Six and 12 Weeks of Caloric Restriction Increases β Cell Function and Lowers Fasting and Postprandial Glucose Concentrations in People with Type 2 Diabetes

Mathen Sathananthan,4 Meera Shah,4 Kim L Edens,4,8 Karen B Grothe,6,8 Francesca Piccinini,7 Luca P Farrugia,4 Francesco Micheletto,7 Chiara Dalla Man,7 Claudio Cobelli,7 Robert A Rizza,4 Michael Camilleri,3 and Adrian Vella4*

Keywords: caloric restriction, endogenous glucose production, bariatric surgery, gastric emptying, insulin secretion, insulin action, disposition index

Introduction

Bariatric surgery ameliorates type 2 diabetes to a degree that depends in part on the nature of the procedure (1) and in part on underlying subject factors such as duration and severity of diabetes preceding surgery (2). Nevertheless, initial metabolic responses to intervention are quite dramatic and occur independently of weight loss (3). Because caloric restriction per se is shown to have salutary effects on glucose metabolism (4, 5), it is likely that this contributes substantially to the early amelioration of glucose metabolism after bariatric surgery. However, the response to a meal challenge after caloric restriction remains ill defined.

Glucose uptake during hyperinsulinemic, euglycemic conditions is reported to be increased after 7 d of caloric restriction (~800 kcal/d), despite minimal weight loss (5). More recently, a very-low-calorie diet (500 kcal/d) and Roux-en-Y gastric bypass (RYGB)9 resulted
in a comparable improvement in insulin action (S_i) and β cell function measured by an intravenous glucose tolerance test in patients with type 2 diabetes (6). In contrast, an 800-kcal/d diet produced less improvement in β cell function than a matched cohort of subjects after RYGB with equivalent weight reduction, implying an additive effect of RYGB (7). The lack of concordance between studies may in part be due to the use of differing, qualitative measures of S_i and secretion (8). More importantly, the effects of caloric restriction on fasting and postprandial glucose metabolism remain indeterminate (9).

To address these questions, we examined the effect of caloric restriction on glucose metabolism by using a labeled mixed meal (10) to simultaneously measure β cell function, S_i, and fasting and postprandial glucose metabolism (11). People with type 2 diabetes were studied before and after 6 and 12 wk of caloric restriction.

Methods

Subjects. After approval from the Mayo Institutional Review Board, we recruited 9 subjects (2 men, 7 women) with type 2 diabetes [BMI (in kg/m2): 40.6 ± 1.4; age: 58 ± 3 y; glycated hemoglobin: 6.9% ± 0.2%] who gave written, informed consent to participate in the study. All subjects had no active microvascular or macrovascular complications of diabetes, were weight stable, and did not actively exercise. They were instructed to follow a weight maintenance diet (~55% carbohydrate, 30% fat, and 15% protein) in the run-up to the baseline study. All glucose-lowering medication was withdrawn for the 3 wk before the study, and this withdrawal was subsequently maintained for the duration of the study.

Subjects met with the study dietician on a weekly basis. They were instructed to consume a diet of 740 kcal daily by using meals derived from the Nutritional Guidelines after Bariatric Surgery (Supplemental Table 1). After 4 wk, subjects increased caloric consumption to 875 kcal daily. Compliance was monitored by weekly meetings with the dietician using an electronic record of food intake. Subjects also met with a behavioral psychologist every other week during the study period. The psychologist used motivational enhancement and behavior change techniques to promote compliance with the dietary guidelines. Body composition was measured with DXA (DPX scanner; Lunar) before each meal study.

Experimental design. Subjects were studied on 3 occasions: at baseline and then after 6 and 12 wk of caloric restriction. The study was registered at clinicaltrials.gov as NCT01094054. Subjects were admitted to the clinical research unit at 1700 on the evening before all meal studies. They consumed a standardized low-calorie meal (10 kcal/kg body weight: 40% carbohydrate, 30% fat, and 30% protein) and then fasted overnight. At 0630 the next morning (~180 min), an 18-gauge needle was inserted into a forearm vein to allow infusions to be performed. An 18-gauge cannula was inserted retrogradely into a vein on the dorsum of the contralateral hand. This hand was placed in a heated acrylic plastic box maintained at 55°C to allow sampling of arterialized venous blood. A primed (12 mg/kg) continuous (0.12 mg · kg$^{-1}$ · min$^{-1}$) infusion of [6,6-2H$_2$] glucose was initiated. At time 0 (0930), subjects consumed a meal (220 kcal, 56% carbohydrate, 23% fat, 19% protein) consisting of 1 scrambled egg, 55 g

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Screening</th>
<th>6 wk</th>
<th>12 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, M/F</td>
<td>2/7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Age, y</td>
<td>58 ± 3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Glycated hemoglobin, %</td>
<td>6.9 ± 0.2</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Fasting glucose, mmol/L</td>
<td>7.0 ± 0.3</td>
<td>5.9 ± 0.2</td>
<td>6.2 ± 0.3</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>114 ± 6</td>
<td>105 ± 5</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>40.6 ± 1.4</td>
<td>37.3 ± 1.6</td>
<td>35.8 ± 1.8</td>
</tr>
<tr>
<td>Lean body mass, kg</td>
<td>56 ± 3</td>
<td>53 ± 2</td>
<td>53 ± 3</td>
</tr>
<tr>
<td>Weight lost, kg</td>
<td>NA</td>
<td>8.9 ± 1.0</td>
<td>14.8 ± 1.4</td>
</tr>
<tr>
<td>Weight lost, %</td>
<td>NA</td>
<td>—8 ± 1</td>
<td>—14 ± 1</td>
</tr>
</tbody>
</table>

1 Values are means ± SEMs, n = 9 except at 12 wk, n = 8. NA, not applicable; NM, not measured.
2 Medical therapy for type 2 diabetes included metformin (n = 6) and glimepiride (n = 2). One participant received no medication. Therapy was withdrawn 3 wk before baseline.
3 On treatment at the time of screening.

FIGURE 1 Plasma glucose (A), insulin (B), C-peptide (C), and glucagon (D) concentrations during meal studies at baseline and after 6 and 12 wk of caloric restriction for patients with type 2 diabetes. The changes in fasting concentrations of glucose, insulin, C-peptide, and glucagon and peak postprandial glucose concentrations after 6 and 12 wk of caloric restriction are detailed in Table 2. Values are means ± SEMs, n = 9 except at 12 wk, n = 8.
Canadian bacon, 100 mL water, and gelatin that contained 35 g glucose labeled with [1-13C] glucose (4% enrichment). To enable measurement of solid-phase gastric emptying, the egg was labeled with 0.1 mCi 111In-DTPA. An infusion of [6-3H] glucose was started at time 0. The infusion rates for the tracers were varied to minimize changes in specific activity as previously described (12). At the end of the meal subjects drank 30 mL water. The meal was consumed in the sitting position. For 1 subject intravenous access was lost during the third meal study (after 12 wk of caloric restriction), and data from that study were not used.

Analytical techniques. Plasma samples were placed on ice, centrifuged at 4°C, separated, and stored at −20°C until assayed. Glucose concentrations were measured with a glucose oxidase method (Yellow Springs Instruments). Plasma insulin was measured with a chemiluminescence assay (Access Assay; Beckman). Plasma glucagon and C-peptide were measured with a radioimmunoassay (Linco Research). Plasma samples were placed on ice, centrifuged, and stored at −80°C until assayed. Glucose concentrations before and after 6 and 12 wk of caloric restriction.

Calculations. The systemic Meal Rate of Appearance (Meal Ra), endogenous glucose production (EGP), and glucose disappearance (Rd) were calculated with Steele’s model (15). Meal Ra was calculated by multiplying the rate of appearance of [1-13C] glucose (obtained from the infusion rate of [6-3H] glucose and the clamped plasma ratio of [6-3H] glucose and [1-13C] glucose) by the meal enrichment. EGP was calculated from the infusion rate of [6,6-2H2] glucose and the ratio of [6,6-2H2] glucose to endogenous glucose production. Rd was calculated by subtracting the change in glucose concentrations before and after 6 additional weeks of caloric restriction from the net glucose production (EGP, Meal Ra, and Rd before and after 6 and 12 wk of caloric restriction). A Dunn test was used if values were not normally distributed. The statistical analysis was undertaken in Primer 5 (GraphPad Software). P < 0.05 was considered statistically significant.

Results

Volunteer characteristics. Subject characteristics are summarized in Table 1. Plasma glucose, insulin, C-peptide, and glucagon concentrations before and after 6 and 12 wk of caloric restriction. Fasting glucose decreased after 6 wk of caloric restriction (Figure 1A). No further decrease in fasting glucose was observed after 6 additional weeks of caloric restriction (Table 2). Peak postprandial glucose concentrations also decreased after 6 wk with no further decrease observed at 12 wk (Table 2). Of note, caloric restriction did not alter area above basal postprandial glucose concentrations (Table 2).

Fasting insulin concentrations decreased after 6 wk of caloric restriction, with no further decrease thereafter (Figure 1B, Table 2). Caloric restriction did not alter peak or area above basal postprandial insulin concentrations.

Fasting C-peptide concentrations decreased after caloric restriction with no difference between 6- and 12-wk values (Figure 1C, Table 2). Neither peak nor area above basal postprandial C-peptide concentrations was altered by 6 or 12 wk of caloric restriction (Table 2).

Fasting glucagon concentrations were decreased by caloric restriction with no difference between 6- and 12-wk values (Figure 1D, Table 2). Peak postprandial glucagon concentrations were unchanged by caloric restriction (Table 2). However, the postprandial area above basal glucagon concentrations was increased by caloric restriction (Table 2), with no difference between 6- and 12-wk values. However, area under the curve for postprandial glucagon concentrations was unchanged by caloric restriction.

EGP, Meal Ra, and Rd before and after 6 and 12 wk of caloric restriction. Six weeks of caloric restriction decreased fasting EGP with no difference between 6- and 12-wk values (Figure 2A, Table 3).
Fasting Rd was decreased by caloric restriction with no difference between 6- and 12-wk values (Figure 2C, Table 3). Peak and integrated rates of postprandial glucose disposal were not altered by caloric restriction (Figure 2C, Table 3).

Gastric emptying before and after 6 and 12 wk of caloric restriction. Caloric restriction did not alter the rate of gastric emptying of radiolabeled solids (Figure 3).

\[S_p, \phi_p \text{, and DI before and after 6 and 12 wk of caloric restriction.} \]

\[S_p \text{ did not change significantly after caloric restriction (4.4 ± 1.0 vs. 6.2 ± 1.6 vs. 6.0 ± 1.3 10^{-4} \text{ min}^{-1} \cdot \mu U^{-1} \cdot mL^{-1}) at baseline and 6 and 12 wk, respectively; } P = 0.19 \]

(Figure 4A).

However, caloric restriction increased \(\phi \) (25 ± 8 vs. 36 ± 5 vs. 37 ± 6 \(10^{-9} \) min at baseline and 6 and 12 wk, respectively; \(P < 0.01; \) Figure 4B), primarily because of an increase in the static component of \(\phi \) (data not shown) with no difference between the 6- and 12-wk values.

When the \(\phi \) was considered in light of the prevailing degree of \(S_p \), by calculating the DI, \(\phi \) increased after caloric restriction (189 ± 51 vs. 436 ± 68 vs. 449 ± 67 \(10^{-14} \) Dl \cdot kg^{-1} \cdot min^{-2} \cdot \mu mol^{-1} at baseline and 6 and 12 wk, respectively; \(P < 0.01; \) Figure 4C), with no difference between the 6 and 12 wk values. The 95% CIs are shown in Supplemental Figure 1.

Discussion

Six weeks of caloric restriction in people with type 2 diabetes lowered fasting and postprandial glucose concentrations to values that approached those typically observed in people who do not have diabetes (19, 20). The decrease in fasting glucose was attributable to a decrease in fasting EGP. However, caloric restriction did not alter either postprandial Meal Ra or stimulation of postprandial Meal Ra, accounting for the lack of change in postprandial glycemic excursion as measured by the area above basal. The improvement in glycemic control was accompanied by an increase in insulin secretion and a trend toward improved postprandial \(S_p \). Despite ongoing caloric restriction and additional weight loss, no further improvement was found in insulin secretion or \(S_p \) and fasting EGP and on the pattern of postprandial glucose metabolism. Adherence to the caloric restriction is confirmed by the average 8% and 14% weight loss at 6 and 12 wk, respectively.

The decrease in fasting glucose and EGP observed in the present study are consistent with prior studies in which people with type 2 diabetes lost \(\sim 15 \) kg after consuming a very-low-calorie
diet (330 kcal/d) over 40 d. As in the present study, the effects on fasting glucose were rapid with most of the effect seen within the first 10 d of caloric restriction (4). Similarly, despite minimal weight loss, subjects fed 800 kcal/d for 1 wk had a decrease in fasting glucose and EGP equal in magnitude to about one-half of the change observed after weight loss of ~12 kg with greater caloric restriction (400 kcal/d) for 8 wk (5). In the present experiment, the decrease in fasting glucose was accompanied by an improvement in insulin secretion with a trend toward improvement in S_i. The improvement in insulin secretion was primarily because of an increase in the static response to glucose which is believed to represent the provision of new insulin to the releasable pool (17). Previously, β cell function measured with a hyperglycemic clamp was shown to improve after caloric restriction of 400 kcal/d for 7 d (21) or caloric restriction of ~1100 kcal/d (22).

Improvements in β cell secretion are typically accompanied by decreased α-cell secretion (12). In addition, ingestion of a mixed meal that contained fat and protein is typically accompanied by an increase in postprandial glucagon concentrations (23). During the present experiment, postprandial peak glucagon concentrations were unchanged from baseline by caloric restriction. The increase in incremental glucagon concentrations we observed after caloric restriction is explained not by increased peak postprandial glucagon concentrations but by the greater change from (the lower) fasting concentrations observed after caloric restriction. The effect of caloric restriction on glucagon secretion was previously examined by Kelley et al. (5) who reported a decrease in fasting glucagon concentrations. Vetter et al. (9) reported a similar decrease in fasting glucagon after caloric restriction similar to that undertaken in this experiment. However, peak and incremental postprandial glucagon concentrations were also decreased by caloric restriction. Whether that reflects differences in the composition of the meal ingested and rate of its emptying (liquid vs. solid meal) remains to be ascertained (24).

The lack of improvement in S_i contrasts with reports that used a greater degree (400–500 kcal/d) of caloric restriction (5, 6, 21) but is in concordance with other studies that used less (~1100 kcal/d) caloric restriction (22). Notably, however, both fasting glucose and insulin decreased after caloric restriction and were accompanied by a decrease in fasting EGP, suggesting an improvement in hepatic insulin sensitivity. However, the systemic meal Ra that represented the net balance of gastric emptying, intestinal absorption, and hepatic extraction of absorbed glucose was unchanged. Given that gastric emptying was unchanged by caloric restriction, this would suggest that hepatic extraction of ingested glucose is also unaltered.

As in the present experiment, Isbell et al. (8) noted a significant effect of caloric restriction alone on glucose metabolism, an effect that did not differ from that of RYGB. Two other studies demonstrated similar (7) or equivalent (6) effects of caloric restriction on glucose metabolism compared with bariatric surgery. Taken together these data strongly suggest that caloric restriction can account for many of the early effects of bariatric surgery (9, 25).

The study had certain limitations. The sample size of 9 subjects certainly allowed detection of the large changes in fasting glucose metabolism observed after 6 wk of caloric restriction (S_i was unchanged by caloric restriction. Values are means ± SEMs, $n = 9$ except at 12 wk, $n = 8$. *Different from baseline, $P < 0.05$ (ANOVA). $\# P > 0.05$ (post hoc t test). DI, disposition index; S_i, insulin action; ϕ, β cell responsivity.}

FIGURE 3 Gastric emptying after meal ingestion at baseline and after 6 and 12 wk of caloric restriction for patients with type 2 diabetes. The rate of gastric emptying was unchanged by caloric restriction. Values are means ± SEMs, $n = 9$ except at 12 wk, $n = 8$.

FIGURE 4 S_i (A), ϕ (B), and DI (C) during meal studies at baseline and after 6 and 12 wk of caloric restriction for patients with type 2 diabetes. S_i was unchanged by caloric restriction. Values are means ± SEMs, $n = 9$ except at 12 wk, $n = 8$. *Different from baseline, $P < 0.05$ (ANOVA). $\# P > 0.05$ (post hoc t test). DI, disposition index; S_i, insulin action; ϕ, β cell responsivity.
the individual contributions of insulin-induced suppression of glucose production and insulin-induced stimulation of glucose uptake. Although it is possible that caloric restriction resulted in offsetting effects on hepatic and extraphepatic S_i, this seems to be an unlikely explanation for the lack of a significant change in S_i after caloric restriction. We only studied the effect of restricting caloric intake to ≈ 800 kcal/d. We chose this degree of caloric restriction because it mimics that which patients undergoing bariatric surgery consume in the first postoperative weeks.

In conclusion, 6 wk of caloric restriction lowered EGP and fasting glucose. Six weeks of caloric restriction also increased insulin secretion and tended to improve postprandial S_i. However, caloric restriction did not alter the pattern and degree of postprandial suppression of EGP, the postprandial stimulation of glucose uptake, or the systemic Meal Ra. Although 6 additional weeks of caloric restriction resulted in further weight loss, it had no additional effects on fasting glucose concentrations, EGP, insulin secretion, or S_i. Because caloric restriction per se lowers fasting EGP and fasting glucose and increases insulin secretion, these effects need to be considered in experiments that attempt to determine the mechanisms by which other interventions that also cause caloric restriction (e.g., bariatric surgery) ameliorate type 2 diabetes. These data suggest that caloric restriction or other therapeutic approaches that lower EGP will result in substantial improvement in glycemic control in people with type 2 diabetes.

Acknowledgments
M Sathananthan and M Shah compiled the data and ran the studies; KLE provided dietary advice and monitored the food intake at each visit while KBG provided the motivational enhancement and behavior change techniques to promote compliance with the dietary guidelines; FP, FM, and CDM undertook the mathematical modeling of insulin secretion and action; LPF compiled the data and prepared the results for publication; CC supervised the mathematical modeling of insulin secretion and action and reviewed/edited the manuscript; RAR contributed to the discussion and reviewed/edited the manuscript; MC supervised the gastric emptying studies and reviewed/edited the manuscript; and AV designed and supervised the experiment and wrote the manuscript. AV is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

References