Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol A Randomized Controlled Trial

Stephen J. Nicholls, MBBS, PhD
H. Bryan Brewer, MD, PhD
John J. P. Kastelein, MD, PhD
Kathryn A. Krueger, MD
Ming-Dauh Wang, PhD
Mingyuan Shao, MS
Bo Hu, PhD
Ellen McErlean, MSN
Steven E. Nissen, MD

Context Interest remains high in cholesteryl ester transfer protein (CETP) inhibitors as cardioprotective agents. Few studies have documented the efficacy and safety of CETP inhibitors in combination with commonly used statins.

Objective To examine the biochemical effects, safety, and tolerability of evacetrapib, as monotherapy and in combination with statins, in patients with dyslipidemia.

Design, Setting, and Participants Randomized controlled trial conducted among 398 patients with elevated low-density lipoprotein cholesterol (LDL-C) or low high-density lipoprotein cholesterol (HDL-C) levels from April 2010 to January 2011 at community and academic centers in the United States and Europe.

Interventions Following dietary lead-in, patients were randomly assigned to receive placebo (n=38); evacetrapib monotherapy, 30 mg/d (n=40), 100 mg/d (n=39), or 500 mg/d (n=42); or statin therapy (n=239) (simvastatin, 40 mg/d; atorvastatin, 20 mg/d; or rosuvastatin, 10 mg/d) with or without evacetrapib, 100 mg/d, for 12 weeks.

Main Outcome Measures The co–primary end points were percentage changes from baseline in HDL-C and LDL-C after 12 weeks of treatment.

Results The mean baseline HDL-C level was 55.1 (SD, 15.3) mg/dL and the mean baseline LDL-C level was 144.3 (SD, 26.6) mg/dL. As monotherapy, evacetrapib produced dose-dependent increases in HDL-C of 30.0 to 66.0 mg/dL (53.6% to 128.8%) compared with a decrease with placebo of −0.7 mg/dL (−3.0%; P<.001 for all compared with placebo) and decreases in LDL-C of −20.5 to −51.4 mg/dL (−13.6% to −35.9%) compared with an increase with placebo of 7.2 mg/dL (3.9%; P<.001 for all compared with placebo). In combination with statin therapy, evacetrapib, 100 mg/d, produced increases in HDL-C of 42.1 to 50.5 mg/dL (78.5% to 88.5%; P<.001 for all compared with statin monotherapy) and decreases in LDL-C of −67.1 to −75.8 mg/dL (−11.2% to −13.9%; P<.001 for all compared with statin monotherapy). Compared with evacetrapib monotherapy, the combination of statins and evacetrapib resulted in greater reductions in LDL-C (P<.001) but no greater increase in HDL-C (P=.39). Although the study was underpowered, no adverse effects were observed.

Conclusions Compared with placebo or statin monotherapy, evacetrapib as monotherapy or in combination with statins increased HDL-C levels and decreased LDL-C levels. The effects on cardiovascular outcomes require further investigation.

Trial Registration clinicaltrials.gov Identifier: NCT01105975

JAMA. 2011;306(19):2099-2109 www.jama.com

For editorial comment see p 2153.
Author Video Interview available at www.jama.com.
a large outcomes trial studying the effects of the cholesteryl ester transfer protein (CETP) inhibitor torcetrapib.9 Despite failure of the first drug in the class, considerable interest remains in CETP inhibition as a therapeutic strategy, by virtue of the ability of these agents to substantially increase HDL-C levels and, in some cases, reduce LDL-C levels.10 The observation that CETP inhibition has a favorable effect on atherosclerotic lesion formation in animal species that express CETP11 provides hope for potential benefit for humans.

While several CETP inhibitors are currently undergoing clinical evaluation, their effects in combination with the most commonly used statins have not been fully characterized. Evacetrapib is a novel, potent CETP inhibitor that has shown no demonstrable effects on blood pressure or adrenal synthesis of aldosterone or cortisol in preclinical studies.12 The current study evaluated the biochemical efficacy, safety, and tolerability of evacetrapib as monotherapy and in combination with statin agents commonly used in clinical practice.

METHODS

Study Design

The study was a multicenter, randomized, double-blind, parallel, placebo-controlled clinical trial. The trial was designed by the Cleveland Clinic Coordinating Center for Clinical Research in collaboration with the sponsor. The institutional review boards of all participating centers approved the protocol and all patients provided written informed consent. Patients were at least 18 years old and were eligible on the basis of meeting low HDL-C or high LDL-C criteria, in the presence of triglyceride levels less than 400 mg/dL, after the dietary lead-in period. (To convert HDL-C and LDL-C to millimoles per liter, multiply by 0.0259. To convert triglycerides to millimoles per liter, multiply by 0.0113.)

Patients meeting the low HDL-C criteria had an HDL-C level of less than 45 mg/dL for men or 50 mg/dL for women, with an LDL-C level that currently met the National Cholesterol Education Program (NCEP) Adult Treatment Panel III goal. Patients meeting the high LDL-C criteria had an LDL-C level between 100 and 190 mg/dL in the presence of 0 or 1 risk factors; between 100 and 160 mg/dL with at least 2 risk factors and a 10-year coronary risk of less than 10%; or between 100 and 130 mg/dL with at least 2 risk factors and a 10-year risk of 10% to 20%, in the presence of any level of HDL-C.

Patients were excluded if they had any clinical manifestation of atherosclerotic disease, hypertension (systolic blood pressure >140 mm Hg or diastolic blood pressure >90 mm Hg), documented hyperaldosteronism, undiagnosed diabetes (hemoglobin A1c ≥8%), or significant liver, kidney, cardiac, or neuromuscular disease.

All patients entered a 2- to 8-week dietary lead-in period to evaluate the effect of the NCEP Therapeutic Lifestyle Changes diet and permit washout of any lipid-modifying therapies. The study evaluated the effects of 12 weeks of treatment with evacetrapib as monotherapy and in combination with statins. For the monotherapy evaluation, patients were randomly assigned to receive either placebo or evacetrapib at a dosage of 30 mg/d, 100 mg/d, or 500 mg/d. Monotherapy dosages were selected based on modeling of the results from phase 1 studies, in combination with literature data from other CETP inhibitors in development. For the combination treatment groups, patients were randomly assigned to receive either placebo or evacetrapib, 100 mg/d, in combination with the 3 most commonly prescribed statins, at typical dosages prescribed in clinical practice (simvastatin, 40 mg/d; atorvastatin, 20 mg/d; or rosuvastatin, 10 mg/d). Assignment to statin groups was performed during randomization to 1 of the 10 treatment groups. Randomization was performed by an interactive voice response system and was stratified according to geographic region and baseline levels of HDL-C and triglycerides.

Clinic Visits and Laboratory Tests

Patients were examined during scheduled visits at weeks 2, 4, 8, and 12 during the treatment phase and a follow-up visit 4 to 6 weeks after cessation of the study drug. Lipoprotein levels and safety laboratory measurements were obtained at all visits. Blood pressure was measured at each visit by 3 replicate measurements using a standard automated blood pressure device. A central laboratory (Covance) performed all biochemical determinations. Standard lipid profiles (LDL-C, HDL-C, and triglycerides) were determined by enzymatic assay. High-sensitivity C-reactive protein (CRP) was determined by immunonephelometry. Measurement of CETP mass in serum samples was performed by enzyme-linked immunosorbent assay. Serum CETP activity was measured by fluorometric assay and expressed after correction for the maximum inhabitable CETP activity with evacetrapib. All reported cardiovascular events and rashes were evaluated and adjudicated by a blinded clinical end-point committee.

Statistical Analysis

A sample size of 35 patients per group was calculated to provide 87% power to simultaneously detect a 40% (SD, 30%) increase in HDL-C and 10% (SD, 15%) decrease in LDL-C compared with a statin alone for each of the combined therapy groups (.10 type I error rate for a 2-sided test). These changes reflect an increase in HDL-C greater than observed with niacin therapy13 and an incremental reduction in LDL-C of at least 10% in addition to statin therapy, both thought to be of potential clinical benefit. Demographic and baseline information are summarized using frequencies for categorical variables and means with standard deviations or medians with interquartile ranges for continuous variables.

The efficacy analyses were performed in the modified intention-to-treat population, consisting of those with a baseline and at least 1
Figure 1. Study Flow

The final disposition of patients in each group includes all patients assigned to study drug. Patients who withdrew from the study include those who discontinued due to participant or physician decision. Adverse events include discontinuations due to adverse events or abnormal laboratory or electrocardiographic results. HDL-C indicates high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

*Includes 1 participant who was withdrawn by the physician because of incarceration and 1 participant because of QT prolongation.
postbaseline efficacy measurement. For the monotherapy evaluation of evacetrapib, comparisons were made between each individual dosage and placebo. The statin combination evaluation reflects comparisons of each individual statin with that statin in combination with evacetrapib, 100 mg/d. In addition, evacetrapib, 100 mg/d, monotherapy was compared with evacetrapib, 100 mg/d, in combination with any statin.

A mixed model for repeated measurements was used to evaluate the percentage change from baseline in primary and secondary laboratory measurements. The model included terms for baseline measurement, treatment group, visit, and treatment × visit interaction. Least-squares means with 90% confidence intervals are reported. The safety analyses were conducted to evaluate change from baseline in the safety profile in the intention-to-treat population using the same modeling strategy. Safety data are reported as least-squares means with 90% confidence intervals or as frequencies. All analyses were conducted using SAS, version 9.2 (SAS Institute Inc) and were performed by academic statisticians (M.S., B.H.).

Table 1. Baseline Characteristics (Monotherapy Evaluation)a

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Placebo (n = 38)</th>
<th>30 mg/d (n = 40)</th>
<th>100 mg/d (n = 38)</th>
<th>500 mg/d (n = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>55.2 (10.5)</td>
<td>58.6 (11.1)</td>
<td>58.5 (9.2)</td>
<td>58.8 (12.2)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>20 (52.6)</td>
<td>23 (57.5)</td>
<td>22 (57.9)</td>
<td>21 (52.5)</td>
</tr>
<tr>
<td>Body mass indexb</td>
<td>29.8 (6.1)</td>
<td>29.8 (7.9)</td>
<td>27.6 (5.7)</td>
<td>29.0 (5.6)</td>
</tr>
<tr>
<td>Metabolic syndrome, No. (%)</td>
<td>11 (28.9)</td>
<td>7 (17.5)</td>
<td>8 (21.1)</td>
<td>12 (30.0)</td>
</tr>
<tr>
<td>Hypertension, No. (%)</td>
<td>13 (34.2)</td>
<td>15 (37.5)</td>
<td>10 (26.3)</td>
<td>18 (45.0)</td>
</tr>
<tr>
<td>Diabetes, No. (%)</td>
<td>1 (2.6)</td>
<td>3 (7.5)</td>
<td>0</td>
<td>4 (10.0)</td>
</tr>
<tr>
<td>Smoker, No. (%)</td>
<td>6 (15.8)</td>
<td>5 (12.5)</td>
<td>4 (10.5)</td>
<td>5 (12.5)</td>
</tr>
<tr>
<td>Blood pressure, mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>122.3 (9.7)</td>
<td>124.5 (11.0)</td>
<td>120.2 (11.3)</td>
<td>124.7 (8.3)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>77.4 (6.3)</td>
<td>78.7 (7.3)</td>
<td>74.6 (8.7)</td>
<td>78.1 (8.0)</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td>147.3 (21.6)</td>
<td>143.5 (26.0)</td>
<td>148.0 (25.0)</td>
<td>135.7 (26.0)</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>53.0 (11.8)</td>
<td>54.7 (12.0)</td>
<td>57.0 (14.1)</td>
<td>54.7 (16.3)</td>
</tr>
<tr>
<td>Triglycerides, median (IQR), mg/dL</td>
<td>113.4 (84.1-204.6)</td>
<td>120.0 (99.6-161.6)</td>
<td>121.8 (89.6-164.7)</td>
<td>116.9 (76.6-178.0)</td>
</tr>
<tr>
<td>Non-HDL-C, mg/dL</td>
<td>175.4 (29.2)</td>
<td>168.8 (27.3)</td>
<td>171.6 (27.3)</td>
<td>160.5 (26.7)</td>
</tr>
<tr>
<td>Apo B, mg/dL</td>
<td>110.2 (17.4)</td>
<td>108.0 (18.7)</td>
<td>107.8 (16.3)</td>
<td>102.0 (19.3)</td>
</tr>
<tr>
<td>Apo A-I, mg/dL</td>
<td>152.8 (26.2)</td>
<td>156.9 (24.6)</td>
<td>156.9 (24.0)</td>
<td>153.9 (29.7)</td>
</tr>
<tr>
<td>Apo A-II, mg/dL</td>
<td>38.3 (5.0)</td>
<td>39.8 (5.8)</td>
<td>40.1 (5.7)</td>
<td>39.1 (6.5)</td>
</tr>
<tr>
<td>hsCRP, median (IQR), mg/L</td>
<td>1.7 (0.7-5.7)</td>
<td>1.4 (0.7-4.4)</td>
<td>1.3 (0.8-2.2)</td>
<td>1.8 (0.9-4.6)</td>
</tr>
<tr>
<td>CETP mass, µg</td>
<td>2.2 (0.4)</td>
<td>2.3 (0.4)</td>
<td>2.2 (0.4)</td>
<td>2.3 (0.5)</td>
</tr>
<tr>
<td>CETP activity, pmol/L/min</td>
<td>23.1 (5.0)</td>
<td>22.9 (4.5)</td>
<td>23.0 (5.9)</td>
<td>23.4 (5.9)</td>
</tr>
</tbody>
</table>

RESULTS

Participants

Between April 15, 2010, and January 14, 2011, 1154 patients were screened in the study at 70 sites. A total of 398 patients proceeded to the randomization phase of the study. The dispositions of these patients are shown in **Figure 1**. Baseline characteristics of the patients are shown in **Table 1**, **Table 2**, and **eTable 1** (available at http://www.jama.com). Characteristics were similar for all treatment groups and are presented as summary data. The mean age was 58.3 years and approximately 56% of patients were women. Baseline lipid profiles were as follows: for LDL-C, mean, 144.3 (SD, 26.6) mg/dL; for HDL-C, mean, 55.1 (SD, 15.3) mg/dL; and for triglycerides, median, 121.3 (interquartile range, 88.6-176.3) mg/dL.

Lipoprotein Effects

Percentage changes in lipoprotein and apolipoprotein measurements and C-reactive protein are summarized in **Table 3**, **Table 4**, **eTable 2**, and **eTable 3**. Evacetrapib monotherapy produced dose-dependent increases in HDL-C ranging from 30.0 to 66.0 mg/dL (53.6% to 128.8%; P < .001 compared with placebo) and decreases in LDL-C of −20.5 to −51.4 mg/dL (−13.6% to −35.9%; P < .001 compared with placebo). A significant 26.7-mg/dL (10.8%) reduction in triglyceride levels also was observed with the 500-mg/d dosage (P = .006 compared with placebo). These effects resulted in dose-dependent reductions in non–HDL-C by −23.2 to −45.8 mg/dL (−12.9% to −26.4%; P < .001 compared with placebo) and apolipoprotein B by −13.8 to −29.7 mg/dL (−12.4% to −26.6%; P < .001 compared with placebo).

When administered in combination with statin therapy, evacetrapib, 100 mg/d, increased HDL-C levels by 42.1 to 50.5 mg/dL (78.5% to 88.5%; P < .001 compared with statin alone) and resulted in greater reductions in LDL-C (P < .001) and non–HDL-C (P < .05 for atorvastatin and rosuvastatin) compared with effects observed with statin monotherapy. Compared with evacetra-

Abbreviations: Apo, apolipoprotein; CETP, cholesteryl ester transfer protein; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol.

SI conversion: To convert HDL-C and LDL-C to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113.

a Data are presented as mean (SD) unless otherwise indicated.

b Body mass index was calculated as weight in kilograms divided by height in meters squared.

c Metabolic syndrome incidence was determined using the criteria of the National Cholesterol Education Program, defined as at least 3 of the following: waist circumference ≥102 cm (men) or ≥88 cm (women); fasting triglycerides ≥150 mg/dL, HDL-C <40 mg/dL (men) or <50 mg/dL (women); blood pressure ≥130/85 mm Hg; and fasting plasma glucose ≥110 mg/dL.
In patients with higher LDL-C levels, the combination of a statin and evacetrapib resulted in greater reductions in LDL-C by 71.0 vs 34.2 mg/dL (48.6% vs 23.7%; P < .001) but no greater increase in HDL-C by 45.9 vs 48.4 mg/dL (86.8% vs 91.3%; P = .39), consistent with known lipid effects of statins. Increases in HDL-C and decreases in atherogenic lipid levels with evacetrapib administration occurred rapidly, with most of these effects observed at 2 weeks.

Increases in HDL-C with evacetrapib produced dose-dependent increases in apolipoprotein A-I ranging from 35.7 to 72.6 mg/dL (22.7% to 49.6%; P < .001 compared with placebo), in apolipoprotein A-II by 4.8 to 15.8% to 83.7%; P < .001 compared with placebo) and in apolipoprotein E by 5.7 to 9.2 mg/dL (63.4% vs 91.3%; P < .001). Similarly, significant interactions were observed with greater percentage decreases in LDL-C among patients who were younger (P = .03) and had lower baseline HDL-C levels (P = .03).

Safety Assessment

Adverse event rates and laboratory safety measurements are summarized in Table 5, and achieved blood pressure levels are shown in eFigure 2. Administration of evacetrapib as monotherapy was not associated with an increase in blood pressure compared with placebo. A greater increase in diastolic blood pressure was observed when evacetrapib, 100 mg/d, was administered in combination with simvastatin, 40 mg/d, compared with simvastatin monotherapy (P = .02). No other differences were observed in diastolic or systolic blood pressure changes.

Table 2. Baseline Characteristics (Statin Combination Evaluation)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Atorvastatin, 20 mg/d</th>
<th>Simvastatin, 40 mg/d</th>
<th>Rosuvastatin, 10 mg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>57.8 (11.3)</td>
<td>57.4 (11.8)</td>
<td>56.1 (10.5)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>26 (63.4)</td>
<td>18 (51.4)</td>
<td>13 (33.3)</td>
</tr>
<tr>
<td>Body mass indexb</td>
<td>28.8 (5.1)</td>
<td>30.0 (7.5)</td>
<td>28.3 (5.3)</td>
</tr>
<tr>
<td>Metabolic syndrome, No. (%)</td>
<td>13 (31.7)</td>
<td>9 (25.7)</td>
<td>11 (26.8)</td>
</tr>
<tr>
<td>Hypertension, No. (%)</td>
<td>16 (39.0)</td>
<td>13 (37.1)</td>
<td>10 (24.4)</td>
</tr>
<tr>
<td>Diabetes, No. (%)</td>
<td>2 (4.9)</td>
<td>2 (4.9)</td>
<td>0</td>
</tr>
<tr>
<td>Smoker, No. (%)</td>
<td>11 (26.8)</td>
<td>14 (31.7)</td>
<td>9 (22.0)</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>125.1 (11.9)</td>
<td>122.9 (12.7)</td>
<td>121.1 (13.0)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>79.4 (7.5)</td>
<td>78.9 (7.6)</td>
<td>76.0 (9.1)</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td>139.0 (26.7)</td>
<td>143.6 (26.0)</td>
<td>143.7 (29.1)</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>53.9 (17.0)</td>
<td>55.7 (18.2)</td>
<td>57.3 (16.2)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>128.4 (88.6-186.9)</td>
<td>123.1 (79.7-165.6)</td>
<td>128.4 (86.8-168.3)</td>
</tr>
<tr>
<td>Non-HDL-C, mg/dL</td>
<td>169.3 (28.8)</td>
<td>168.9 (29.1)</td>
<td>183.2 (42.5)</td>
</tr>
</tbody>
</table>

Abbreviations: Apo, apolipoprotein; CETP, cholesteryl ester transfer protein; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol.

SI conversions: To convert HDL-C and LDL-C to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113.

Data are presented as mean (SD) unless otherwise indicated.

©2011 American Medical Association. All rights reserved.
when evacetrapib was administered in combination with statin therapy. No differences were observed between patients treated with or without evacetrapib with regard to the rate of systolic blood pressure elevations in excess of 15 mm Hg. No significant changes in aldosterone, cortisol, or electrolytes were observed with administration of evacetrapib.

There was no difference between evacetrapib and control groups in either the monotherapy or statin combination studies with regard to the rate of treatment-related adverse events and discontinuation rates. Two significant rashes were observed during the course of the study. One participant treated with simvastatin monotherapy developed angioedema, which resolved with steroids and study drug discontinuation. A second participant treated with evacetrapib, 100 mg/d, in combination with rosuvastatin developed a morbilliform reaction 40 days after cessation of study drug that resolved with conservative measures. Evacetrapib administered as monotherapy or in combination with statin therapy was not associated with significant laboratory abnormalities related to liver, kidney, or muscle toxicity. No adjudicated cardiovascular events were observed during the study.

COMMENT

Current guidelines for lipid-modulating therapy in both primary and secondary prevention populations emphasize reduction in apolipoprotein B–containing atherogenic lipoproteins.14,15 Although this approach has yielded major clinical benefits, residual risk remains substantial16 and has eluded effective treatment for decades. Essentially, no new classes of antiatherosclerotic therapies with clinically proven benefits have emerged since the introduction of statins in 1987. Considerable current interest has focused on drugs that increase HDL-C levels, although these efforts have not yet yielded drugs with benefits on clinical outcomes. Drugs that inhibit CETP produce the largest increases in HDL-C levels and represent a potentially important strategy for addressing residual risk in statin-treated patients.

In the current study, we characterized the lipid efficacy, safety, and tolerability of a novel CETP inhibitor, evacetrapib, in patients with either hypercholesterolemia or low HDL-C levels. The study demonstrated that CETP inhibition with evacetrapib produced marked alterations in important lipoproteins, including large increases in HDL-C levels and decreases in LDL-C levels. The magnitude of these changes was substantial, demonstrating increases in HDL-C levels exceeding 125% and decreases in LDL-C levels exceeding 35% for the highest tested dosage. These HDL-C changes were significantly greater among patients with lower levels of HDL-C or higher triglyceride levels at baseline. Although

Table 3. Change in Laboratory Measures (Monotherapy Evaluation)a

<table>
<thead>
<tr>
<th>Measures</th>
<th>Placebo (n = 38)</th>
<th>Evacetrapib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 mg/d (n = 40)</td>
<td>100 mg/d (n = 38)</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>153.3 (32.8)</td>
<td>124.4 (26.8)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−20.5 (−7.8 to −13.3)</td>
<td>−31.7 (−25.0 to −24.4)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>−13.6 (−18.6 to −8.7)</td>
<td>−22.3 (−27.3 to −17.3)</td>
</tr>
<tr>
<td>Relative change</td>
<td>−17.6 (−24.6 to −10.5)</td>
<td>−26.2 (−33.2 to −19.2)</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>51.6 (13.7)</td>
<td>87.1 (24.0)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−0.7 (−5.6 to −4.3)</td>
<td>30.0 (25.1 to 35.0)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>−3.0 (−12.3 to −6.2)</td>
<td>53.6 (44.4 to 62.9)</td>
</tr>
<tr>
<td>Relative change</td>
<td>56.7 (43.6 to 69.8)</td>
<td>97.6 (84.5 to 110.8)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up, median (IQR)</td>
<td>121.3 (86.4 to 179.9)</td>
<td>106.3 (85.0 to 147.9)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−0.5 (−12.4 to −11.4)</td>
<td>−13.2 (−25.0 to −12.2)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>−9.3 (1.0 to 17.5)</td>
<td>−3.1 (−11.4 to 5.2)</td>
</tr>
<tr>
<td>Relative change</td>
<td>−12.4 (−24.1 to −0.6)</td>
<td>−12.4 (−24.2 to −0.6)</td>
</tr>
<tr>
<td>CRP, mg/Lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up, median (IQR)</td>
<td>1.6 (1.0 to 4.0)</td>
<td>1.7 (0.6 to 6.4)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−1.7 (−4.4 to −1.0)</td>
<td>0.9 (−1.7 to 3.6)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>75.5 (5.9 to 145.1)</td>
<td>127.8 (58.7 to 196.9)</td>
</tr>
<tr>
<td>Relative change</td>
<td>52.3 (−45.5 to 150.1)</td>
<td>1.1 (−97.5 to 99.8)</td>
</tr>
</tbody>
</table>

Abbreviations: CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol.

SI conversions: To convert HDL-C and LDL-C to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113.

 Follow-up values are mean (SD) unless otherwise noted. Absolute changes are least-squares mean changes from baseline until follow-up visit 7 from analysis of covariance model (90% CI) unless otherwise noted. Percentage changes are least-squares mean percentage changes from baseline until follow-up visit 7 from analysis of covariance model (90% CI) unless otherwise noted. Relative changes are differences in percentage changes between placebo and evacetrapib counterpart.

P < .001.

P < .01.

Final-observation-carried-forward data are applied in the analysis.
EFFECTS OF EVACETRAPIB ON LIPIDS

Evacetrapib was well tolerated, the study was underpowered to rule out uncommon adverse effects.

Because of the robust clinical benefits of statins, any new lipid-modulating agent will likely be administered on a background of statin therapy. Accordingly, we tested evacetrapib both as monotherapy and in combination with the most commonly used dosages of the most frequently prescribed statins. In combination with a broad range of statins, evacetrapib produced a similar degree of HDL-C increase compared with evacetrapib monotherapy, reaching 94% for the 100-mg/d dosage. Similarly, while the incremental decreases in LDL-C were predictably smaller in combination with statins than observed with monotherapy, these changes still represented potentially useful effects, resulting in 11% to 14% additional LDL-C lowering. These preliminary findings suggest that evacetrapib could be administered with statins and may yield potentially clinically important incremental effects on lipoproteins. The finding of less LDL-C lowering with evacetrapib monotherapy in patients with higher baseline LDL-C levels needs further investigation.

The initial enthusiasm for CETP inhibitors waned following reports that torcetrapib did not slow disease progression and increased mortality. Some observers postulated that these adverse findings reflected a potential detrimental effect of CETP inhibition on HDL functionality. However, subsequent investigations determined that torcetrapib had off-target effects that likely contributed to the observed adverse effect on cardiovascular outcomes. Accordingly, there is renewed interest in the pursuit of other CETP inhibitors that lack such off-target effects but retain the favorable lipid effects. Subsequent development of all novel CETP inhibitors has required comprehensive characterization of safety and tolerability. Equipoise for the study of evacetrapib in dyslipidemnic patients was provided by the lack of apparent off-target adverse effects in phase 1 studies and the potential of this agent to provide clinically important effects on lipoproteins.

In the current 12-week study, administration of evacetrapib was well tolerated, the study was underpowered to rule out uncommon adverse effects.

Table 4. Change in Laboratory Measures (Statin Combination Evaluation)a

<table>
<thead>
<tr>
<th>Measures</th>
<th>Aторвастатин, 20 mg/d</th>
<th>Симвастатин, 40 mg/d</th>
<th>Росувастатин, 10 mg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Placebo (n = 41)</td>
<td>With Evacetrapib (n = 35)</td>
<td>With Placebo (n = 40)</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td>Follow-up</td>
<td>Absolute change</td>
<td>Percentage change</td>
</tr>
<tr>
<td>90.8 (26.7)</td>
<td>71.2 (37.5)</td>
<td>95.7 (25.8)</td>
<td>73.1 (34.2)</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>Follow-up</td>
<td>Absolute change</td>
<td>Percentage change</td>
</tr>
<tr>
<td>54.8 (18.9)</td>
<td>60.0 (17.4)</td>
<td>97.5 (29.9)</td>
<td>54.6 (12.5)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>Follow-up, median (IQR)</td>
<td>Absolute change</td>
<td>Percentage change</td>
</tr>
<tr>
<td>101.0 (72.6 to 145.3)</td>
<td>88.6 (70.0 to 119.6)</td>
<td>93.0 (72.6 to 124.4)</td>
<td>100.1 (78.8 to 116.9)</td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>Follow-up, median (IQR)</td>
<td>Absolute change</td>
<td>Percentage change</td>
</tr>
<tr>
<td>1.0 (0.6 to 2.5)</td>
<td>1.0 (0.6 to 3.4)</td>
<td>1.0 (0.6 to 2.4)</td>
<td>1.8 (0.9 to 3.7)</td>
</tr>
</tbody>
</table>

Abbreviations: CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; SI conversions: To convert HDL-C and LDL-C to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113.

aFollow-up data are mean (SD) unless otherwise indicated. Absolute changes are least-squares mean changes from baseline until follow-up visit 7 from analysis of covariance model (90% CI) unless otherwise indicated. Percentage changes are least-squares mean percentage changes from baseline until follow-up visit 7 from analysis of covariance model (90% CI) unless otherwise indicated. Relative changes are differences in percentage changes between placebo and evacetrapib counterpart.

bP < .01.
cP < .001.
dLast-observation-carried-forward data are applied in the analysis.

©2011 American Medical Association. All rights reserved.
EFFECTS OF EVACETRAPIB ON LIPIDS

Table 5. Safety Data*

<table>
<thead>
<tr>
<th>Measures</th>
<th>Placebo (n = 38)</th>
<th>30 mg/d (n = 40)</th>
<th>100 mg/d (n = 38)</th>
<th>500 mg/d (n = 40)</th>
<th>Statin Monotherapy (n = 121)</th>
<th>Statin + Evacetrapib, 100 mg/d (n = 116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug-related adverse events, No. (%)</td>
<td>7 (18.4)</td>
<td>8 (20.3)</td>
<td>5 (13.2)</td>
<td>10 (25.0)</td>
<td>22 (18.2)</td>
<td>31 (26.7)</td>
</tr>
<tr>
<td>Adverse events leading to discontinuation, No. (%)</td>
<td>1 (2.6)</td>
<td>2 (5.0)</td>
<td>1 (2.6)</td>
<td>5 (12.5)</td>
<td>3 (2.5)</td>
<td>9 (7.8)</td>
</tr>
<tr>
<td>Serious adverse events, No. (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (0.8)</td>
<td>2 (1.7)</td>
</tr>
<tr>
<td>Drug-related serious adverse events, No. (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elevation in systolic blood pressure ≥15 mm Hg, No. (%)</td>
<td>4 (10.5)</td>
<td>9 (23.1)</td>
<td>5 (13.2)</td>
<td>8 (20.9)</td>
<td>23 (19.3)</td>
<td>25 (21.6)</td>
</tr>
<tr>
<td>Elevation in diastolic blood pressure ≥10 mm Hg, No. (%)</td>
<td>10 (26.3)</td>
<td>7 (19.7)</td>
<td>9 (23.7)</td>
<td>11 (27.5)</td>
<td>30 (25.2)</td>
<td>23 (19.8)</td>
</tr>
<tr>
<td>Creatinine ≥ULN, No. (%)</td>
<td>1 (2.6)</td>
<td>1 (2.6)</td>
<td>2 (5.2)</td>
<td>4 (10.6)</td>
<td>9 (7.6)</td>
<td>6 (5.2)</td>
</tr>
<tr>
<td>Creatine kinase >5× ULN, No. (%)</td>
<td>1 (2.6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (1.7)</td>
<td>2 (1.7)</td>
</tr>
<tr>
<td>Alanine aminotransferase >5× ULN, No. (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Aldosterone, ng/dLc,e</td>
<td>8.30 (8.108)</td>
<td>7.71 (8.17)</td>
<td>5.97 (4.27)</td>
<td>6.73 (5.94)</td>
<td>7.67 (6.29)</td>
<td>6.99 (4.38)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>6.54 (4.67)</td>
<td>6.87 (4.80)</td>
<td>7.77 (6.74)</td>
<td>6.76 (5.49)</td>
<td>6.34 (6.63)</td>
<td>6.82 (5.26)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−0.00</td>
<td>−0.45</td>
<td>0.98</td>
<td>−0.30</td>
<td>−1.12</td>
<td>−0.45</td>
</tr>
<tr>
<td>Percentage change</td>
<td>−12.84</td>
<td>90.37</td>
<td>−9.17 (189.91)</td>
<td>69.84</td>
<td>271.04</td>
<td>34.88</td>
</tr>
<tr>
<td>Relative change</td>
<td>−22.47</td>
<td>−43.00</td>
<td>(162.03 to 117.09)</td>
<td>−182.18 to 96.17</td>
<td>(22.15 to 91.91)</td>
<td>(27.69 to 89.46)</td>
</tr>
<tr>
<td>Sodium, mEq/Lc</td>
<td>142.32 (2.36)</td>
<td>141.65 (2.95)</td>
<td>141.92 (3.16)</td>
<td>141.28 (2.47)</td>
<td>141.45 (2.55)</td>
<td>141.28 (2.52)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>142.03 (2.89)</td>
<td>141.89 (2.59)</td>
<td>142.09 (3.01)</td>
<td>142.00 (2.76)</td>
<td>142.48 (2.94)</td>
<td>142.18 (2.56)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>0.11 (−0.70 to 0.92)</td>
<td>0.26 (−0.56 to 1.08)</td>
<td>0.27 (−0.55 to 1.10)</td>
<td>0.47 (−0.38 to 1.31)</td>
<td>0.83 (0.36 to 1.30)</td>
<td>0.62 (0.13 to 1.11)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>0.11 (−0.46 to 0.68)</td>
<td>0.21 (−0.36 to 0.79)</td>
<td>0.23 (−0.35 to 0.80)</td>
<td>0.36 (−0.23 to 0.98)</td>
<td>0.45 (0.11 to 0.80)</td>
<td></td>
</tr>
<tr>
<td>Relative change</td>
<td>0.10 (−0.71 to 0.91)</td>
<td>0.11 (−0.70 to 0.92)</td>
<td>0.25 (−0.58 to 1.07)</td>
<td>−0.15 (−0.62 to 0.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, mEq/Lc</td>
<td>3.87 (0.39)</td>
<td>3.90 (0.36)</td>
<td>3.86 (0.30)</td>
<td>3.80 (0.34)</td>
<td>3.91 (0.29)</td>
<td>3.92 (0.35)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>3.84 (0.29)</td>
<td>3.91 (0.33)</td>
<td>3.96 (0.39)</td>
<td>3.86 (0.28)</td>
<td>3.92 (0.25)</td>
<td>3.88 (0.28)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>−0.01 (−0.10 to 0.08)</td>
<td>0.03 (−0.06 to 0.12)</td>
<td>0.06 (−0.03 to 0.16)</td>
<td>0.02 (−0.07 to 0.12)</td>
<td>0.02 (−0.04 to 0.07)</td>
<td>−0.01 (−0.06 to 0.05)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>1.39 (−1.04 to 3.81)</td>
<td>1.78 (−0.65 to 4.21)</td>
<td>0.94 (−1.57 to 3.44)</td>
<td>0.85 (−0.54 to 2.25)</td>
<td>0.35 (−1.11 to 1.81)</td>
<td></td>
</tr>
<tr>
<td>Relative change</td>
<td>0.21 (−2.19 to 2.61)</td>
<td>1.18 (−2.45 to 5.59)</td>
<td>1.57 (−1.85 to 4.99)</td>
<td>0.73 (−2.74 to 4.20)</td>
<td>−0.50 (−2.52 to 1.51)</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate, mEq/Lc</td>
<td>22.62 (3.59)</td>
<td>22.79 (3.00)</td>
<td>23.28 (2.93)</td>
<td>22.92 (3.09)</td>
<td>22.74 (3.34)</td>
<td>22.98 (3.02)</td>
</tr>
<tr>
<td>Follow-up</td>
<td>22.75 (2.25)</td>
<td>23.31 (2.46)</td>
<td>23.29 (2.76)</td>
<td>23.22 (2.26)</td>
<td>23.34 (2.09)</td>
<td>23.47 (2.48)</td>
</tr>
<tr>
<td>Absolute change</td>
<td>0.27 (−0.44 to 0.98)</td>
<td>0.41 (−0.31 to 1.12)</td>
<td>0.60 (−0.11 to 1.31)</td>
<td>0.51 (−0.23 to 1.25)</td>
<td>0.86 (0.25 to 1.06)</td>
<td>0.80 (0.38 to 1.23)</td>
</tr>
<tr>
<td>Percentage change</td>
<td>2.01 (−1.25 to 5.28)</td>
<td>2.50 (−0.80 to 5.78)</td>
<td>3.34 (0.06 to 6.62)</td>
<td>2.56 (−0.85 to 5.98)</td>
<td>4.03 (2.15 to 5.91)</td>
<td>4.59 (2.64 to 6.54)</td>
</tr>
<tr>
<td>Relative change</td>
<td>0.48 (−4.16 to 5.12)</td>
<td>1.33 (−3.29 to 5.96)</td>
<td>0.55 (−4.17 to 5.28)</td>
<td>0.56 (−2.15 to 3.27)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: ULN, upper limit of normal.
*The denominators shown are the intention-to-treat population for the individual treatment groups.
*Patients without a postbaseline measurement are excluded from the analysis.
*Baseline and follow-up data are mean (SD) unless otherwise indicated. Baseline is defined as the last nonmissing observation prior to the first dose of study medication. If the first dose date were unavailable, the treatment dispense date from the interactive voice response system was used. Follow-up is defined as the observation at visit 7 unless otherwise indicated. Absolute changes are least-squares mean changes from baseline until follow-up visit 7 from analysis of covariance model (95% CI) unless otherwise indicated. Percentage changes are least-squares mean percentage changes from baseline until follow-up visit 7 from analysis of covariance model (95% CI) unless otherwise indicated. Relative changes are differences in percentage changes between placebo and evacetrapib counterparts.
*p < 0.05.
#Follow-up is defined as the observation at visit 6. Absolute changes are least-squares means changes from baseline until follow-up visit 6 from analysis of covariance model (95% CI). Percentage changes are least-squares mean percentage changes from baseline until follow-up visit 6 from analysis of covariance model (95% CI).
tolerated, with a low rate of treatment-related adverse events or discontinuation of therapy. No increase in blood pressure was observed in evacetrapib-treated patients, and no effects on mineralocorticoid and glucocorticoid activity were observed. These data suggest that evacetrapib favorably affects lipoproteins without apparent major toxic effects. Because a few rashes occurred during early-phase studies, we also carefully collected information on skin changes during the current study. No evidence emerged suggesting serious drug eruptions with evacetrapib. However, a full safety assessment of evacetrapib will require exposure of a much larger number of patients.

In addition to standard lipid measurements, we performed a comprehensive analysis of the effects of evacetrapib on the major apolipoproteins carried on HDL particles. Both apolipoproteins A-I and A-II increased substantially with administration of evacetrapib, a finding that likely reflects a predominant increase in concentrations of larger HDL particles as a result of accumulation of cholesteryl ester. A marked increase in circulating apolipoprotein E levels was also observed, which may be relevant because previous reports with torcetrapib demonstrated that apolipoprotein E enrichment of HDL particles was associated with an increase in cholesterol efflux capacity.22

Free cholesterol efflux to HDL particles and subsequent transfer to other lipid particles have been demonstrated to involve highly complex pathways (Figure 2).23 The effects of evacetrapib on HDL subclasses and composition continue to be elucidated, and the impact of this agent on lipid transport would require additional investigations. Although CETP inhibitors have been developed primar-
ily to increase HDL-C levels, more po-
tent members of this class also lower
LDL-C. The current study demonstra-
tes that evacetrapib has favorable ef-
fects on LDL-C and apolipoprotein B in
both monotherapy- and statin-
treated patients. Although these ef-
fects may ultimately translate into car-
diovascular benefits, the role of CETP
inhibition as a therapeutic strategy to
reduce cardiovascular events remains
to be established.

Epidemiological studies of the rela-
tionship between CETP and cardio-
vascular risk have shown variable results,
with some but not all investigators
showing variable results,
reduce cardiovascular events remains
inhibition as a therapeutic strategy to
reduce cardiovascular benefits, the role of CETP
in both monotherapy- and statin-
strates that evacetrapib has favorable ef-
fected with some10 but not all 25,26 investiga-
tors reporting an association between
low CETP activity and protection
against cardiovascular disease. Stud-
ies in animal models generally show
that reduced CETP activity is athero-
protective,11,27,28 but not all animals have
lipid metabolic pathways comparable
with that of humans. The inability of
torcetrapib to slow disease prog-
ession in humans raised concerns about
HDL function. However, there is
currently no evidence that CETP in-
hibitors impair the ability of HDL to
promote efflux of cholesterol. Post hoc
analysis of torcetrapib trials showed
that patients with the largest increases in
HDL-C exhibited regression of coro-
nary atherosclerosis29 and fewer car-
diovascular events.30

However, a number of other issues
remain unresolved. The current study
included numerous parallel treatment
groups with multiple unadjusted sta-
tistical comparisons. While the analy-
ysis prespecified a type I error rate of .10 for
efficacy measures, additional test-
ing with an error rate of .05 did not al-
ter the findings (eTable 3). Predict-
ably, CETP mass increased, although
that is unknown if this has any effect be-
yond lipid transfer. The optimal de-
gree of CETP inhibition has not been
elucidated. Recent speculation sug-
gests that dalcetrapib, a less potent
CETP inhibitor, may selectively modu-
late CETP pathways in a manner that
prevents levels of lipid-deplete pre-β
HDL. However, the cardiovascular ef-
fects of this finding remain uncertain.

No studies have yet demonstrated that
any CETP inhibitor reduces disease pro-
gression or promotes plaque regres-
sion. Two additional CETP inhibitors are
currently undergoing clinical evalua-
tion. The lipid changes observed with
evacetrapib appeared to be more simi-
lar to those of anacetrapib, producing
substantial elevation of HDL-C and
lowering of LDL-C. Evacetrapib, like both
anacetrapib and dalcetrapib, appeared
to be well tolerated with no discern-
able adverse effects on blood pressure
and mineralocorticoid levels. Ulti-
mately, the benefits of each of these
novel CETP inhibitors must be deter-
mined through prospective, random-
ized, clinical outcome trials. The
results of the current study provide the
foundation for a large phase 3 clinical
trial designed to assess the efficacy and
safety of evacetrapib.

Author Contributions: Drs Nicholls and Nissen and the Cleveland Clinic Coordinating Center for Clinical Re-
search had full and independent access to all of the
data in the study, and Dr Nicholls takes responsibility
for the integrity of the data and the accuracy of the
data analysis.

Study concept and design: Nicholls, Krueger, Wang, McErlean, Nissen.

Acquisition of data: Wang, McErlean.

Drafting of the manuscript: Nicholls, Wang, Nissen.

Critical revision of the manuscript for important intel-

Statistical analysis: Shao, Hu.

Obtained funding: Nicholls, Nissen.

Administrative, technical, or material support: McErlean.

Study supervision: Krueger.

Conflict of Interest Disclosures: All authors have
completed and submitted the ICME Form for Dis-
losure of Potential Conflicts of Interest. Dr Nicholls
reports receiving research support from AstraZeneca,
Novartis, Eli Lilly, Antara, LipoScience, Roche, and
Resverlogix and receiving honoraria or serving as a
consultant for AstraZeneca, Roche, Esperion, Abbott,
Pfizer, Merck, Takeda, LipoScience, Omthera, Novo-
Nordisk, sanofi-aventis, Atheronova, Antara, CSL
Behring, and Boehringer Ingelheim. Dr Brewer
reports serving on advisory boards and receiving
consulting fees and honoraria from Merck, Pfizer,
Abbott, Roche, Eli Lilly, and sanofi-aventis. Dr Kaste-
lein reports serving as a consultant for Eli Lilly,
Merck, Roche, Boehringer Ingelheim, Cerenis,
Novartis, Genzyme, and Isis. Drs Krueger and Wang
are employees of Eli Lilly. Dr Shao reports receiving
research support from AstraZeneca, Eli Lilly, Pfizer,
Takeda, Sanooky, and sanofi-aventis. He has con-
sulted for a number of pharmaceutical companies
without financial compensation. All honoraria, con-
figuring with an error rate of .05 did not al-
ter the findings (eTable 3). Predict-
ably, CETP mass increased, although
that is unknown if this has any effect be-
yond lipid transfer. The optimal de-
gree of CETP inhibition has not been
elucidated. Recent speculation sug-
gests that dalcetrapib, a less potent
CETP inhibitor, may selectively modu-
late CETP pathways in a manner that
prevents levels of lipid-deplete pre-β
HDL. However, the cardiovascular ef-
fects of this finding remain uncertain.

Funding/Support: The study was funded by Eli Lilly.

Role of the Sponsor: Eli Lilly participated actively in
designing the study, developing the protocol, and pro-
viding logistical support during the trial. Monitoring of
the study was performed by a contract research or-
anization, Quintiles, under contract with the spon-
ror. The sponsor maintained the trial database. Sta-
tistical analysis was performed by statisticians
employed by Eli Lilly, although the analyses reported in the
article represent those performed by the academic stat-
isticians (Mr Shao and Dr Hu). After completion of the
trial, as specified in the study contract, a complete copy
of the database was transferred to the Cleveland Clinic
Coordinating Center for Clinical Research, where analy-
es were performed by the independent statisticians (Mr
Shao and Dr Hu). The manuscript was prepared by Dr
Nicholls and modified after consultation with the co-
authors. The sponsor was permitted to review the
manuscript and suggest changes, but the final deci-

sion on content was exclusively retained by the aca-
demic authors.

Independent Statistical Analysis: For the purpose of
these academic interests, Drs Shao and Hu performed
all primary statistical analyses. All results presented in the article were
performed by Dr Hu. Mr Shao is an employee of
the Cleveland Clinic Coordinating Center for Clinical
Research. Dr Hu is a faculty member within the
Department of Quantitative Health Sciences at the
Cleveland Clinic Lerner College of Medicine of Case
Western Reserve University.

Study Investigators: Data and Safety Monitoring
Board: James H. Stein, MD, University of Wisconsin,
Madison (chair); George L. Bakris, MD, University
of Chicago, Chicago, Illinois; Philip Barter, MD, direc-
tor, the Heart Research Institute, Sydney, Australia;
Pooja Khera, MD, Cleveland Clinic, Cleveland, Ohio;
Carl Pepine, MD, University of Florida, Gainesville; Wal-
ter Offen, PhD, senior research fellow, Eli Lilly, Indi-
anas (nonvoting). Participating Investigators for
Lilly ELIFIA: Denmark: CCBR A/S, Veje (Peter
Alexandersen, MD), CCBR A/S, Ballerup (Pernille Lun-
dqvist, MD). Germany: ClinPharm International, Go-
erlitz, SN (Hartwin Berge, DrMed), Synexus Clin-
Pharm, Leipzig, SN (Elizaveta Degtjareva, MS),
Synexus ClinPharm, Berlin, BE (Janna Stoessel, MD),
Synexus ClinPharm, Bochum, NW (Andrea Rinke,
DrMed), Synexus ClinPharm, Dresden, SN (Hart-
Detlev Stahl, DrMed). Netherlands: Andromed, Rot-
terdam (J. J. C. Jonker, MD), Andromed, Eindhoven
(Lindy Diepenmaat, MD), Andromed, Breda (V. Klose,
MD), Andromed, Leiden, Leiderdorp (Koen, MD),
Andromed, Zoetermeer (Miete Everts, MD), An-
dromed, Oost, Velp (J. Hoogendijk, MD), And-
romed, Groningen (Wim Van Kempen, MD), Aca-
demisch Medicisch Centrum, Amsterdam (Trijntje
Trip, MD), PreCare Trial and Recruitment, Geleen (V. E. K.
M. Van de Walle, MD). Poland: Synexus SCM, Wro-
claw (Katarzyna Szymkowiak, MD), Centrum Lezce-
nia Chorob, Warszawa (Magda Dabrowska, MD),
United Kingdom: Synexus, Chorley (Ravi Pawa, MD),
Synexus, Manchester (Irina Pavel-Know, MD), Mersey-
side Clinical Research Centre, Liverpool (Ezzam Ab-
dulrahman FBS, MS, MBChB). Data Management:
Clinical Research Centre, Birmingham (Res Samiento, MD),
Synexus Scotland Clinical Research Centre, Glasgow
(Shah Eblabadi, MD), Synexus, Reading (Hilary Shaw,
MD), Synexus Wales Clinical Research Centre, Car-
diff (Hawys Thomas, MD), United States: Jeffrey A.
Lindebaum, DO, PC, Yardley, Pennsylvania (Patrick
Adler, DO), Great Lakes Medical Research, West-
field, New York (Donald Brautigam, MD), Holston
Medical Group, Bristol, Tennessee (Andrew Brock-
myre, MD), Hillcrest Clinical Research, Simpsonville,
South Carolina (Robert Broker, MD), New West Phys-
icians Clinical Research, Goldsboro, North Carolina
(Patrick Cohen, MD), Anderson and Collins Clinical
Research, Edison, New Jersey (Harry Collins, MD), Dairy-

©2011 American Medical Association. All rights reserved.
land Medical Center, Red Lion, Pennsylvania (Drake DeHart, DO), Scripps Clinical Research, San Diego, California (Margaret Drehobl, MD), PMG Research of Hickory, Hickory, North Carolina (John Earl, MD), Endwell Family Physicians, Endwell, New York (Victor Eliono, MD), Radiant Research, Greer, South Carolina (William Ellison, MD), the Research Group of Lexington, Lexington, Kentucky (Neil Farris, MD), Village Research, Houston, Texas (Harold Fields, MD), Mississippi Medical Research, Picayune, Mississippi (Ahmad Haidar, MD), PMG Research of Wilmington, Wilmington, North Carolina (Charles Herrin, MD), Alan Hoffman, MD, Houston, Texas, Wichita Clinic, Wichita, Kansas (Kevin Hoppock, MD), Health Trends Research, Baltimore, Maryland (Boris Kerzner, MD), Jacksonville Center for Clinical Research, Jacksonville, Florida (Michael Koren, MD), Progressive Clinical Research, Vista, California (Jon LeLevier, MD), Encompass Clinical Research, Spring Valley, California (Robert Lipetz, DO), Pulmonary Associates of Brandon, Brandon, Florida (Daniel Lorch Jr, MD), PMG Research of Salisbury, Salisbury, North Carolina (Robert McNeill, MD), PMG Research of Charleston, Mt Pleasant, South Carolina (Richard Mills, MD), Family Practice, Stoneboro, Pennsylvania (Joseph Morelli, MD), American Health Network of Indiana, Indianapolis (Thomas Moretto, MD), Holston Medical Group, Kingsport, Tennessee (David Moir, MD), PharmQuest, Greensboro, North Carolina (Alexander Murray, MD), Dean Clinic Oregon, Oregon, Wisconsin (Zorba Paster, MD), Northeast Iowa Medical Education Foundation, Waterloo, Iowa (James Pook, MD), PMG Research of Bristol, Bristol, Tennessee (Stephanie Powell, MD), PMG Research of Charlotte, Charlotte, North Carolina (George Raad, MD), Radiant Research, Dallas, Texas (Michele Reynolds, MD), PMG Research of Raleigh, Raleigh, North Carolina (John Rubino, MD), Medical Associates of Northwest Arkansas, Fayetteville, Arkansas (James Salmon, MD), North-West Family and Spinal Clinic, Tacoma, Washington (Kenneth Scherbarth, DO), St Johns Center for Clinical Research, Ponte Vedra, Florida (Erich Schramm, MD), PMG Research of Wilmington, Wilmington, North Carolina (Jonathan Staub, MD), Genesis Research International, Longwood, Florida (Raul Tamayo, MD), PMG Research of Cary, Cary, North Carolina (Martin Van Cleeff, MD), Maine Research Associates, Auburn (Robert Weiss, MD), PMG Research of Winston-Salem, Winston-Salem, North Carolina (Jonathan Wilson, MD), Founders Research Corporation, Philadelphia, Pennsylvania (Gary Yeoeman, DO).

Online-Only Material: eTables 1, 2, and 3, eFigures 1 and 2, and the Author Video Interview are available at http://www.jama.com.

REFERENCES