</td>
<td>214</td>
<td>0.52</td>
<td>—</td>
<td>95.5</td>
<td>0.98</td>
</tr>
<tr>
<td>Phosphorus [g/kg]</td>
<td>3.84</td>
<td>0.66</td>
<td>0.83</td>
<td>—</td>
<td>0.98</td>
</tr>
<tr>
<td>Calcium [g/kg]</td>
<td>3.44</td>
<td>0.65</td>
<td>1.29</td>
<td>—</td>
<td>0.94</td>
</tr>
<tr>
<td>Magnesium [g/kg]</td>
<td>0.28</td>
<td>0.71</td>
<td>0.55</td>
<td>—</td>
<td>0.93</td>
</tr>
<tr>
<td>Potassium [g/kg]</td>
<td>2.55</td>
<td>1.53</td>
<td>0.43</td>
<td>—</td>
<td>0.96</td>
</tr>
<tr>
<td>Phosphorus deposition [mg/fish]</td>
<td>549</td>
<td>0.65</td>
<td>1.05</td>
<td>—</td>
<td>0.96</td>
</tr>
<tr>
<td>Concentration of inorganic phosphate in plasma [mmol/L]</td>
<td>4.70</td>
<td>0.84</td>
<td>0.71</td>
<td>—</td>
<td>0.84</td>
</tr>
</tbody>
</table>

1 Abbreviations used: \(a, b, c, \) and \(d \), estimated parameters of the following functions: \(y = a(1-e^{-b(x-c)}) \) and \(y = a + d e^{-bx} \), where \(x = \) dietary concentration of P [g/kg dry matter], \(a = \) plateau value of the respective curve, \(b = \) parameter characterizing the steepness of the curve, \(c = \) dietary P concentration at \(y = 0 \) and \(d = \) maximum response to supplemental dibasic sodium phosphate, MSE, mean square error.
null
Each point represents a group of 20 fish.

This indicates disturbances in intermediary energy metabolism which should be discussed in relation to reduced P concentration of blood plasma because several enzymatic processes are induced by P. Nothing is known about effects of dietary P on intracellular concentrations of P, but it can be assumed that they follow changes of P concentrations found in plasma. Tak-euchi and Nakazoe (1981) fed carp (Cyprinus carpio) diets either sufficient or deficient in P for 6 wk followed by 3 wk of food deprivation before killing the fish. During the non-feeding period, lipid concentration in fish decreased between one- and two-thirds that seen in fish previously fed sufficient P, whereas in fish fed deficient P, lipid concentration decreased only slightly. The authors suggest that β-oxidation of fatty acids was inhibited by deficiency of dietary P which is in agreement with the above hypothesis. In ruminants, feed intake has been repeatedly shown to be reduced when P intake was low. From the studies of Milton and Ternouth (1985) in sheep, it can be concluded that negative effects of P deficiency in ruminants have to be attributed to alterations in plasma P, concentration rather than to disturbances in the environment of rumen microbes.

Phosphorus intake of trout can be best described with the following linear regression: P intake (mg/fish) = 149 + (g P/kg dry matter + 0.091). Dividing the function for deposition of P by this function for P intake results in a function describing the efficiency of utilization of P as an effect of dietary P concentration [Fig. 6]. As dietary P originated mainly from dibasic sodium phosphate, a maximum in utilization of P of ~88% was reached. This maximum is obtained at a dietary P concentration which is ~ half of that concentration required to reach 95% of the plateau in P deposition. Therefore, high growth rates are connected

<table>
<thead>
<tr>
<th>Dietary concentration of phosphorus (g/kg dry matter)</th>
<th>Phosphorus excretion (mg/fish) in 53 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03</td>
<td>61</td>
</tr>
<tr>
<td>1.81</td>
<td>61</td>
</tr>
<tr>
<td>2.75</td>
<td>60</td>
</tr>
<tr>
<td>3.66</td>
<td>85</td>
</tr>
<tr>
<td>4.60</td>
<td>197</td>
</tr>
<tr>
<td>5.53</td>
<td>392</td>
</tr>
<tr>
<td>6.40</td>
<td>478</td>
</tr>
<tr>
<td>7.29</td>
<td>625</td>
</tr>
<tr>
<td>8.23</td>
<td>707</td>
</tr>
<tr>
<td>9.12</td>
<td>946</td>
</tr>
<tr>
<td>9.99</td>
<td>878</td>
</tr>
<tr>
<td>10.96</td>
<td>978</td>
</tr>
</tbody>
</table>

1 Each value was determined in one group of 20 trout.
strates very clearly that P from dibasic sodium phosphate was completely available to the trout which confirms results from Frenzel and Pfeffer [1982] and Ogino et al. [1979]. Phosphorus excretion of trout fed the basal diet may have resulted from two possible sources: endogenous losses of P and unavailable dietary P. Almost all P in this diet originated from wheat gluten and wheat starch, and nothing is known about availability of P contained in these components. Comparing P intake and P deposition of fish fed the basal diet shows a utilization of only 29%, which is at least partly due to endogenous P excretion. Surprisingly, P excretion of trout did not increase when diets containing 1.81 or 2.75 g P/kg dry matter were fed, although intake of P from the basal diet increased by about twofold due to increased feed intake. From this it must be concluded that P contained in the basal diet was also highly available and that ~60 mg P/fish was inevitably lost by trout during the experimental period, irrespective of body mass or feed intake.

With regard to the high availability of dietary P, conclusions from this study concerning the P requirement of trout must be expressed in terms of available P. From Table 3 it is clear that the required level of dietary P depends on the trait chosen and ranges between 2.4 and 5.9 g/kg dry matter for reaching 95% of the respective plateau values. If this 95% level is considered sufficient, it seems admissible to arrive at a requirement of 5 g available P/kg dry matter of the diet used here. This is substantially lower than the range of 7–8 g available P/kg diet determined by Ogino and Takeda [1978]. This difference can be explained by the higher concentration of P and the much lower lipid concentration in the weight gain of the very young trout used by Ogino and Takeda [1978].

Concentration of DE grossly determines the gain/feed ratio and, therefore, the amount of P ingested per unit in weight gain. Because DE concentration may vary from 15 to 21 MJ/kg dry matter, concentrations of nutrients should, therefore, preferably be related to MJ DE than to kilograms of feed. From the results presented here, a value of 0.25 g available P/MJ DE may be recommended for trout weighing more than 50 g.

LITERATURE CITED

Rodehutscord, M., Jacobs, S., Pack, M. & Pfeffer, E. [1995a] Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 150 g to supplements of L-methionine in a semipurified diet containing low or high levels of cystine. J. Nutr. 125: 964–969.

PHOSPHORUS REQUIREMENT OF TROUT

Storebakken, T. & Austreng, E. (1987) Ration levels for salmonids: II. Growth, feed intake, protein digestibility, body composition and feed conversion in rainbow trout weighing 0.5–1.0 kg. Aquaculture 60: 207–221.

Downloaded from https://academic.oup.com/jn/article-abstract/126/1/324/4724624 by guest on 18 January 2019