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Abstract

& There is strong evidence to suggest that the complex cog-
nitive process underlying mental rotation does not have a
discrete neural correlate, but is represented as a distributed
neural system. Although the neuroanatomical nodes of this so-
called rotation network are well established, there is as yet
little empirical evidence to indicate how these nodes interact
during task performance. Using an optimized, event-related
paradigm, this study aimed to test a previously proposed
hypothetical neurocognitive network for mental rotation in
female subjects with path analysis, and to examine changes
in effective connections across different levels of task diffi-
culty. Path analysis was carried out in combination with a
time-resolved functional magnetic resonance imaging (fMRI)
analysis in order to relate the observed changes on the net-
work level to changes in specific temporal characteristics of

the hemodynamic response function on the level of individ-
ual neuroanatomical nodes. Overall, it was found that the in-
vestigated sequential model did not provide an adequate fit
to the data and that a model with parallel information pro-
cessing was superior to the serial model. This finding chal-
lenges traditional cognitive models describing the complex
cognitive process underlying mental rotation by a set of se-
quentially organized, functionally distinct processing stages. It
was further demonstrated that the observed in interregional
effective connectivity changes with the level of task demand.
These changes were directly related to the time course of the
experimental paradigm. The results of path analysis in fMRI
should therefore only be interpreted in the light of a specific
experimental design and should not be considered as general
indicators of effective connections. &

INTRODUCTION

Functional neuroimaging studies have provided strong
evidence to suggest that the complex cognitive process
underlying mental rotation does not have a discrete
neural correlate, but is represented as a distributed neu-
ral system. This so-called rotation network comprises
parietal regions (Harris et al., 2000; Carpenter, Just,
Keller, Eddy, & Thulborn, 1999; Iwaki, Ueno, Imada, &
Tonoike, 1999), several areas of the motor system
(Vingerhoets, de Lange, Vandemaele, Deblaere, &
Achten, 2002; Ganis, Keenan, Kosslyn, & Pascual-Leone,
2000; Kosslyn, DiGirolamo, Thompson, & Alpert, 1998;
Parsons et al., 1995), as well as visual-system compo-
nents (Barnes et al., 2000; Alivisatos & Petrides, 1997;
Cohen et al., 1996). Although parietal regions have been
found to be consistently activated across several object
categories and rotation strategies, the involvement of
the visual and motor system has predominantly been
linked to stimulus-specific strategies employed in rota-
tion tasks. Depictive theories suggest that subjects em-
ploy a visuospatial holistic strategy in which objects are

pictured in mind and then rotated continuously, thus
recruiting the visual system (Kosslyn, 1996). Egocentric
theories, on the other hand, assume that subjects imag-
ine physically turning objects, and thus, involve motor
processes (Kosslyn, Ganis, & Thompson, 2001).

Although the neuroanatomical nodes of the rotation
network are well established, there is as yet little empir-
ical evidence to indicate how these nodes interact
during task performance. Several previous publications
have investigated the neurocognitive network involved
in processing conventional imagery tasks (Formisano
et al., 2002). Notably, a study by Mechelli, Price, Friston,
and Ishai (2004) has demonstrated that visual imagery
activates a network of occipito-temporal, parietal, and
frontal regions. The authors suggest that top–down
processes originating in superior–parietal areas contrib-
ute to the generation and maintenance of mental im-
ages, whereas bottom–up processes originating in early
visual areas modulate visual perception (Mechelli et al.,
2004). Mental rotation is, however, an unconventional
imagery task in that it not only requires the genera-
tion and maintenance of presented objects but also
their active manipulation. To our knowledge, only oneInstitute of Psychiatry, London
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publication has as yet described a cortical network for
solving mental rotation tasks. Jordan, Wustenberg,
Heinze, Peters, and Jancke (2002) suggested that wom-
en and men exhibit different cortical activation patterns
during mental rotation tasks, and proposed two gender-
specific pathways. In the ‘‘male’’ pathway, mental rota-
tion is assumed to be processed in a strictly sequential
manner, involving exclusively forward projections from
the occipital cortex to premotor regions (PMd) via
dorsal extrastriate areas (DE) and parietal regions. The
‘‘female’’ pathway (see Figure 1), on the other hand,
includes the inferior temporal lobe (ITp) as an addi-
tional network component. The ITp is believed to be
reciprocally connected with DE, thus assuming parallel
information processing within the visual subcompo-
nents ( Jordan et al., 2002). So far, the model proposed
by Jordan et al. (2002) is, however, merely a hypothetical
construct requiring empirical validation. The first aim of
the present study was therefore to investigate the
validity of the Jordan model in a female subject group
using structural equation modeling (SEM), and to ex-
amine changes in effective connectivity across different
levels of task difficulty.

Although there are several studies investigating con-
nectivity while the brain is ‘‘at rest’’ (Tian et al., 2006;

Beckmann, DeLuca, Devlin, & Smith, 2005), most previ-
ous publications examine brain connectivity in the pres-
ence of an experimental paradigm (Grady, Furey, Pietrini,
Horwitz, & Rapoport, 2001; Friston & Buchel, 2000). So
far, little is, however, known about the optimization of
experimental paradigms for connectivity analysis and the
influence of the chosen experimental designs on the
observed cortical interactions. In SEM, the strength of a
cortical interaction is indicated by a path coefficient
quantifying the average influence of one region of interest
(ROI) onto another in a given time interval (McIntosh
& Gonzalez-Lima, 1994). Despite the fact that path co-
efficients denote the degree of effective connectivity
between neuroanatomical nodes (Friston, Frith, Liddle,
& Frackowiak, 1993), ultimately, they still reflect the de-
gree of temporal coherences between two ROIs in the
presence of additional network nodes. One of the most
significant factors determining the degree of temporal
coherences between brain regions is the employed exper-
imental design. Different sets of path coefficients might
therefore be observed depending on how the overall time
course of the experiment is subdivided.

The second aim of this study was to address several
methodological issues regarding the choice of experi-
mental design for connectivity analysis in general, and
using SEM in particular. To investigate the effect of the
experimental design on the observed path coefficients
and to further explore the meaning of path coefficients,
SEM was combined with a time-resolved functional mag-
netic resonance imaging (fMRI) analysis, which has
been published previously (Ecker, Brammer, David, &
Williams, 2006). This way, the results on the network
level could be related to specific changes in temporal char-
acteristics of the hemodynamic response on the level of
individual network nodes.

Finally, we aim to examine whether a model with recip-
rocal or feedback connections is superior over the predom-
inantly serial model proposed by Jordan et al. (2002). This
finding could challenge traditional cognitive models de-
scribing the complex cognitive process underlying mental
rotation by a set of functionally distinct processing stages.

METHODS

General Model Assumptions and Hypotheses

In the present study, an event-related paradigm was
used to investigate changes in effective connectivity
across different levels of task difficulty within the rota-
tion network. This paradigm was optimized for connec-
tivity analysis using SEM in several respects.

Firstly, individual trials were separated by a compara-
tively long interstimulus interval (ISI), after which the
hemodynamic response function (HRF) should have
decayed to baseline (Kwong et al., 1992). Trials can
therefore be considered to be separate events allowing
subsequent concatenation of the condition-specific time

Figure 1. Schematic display of the neurocognitive network underlying
mental rotation proposed by Jordan et al. (2002). (A) The original

model was extended by including M1 as additional network node.

(B) The newly proposed rotation network with feedback connections.
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series. The concatenation of the condition-specific time
series is problematic in conventional event-related fMRI
paradigms, where short ISIs are used to minimize the
duration of the experiment. At short ISIs, however, the
hemodynamic responses (HRF) of individual events over-
lap, thus making it impossible to allocate signal intensity
values to specific conditions.

Secondly, to investigate the relationship between
the experimental paradigm and the obtained path co-
efficients, the overall time course of the experiment was
subdivided into temporally distinct subprocesses: (1)
time course of perceptional process as determined by
stimulus duration, (2) time course of the cognitive pro-
cess as identified by reaction times (RTs), and (3) time
course associated with motor execution at the end of
the cognitive process. As demonstrated by previous in-
vestigation, the temporal parameters of the HRF in spe-
cific neuroanatomical nodes of the rotation network can
be altered as a function of RTs. For instance, a study by
Richter et al. (2000) and Richter, Ugurbil, Georgopoulos,
and Kim (1997) has shown that the full width at half
maximum (FWHM) of the HRF increases significantly
with RTs in the premotor area, in the supplementary
motor cortex, and in the superior parietal lobe, thus
suggesting that these regions are likely to participate in
the mental spatial transformation itself. In addition, RTs
were positively correlated with the latency of the re-
sponse in the primary motor cortex, as would be ex-
pected if the functional activation observed in M1 was
related to the button press (Richter et al., 1997, 2000).
In regions that are linked to perceptual processes, the
temporal characteristics of the HRF should be constant
across conditions as long as the stimulus duration is the
same in all conditions (see Figure 2A).

The size and direction of change in interregional
connectivity following alterations in temporal character-
istics can be predicted using models of the HRF during
event-related stimulus presentation. These models were
generated on the basis of conventionally used gamma
functions and varied in amplitude, phase, and width.
Subsequently, changes in zero-order correlation coeffi-
cients (r) between the initial function and its temporal
variants can be identified for each parameter. As shown
in Figure 3, differences in signal amplitude did not lead
to any significant change in r. Alterations in width or
phase of the models decreased r considerably, especially
when the phase parameter was changed.

Figure 2 also illustrates the very definition of general
connectivity, which is defined as the temporal coher-
ence between physiological events (Friston et al., 1993).
It was thus expected that region-specific alterations in
the temporal parameters of the HRF would be accom-
panied by changes in effective connections on the net-
work level. More specifically, significant changes in
effective connections should only be seen in paths linking
a region whose FWHM varies with RTs, and a region
whose FWHM is constant across conditions. Path coeffi-

cients linking two regions whose FWHMs change in a
similar fashion (i.e., the FWHM of the HRF in both ROIs
varies with RTs, or is constant across conditions) should
not change with the level of task difficulty (see Figure 2B).

Subjects

Ten right-handed female volunteers between 20 and
30 years of age participated in this study. All participants
were in good general health and exhibited normal
eyesight. These subjects were reported previously in
Ecker et al. (2006). All subjects gave written informed
consent for the procedure in accordance with protocols
approved by the South London and Maudsley NHS Trust
Ethics Committee.

Experimental Design

Details of the experimental design and stimuli used in
this investigation can be found elsewhere (Ecker et al.,
2006). In brief, subjects viewed pairs of cubic structures
similar to those used by Shepard and Metzler (1971).
These structures included 10 different 3-D objects of
which half were mirror images (isomers) of existing fig-
ures. The object pairs were presented in four different
conditions according to the angular disparity: (1) 08 (2
identical objects at the same orientation), (2) 208, (3)
608, and (4) 1008 angular disparity. The 3-D objects in
each pair were either the same (same pair) or mirror
images (different pair). In the same pair presentation,
the two objects could be rotated into congruence with
each other. In different pair presentation, the two
objects differed by a reflection, as well as a rotation in
either x or z dimension and could not be rotated into
congruence. Subjects were asked to decide whether the
objects were the same or mirror images and to indicate
their choice via button press. Event-related fMRI with
constant stimulus duration (SD) and constant ISI was
used in this study. In all trials (20 per condition), the 3-D
objects were presented for a period of 10 sec, followed
by a fixation cross (baseline) (see Figure 3A). To keep
the SD constant, the objects did not disappear from the
screen after subjects indicated their choice by button
press. Instead, objects were presented for an additional
period of �t with �t = 10 sec � RT (sec). Subjects were
instructed to avoid repeated object rotation by focusing
their eye gaze on one of the presented objects. This ex-
perimental design was chosen in order to desynchronize
RT and SD by a time equal to �t. Individual trials were
separated by an ISI of 6 sec, after which the HRF should
have decayed to the baseline level (Kwong et al., 1992).

Data Acquisition

A 1.5-T GE Signa Neuro-optimized System (General
Electric, Milwaukee, WI, USA) was used to acquire 760
blood oxygenation level-dependent (BOLD) T2*-weighted
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MRI images using gradient-echo, echo-planar sequence
(TR = 2 sec, TE = 40 msec, theta = 808, in-plane
resolution = 3.75 mm, interslice gap = 0.5 mm). Each
functional image comprised 25 contiguous, 5-mm-thick
axial slices to cover the whole brain. In addition, an
inversion recovery EPI dataset was acquired at 43 near-
axial 3-mm-thick planes parallel to the AC–PC line: TE =
73 msec, TI (inversion time) = 180 msec, TR = 16 sec, in-
plane resolution = 1.72 mm, interslice gap = 0.3 mm.

Functional Activation Mapping

Data were first realigned and smoothed using a Gaussian
filter (FWHM = 7.2 mm). Neural responses to the
experimental design were determined by time-series
analysis using gamma variate functions (peak responses
at 4 and 8 sec) to give the best-fit (least-squares) model
of the time series of the BOLD response at each in-
tracerebral voxel. A goodness-of-fit statistic, the sum of

Figure 2. Hypothetical experimental design for the investigation of connectivity using time-resolved fMRI. (A) Expected HRFs in three
components (visual, cognitive, motor) of the rotation network at two levels of task difficulty. In the cognitive component, the FWHM increases

with RTs, whereas the FWHM of the visual component roughly corresponds to the stimulus duration (10 sec). In addition, there should be

a delayed onset of the HRF in the motor component. (B) Intraregional connectivity profiles resulting from the zero-order correlations between

the HRFs in both task conditions. Although there is no decay in correlation in the visual component, a decrease in the cognitive and in the
motor component is expected. (C) Interregional connectivity profiles resulting from the zero-order correlations between the HRFs in different

nodes of the network.

1006 Journal of Cognitive Neuroscience Volume 20, Number 6
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squares (SSQ) ratio, was then computed at each voxel.
This was the ratio of the sum of squares of deviations
from the mean intensity value due to the model (fitted
time series) divided by the sum of squares due to the
residuals (original time series minus model time series).
To sample the distribution of SSQ ratio under the null
hypothesis that observed values of SSQ ratio not deter-
mined by experimental design (with minimal assump-
tions), the time series at each voxel was permuted using
a wavelet-based resampling method (Bullmore et al.,
1999, 2001). Observed and randomized SSQ ratio maps
were transformed into the standard space of Talairach
and Tournoux (1988) as outlined in Brammer et al.
(1997). Prior to transformation, a Talairach target image
was computed by transforming 20 local structural im-
ages into standard space using explicit landmark identi-
fication. The fMRI data are then transformed onto the
template in two stages. Initially, the fMRI data are re-
scaled to the same voxel dimensions as the structural
image and then registered using a rigid body transfor-
mation. Subsequently, the transformed fMRI data are
registered to the template image using an affine trans-
form. Once these two transforms have been computed,
the SSQ ratio maps as well as the observed SSQ maps in

native space can be transformed into Talairach space by
subjecting them to the same transformation steps. A
group brain activation map was produced for each ex-
perimental condition by testing the median observed
SSQ ratio over all subjects (median values were used to
minimize outlier effects) at each voxel in standard space
against a critical value of the permutation distribution
for median SSQ ratio ascertained from the spatially trans-
formed wavelet-permuted data.

Time Series Extraction and Concatenation of the
Condition-specific Eigentimeseries

Subsequent to functional activation mapping, a set of
6 regional time series was extracted. This included the
five regions specified in the Jordan model (i.e., OC, ITp,
DE, PP, PMd), as well as the primary motor cortex. Be-
cause subjects performed the button press with their
right hand, significant functional activation in the primary
motor cortex was observed in the left hemisphere exclu-
sively. Therefore, the path analysis was restricted to ROIs
in the left hemisphere. Time series were extracted from
the motion-corrected images for individual subjects as
average signal intensities in a significantly activated cluster

Figure 3. Changes in the zero-order correlation coefficient between models of the HR during event-related design. Functions varying in phase

(A), amplitude (B), and width (C) were generated and the zero-order correlation coefficient between the initial model and each subsequent

function were calculated for each altered parameter. (D) The expected change in correlation coefficients as a function of differences in
amplitudes (red line), width (blue line), and phase shift (green line).
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of voxels in 3-D space. This was performed using an au-
tomated procedure, which identified the native {x, y, z}
coordinates corresponding to the significantly activated
voxels in the generic activation map.

Initially, each regional time series consisted of 760
data points collected across the whole experimental run.
The first and last 60 data points were acquired during
resting state and were disregarded. The remaining 640
data points consisted of volumes acquired during the
four experimental conditions. As demonstrated in Fig-
ure 3, the segments of signal corresponding to the pre-
sentation of each of the four activation conditions were
concatenated, resulting in a set of four task-specific or
within-task time series for each region (Honey et al., 2003;
Horwitz, Deiber, Ibanez, Sadato, & Hallett, 2000). For
each condition, 20 trials were presented at an ISI of 16 sec
(8 data points per trial at TR of 2 sec). Thus, each of the
four within-task time series consisted of 160 data points.
For each region i (i = 1, . . ., 6) and each condition j
( j = 1, . . ., 4), this raw data matrix was denoted as Xij

with the dimensions (n = 160 � p = 10), where n
denotes the number of data points per condition and p is
equal to the number of subjects. The columns of this
matrix were standardized to zero mean and unit variance.

In order to identify an average pattern of response, Xij

was subject to principal component analysis (Bullmore
et al., 2000; Buchel, Coull, & Friston, 1999; Fletcher,
Buchel, Josephs, Friston, & Dolan, 1999). Initially, singular
value decomposition was applied to Xij (X = U�WT) to
find r eigenvectors W(p�r) as well as their associated ei-
genvalues �(r�r). Multiplying W by ��1 resulted in the
matrix of factor score coefficients B(p�r). The matrix of
factor score coefficients F(n�r) containing the eigentime-
series of Xij was then computed as the product of Xij and
B. Only the first eigentimeseries of Xij was retained, which
constituted a single representative for the activation in a
particular region i and a specific condition j across sub-
jects. In the final step, a data matrix Dj, with the dimen-
sions (n � i), was computed for each condition j. The
covariance matrix Sj of Dj with Sj / Dj

TDj was the subject
to path analysis. Because time series were standardized, Sj

was equal to the correlation matrix. Details of the time-
resolved analysis can be found elsewhere (Ecker et al.,
2006). This analysis basically consisted of identifying the
FWHM of the HRFs in each region and rotation condition.
Subsequently, the FWHM was correlated with RTs.

Intraregional Functional Connectivity Profiles

In order to examine whether changes in temporal char-
acteristics of the HRF are reflected in zero-order corre-
lation coefficients, interregional connectivity profiles
were created. These connectivity profiles indicate how
much the temporal parameters of the HRF within a par-
ticular region changes with the level of task difficulty.
The basic idea behind this approach is summarized in
Figure 3. The intraregional connectivity profiles across

experimental conditions were created in the following
manner. For each ROI, the HR (extracted from the first
eigentimeseries) during 08 rotation was correlated with
the hemodynamic response in the 208, 608, and 1008 rota-
tion condition, for instance, r(HRFcond 08, HRFcond 208),
r(HRFcond 08, HRFcond 608), r(HRFcond 08, HRFcond 1008).
Subsequently, the decrease in the zero-order correlation
coefficient between the HRF during 208 and 1008 rotation
conditions was calculated for each ROI and the resulting
data were sorted in a descending order. Ultimately, no
decay in zero-order correlation indicates that the tempo-
ral parameters of the HRF in a particular region do not
change with the level of task difficulty. ROIs might
therefore be allocated to clusters depending on the decay
in correlation coefficient across rotation conditions.

Structural Equation Modeling

Specification of the Neuroanatomical Model and
Estimation of Residual Variances

Three neuroanatomical models were investigated in this
investigation: (1) the neuroanatomical model employed
postulated for female subjects by Jordan et al. (2002), (2)
an extended version of Jordan’s original model, and (3)
a model with feed-backward connections. This extended
network included activation in M1 as an additional ROI,
which was assumed to receive input from the PMd. The
path diagram of the extended Jordan model is shown in
Figure 1A. The model comprises five endogenous ROIs
(i.e., ROIs receiving afferent input), one exogenous ROI
(i.e., ROI with efferent connections exclusively), five
effective connections (i.e., direct paths), and one covari-
ance. The structural equations underlying the path
diagram in Figure 1A can be formalized as:

yð5�1Þ ¼ Bð5�5Þ yð5�1Þ þ �ð5�1Þ xð1�1Þ þ zð5�1Þ;

where y is a vector of the endogenous ROIs, x is a vector
of the exogenous ROIs, B is a matrix of path coefficients
for endogenous ROIs, � contains path coefficients for
exogenous ROIs, and z is a vector of errors. This
equation can be rewritten to:

ITp

DE

PP

PMd

M1

2
6666666666664

3
7777777777775

¼

0 0 0 0 0

0 0 0 0 0

0 b32 0 0 0

0 0 b43 0 0

0 0 0 b54 0

2
6666666666664

3
7777777777775

ITp

DE

PP

PMd

M1

2
6666666666664

3
7777777777775

þ

g1

g2

0

0

0

2
6666666666664

3
7777777777775

½IOC	 þ

z1

z2

z3

z4

z5

2
6666666666664

3
7777777777775

:

Two additional matrices were specified. The first one is
the covariance matrix of x conventionally denoted as
�(p�p) with � = E(xxT). Because the model contained
only one exogenous variable, � contained a single
element, w11, which is the variance of IOC. The second
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one is the matrix of the residuals for each endogenous
variable conventionally denoted as �(q � q) with � =
(zzT). The residual variances of each ROI receiving
hypothesized projections were estimated a priori. In-
stead of fixing the residual variances at an arbitrary value,
these were estimated by the ratio between the first
eigenvalue and the sum of eigenvalues (Bullmore et al.,
2000) with

ci ¼ 1 � l2
1

Pm
j¼1

l2
j

:

Because eigentimeseries were standardized variables
with unit variance, the sum of the eigenvalues equals
the number of ROIs in the model. Apart from the re-
sidual variances in each ROI, the model postulates cor-
related residuals between ITP and DE, indicated by a
two-headed arrow. The elements c12 and c21 of � are
therefore nonzero and equal, whereas all other non-
diagonal elements of � were zero. � was formalized as:

� ¼


�11 �12 0 0

�21

�22 0 0

0 0 
�33 0

0 0 0 
�44

2
666666664

3
777777775
:

The residual variances that were estimated using princi-
pal component analysis are marked with an asterisk.

The model with feedback connections included a
backward connection from the PMd to PP, and connec-
tions from the PP to DE and ITp. This model is displayed
in Figure 1B.

Assessment of Normality

Most commonly used fitting functions in SEM (e.g., FML,
FGLS) derive from the assumption of a multinormal dis-
tribution of the observed variables, although FML and
FGLS are generally also justified when the distribution of
the observed variables has no excess kurtosis. Prior to
parameter estimation, indicator variables were therefore
tested for multivariate normality, which was assessed on
the basis of the critical ratio (CR) for the kurtosis and
skewness of each indicator variable. The kurtosis of all
variables exhibited a CR larger than +2.0 or smaller than
�2.0, thus indicating approximate normal distribution.
In addition, Mardia’s measure of multivariate kurtosis
(Mardia, 1974) was inspected with a CR exceeding a
value of 1.96, indicating severe nonnormality. Marida’s
coefficient for the included observed variables was with-
in generally accepted limits and multinormal could be
established. Maximum likelihood estimation (FML) was

therefore justified and employed for model fitting. Be-
cause the below specified models were subsequently
fitted for each condition separately, normality assess-
ment was carried out for each condition-specific, con-
catenated eigentimeseries. The normality assessment
was carried out using AMOS 5.0.1.

Model Identification

The identified parameters in a path model are the el-
ements of �, which denotes the population covariance
matrix of y and x. A covariance matrix for p variables has
(1/2)p( p + 1) nonredundant elements. The extended
Jordan model thus consisted of 21 known parameters
and 15 free parameters for the original model. The pa-
rameters whose identification status is unknown are in
u, which u contains the t free and (nonredundant) con-
strained parameters of B, �, � and �. As indicated
above, there were three free parameters in B and two
parameters in �. Additionally, there was one free resid-
ual variance c21 and the covariance of IOC, w11. The total
number of free, nonredundant parameters in u was 7.
Thus, the number of estimable parameters in the model
was smaller than the number of data points and the
model was overidentified. The so-called t-rule, which
offers a necessary but not sufficient condition of identi-
fication was thus satisfied with:

t � ð1=2Þðp þ qÞðp þ q þ 1Þ

with 7 � 15 being true:

Estimation of Structural Parameters and Model Fitting

The unknown parameters in B, �, �, and � were
estimated so that the predicted covariance matrix indi-
cated by the model (i.e., �) was close to the sample
covariance matrix S. � is obtained by substituting esti-
mates of q, q, in �(q) so that � ¼ �ðqÞ. In order to
reduce the discrepancy between each element in � and
that in S, a fitting function F(S, �(q)) was minimized in
an iterative fashion using a maximum-likelihood (ML)
fitting approach. The asymptotic distribution of the FML

estimators multiplied by (N � 1), is an approximation of
a x

2 distribution with 0.5( p + q)( p + q + 1) � t degrees
of freedom. Here, N equals the sample size, t is the
number of free parameters, and FML is the value of the
fitting function evaluated at the final estimates. Under
the null hypothesis of H0: � = �(q), the x

2 parameter
provides a goodness-of-fit index of the overall model.

Assessment of Model Fit and Model Comparison

The overall goodness of each model was assessed using
multiple fit indices commonly used in SEM. The adjusted
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goodness of fit index (AGFI) was examined to identify
the absolute model fit requiring values of > .9 to denote
acceptable model fits (Bentler & Bonett, 1980). The root
mean square error of approximation (RMSEA) (Steiger,
1990) was used to assess the discrepancies between
the observed and implied variance–covariance matrix. In
general, RMSEAs smaller than .05 indicate a close approx-
imation fit, values between .05 and .08 suggest a reason-
able approximation fit, and values larger than .1 denote a
poor fit (Kline, 1998). Finally, two comparative fit indices—
the comparative fit index (CFI) and the normed fit index
(NFI) (Bentler & Bonett, 1980)—were used to compare
the performance of the specified models to the perfor-
mance of a baseline (null or independence) model. Here,
values > .9 were considered to be consistent with a good
model fit (Bentler & Bonett, 1980).

To examine changes in effective connections across
different levels of task difficulties, several alternative
models were compared. The variant and invariant direct
paths in the extended Jordan model were identified
using the nested or stacked model approach (McIntosh
& Gonzalez-Lima, 1994). Initially, a model in which all
path coefficients were constrained to be equal across the
08 and 1008 rotation condition (null model) was com-
pared with a model in which all coefficients were al-
lowed to differ between conditions (alternative model).
If the model with variable paths indicated a significant
improvement in model fit, further analysis was carried
out to determine the specific effective connections vary-
ing significantly across conditions. In order to accom-
plish this, the null model was compared with a model in
which a particular path was allowed to vary across con-
ditions. If the fit index of this model improved signifi-
cantly ( p(�x

2) < 0.05) in comparison to the null model,
it was concluded that this particular path varied between

the 08 and 1008 rotation condition. This procedure was
carried out repeatedly by allowing a different path co-
efficient to vary across conditions. In the stacked-model
analysis, the residual influences were estimated. Their
path coefficients, however, were constrained to be unity
in order to reduce the number of estimated parameters
(McIntosh & Gonzalez-Lima, 1994). The variance estimates
resulting from the initial 08 rotation were kept constant
in the 1008 rotation condition. Finally, the model with
feedback connections was compared with the extended
serial model.

RESULTS

Functional Activations in ROIs and Results of the
Time-resolved fMRI Analysis

The main foci of significant brain activation for the fe-
male subject group and a full description of the time-
resolved fMRI analysis results can be found elsewhere
(Ecker et al., 2006). Significant functional activation was
observed in all ROIs specified by the Jordan model.
These included (1) several areas of the visual system
such as early visual areas in the occipital lobe (OC or BA
17/18), dorsal extrastriate visual areas (DE) correspond-
ing to BA 19/39, and activation in the posterior inferior
temporal lobe (ITp or BA 19/37); (2) regions of the mo-
tor system such as the dorsal premotor cortex (PMd or
lateral BA 6) and the primary motor cortex (M1or BA 4);
and (3) activation in the parietal lobe including supe-
rior and inferior regions (BA 39/40/7). Talairach coordi-
nates and statistical test parameters for these ROIs are
listed in Table 1.

Furthermore, we have previously demonstrated that
the temporal characteristics of the HRF in visual regions

Table 1. Main Foci of Group Brain Activation for 10 Female Subjects during Performance of the Mental Rotation Task

Region Definition Hemisphere Tal (x, y, z) SSQ Ratio p Effect Size (%)

M1 L �36, �22, 48 0.025 3 � 10�6 –

PMd-proper R 32, �11, 48 0.018 3 � 10�6 0.192

PMd-proper L �22, �11, 48 0.025 3 � 10�6 0.218

OC M �11, �67, �2 0.018 3 � 10�6 0.247

ITp R 43, �59, �13 0.037 3 � 10�6 0.273

ITp L �40, �70, �7 0.015 2 � 10�5 0.296

DE L �22, �70, 20 0.036 3 � 10�6 0.279

DE R 29, �63, 20 0.019 3 � 10�6 0.252

Parietal ROI L �22, �63, 31 0.015 2.6 � 10�5 0.197

Parietal ROI R 29, �56, 31 0.012 1.4 � 10�4 0.219

Contrast indicates the contrast map with the largest fit indices for a particular ROI.

L = left; R = right; M = medial; M1 = primary motor cortex; PMd = premotor cortex; ITp = posterior inferior temporal lobe; DE = dorsal extrastriate
visual areas; OC = occipital cortex.
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do not change significantly across levels of task difficulty
(Ecker et al., 2006). Instead, HRFs were constantly
elevated for a time roughly equal to the stimulus dura-
tion (�9 ± 1 sec). These findings lead us to the con-
clusion that visual regions do not actively participate in
the mental spatial transformation but rather represent
processes involved in visual perception. The FWHM in
the left parietal ROI and in the left PMd-proper, however,
did increase with RTs, thus suggesting that these regions
are involved in the rotational process itself. There was no
significant change of the FWHM with RTs in the primary
motor cortex. Here, the mean FWHM across all four ro-
tation conditions was 4.74 sec. The results of the time-
resolved analysis for the selected ROIs are listed in Table 2.

Intraregional Functional Connectivity Profiles
across Experimental Conditions

The interregional connectivity profiles for the selected
ROIs are displayed in Figure 4. Overall, the observed
profiles behave in a similar fashion as the expected pro-
files in Figure 2. The slope of these profiles indicates
how much the temporal characteristics of the HRF dur-
ing 208, 608, and 1008 rotation change in comparison to
the 08 rotation. As can be seen in Figure 5, the intrare-
gional functional connectivity could indeed be manipu-
lated by alternating angular disparities. As would be
expected on the basis of the time-resolved analysis, the
decay in intraregional connectivity was largest in the
parietal ROI, in the PMd, and in M1. In the parietal ROI,
the correlation coefficient decreased from .872 correlat-
ing 08 with 208 rotation to .668 correlating 08 with 1008
rotation (�r = .204). These findings imply that either
width or latency of the response in these regions
changes with the level of task difficulty. As can be further

seen in Figure 5, the decrease in correlation was minimal
in regions of the visual system (i.e., ITp and DE). The
decrease was at its lowest in the ITp when the correla-
tion dropped from .948 comparing 08 with 208 rotation,
to .918 correlation 08 with 1008 rotation (�r = .03). One
can therefore conclude that the processing load mini-
mally affects the temporal characteristics of the HRF in
the ITp and DE, which further suggests that these
regions do not actively participate in the computation
of the mental transformation, which has been proposed
previously (Ecker et al., 2006).

Absolute Fit of the Jordan Model and the Extended
Jordan Model

Initially, the hypothesized models were fitted separately
for each level of task difficulty in order to assess the ab-
solute model goodness. The input matrices to the path
analysis were the covariance matrices of the concatenat-
ed first eigentimeseries for ROIs in the left hemisphere,
which are listed in Table 3. All interregional correlation
coefficients were significant on p < .05, thus indicating a
high degree of functional connectivity among the select-
ed ROIs. Table 3 further shows the residual variances for
each ROI that were estimated on the basis of the
principal component analysis.

The estimated path coefficients as well as the abso-
lute fit indices for the Jordan model and the extended
Jordan model are summarized in Tables 4 and 5. Over-
all, both networks did not provide an adequate fit to
the observed interregional correlation matrix although all
path coefficients were highly significant at p < .01. In all
rotation conditions, the x

2 parameters were significant
at a type I error probability of 5%, thus suggesting a
significant discrepancy between the correlation matrix

Table 2. Correlations between Subject’s Reaction Time Measures and Parameters of the Hemodynamic Response in ROIs during
Performance of the Mental Rotation Task

Amplitudes FWHM

Region Definition Hemisphere Correlation with RTs p Correlation with RTs p

M1 L �.129 < .5 .226 < .2

PMd-proper R .378 < .1 .559* < .01

PMd-proper L .365 < .1 .487* < .05

OC M �.221 < .3 �.04 < .9

ITp L .22 < .3 .139 < .5

ITp R – – – –

DE L .217 < .3 .03 < .9

DE R .117 < .7 �.125 < .7

Parietal ROI L .526* < .01 .399* .05

Parietal ROI R .301 < .2 .196 < .5

*Significant correlations ( p < .05).
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predicted by the model and the population correlation
matrix. In the Jordan model, this discrepancy was largest
in the 1008 rotation condition (x2(9) = 83.68, p < .001)
and lowest in the 208 rotation condition (x2(9) = 59.37,
p < .001). In the 608 rotation condition, the correlation
matrix was not positive definite and path coefficients
could not be estimated. Large discrepancies between the
model and the observed data were also indicated by the
RMSEA, which should be below .1 to indicate a good fit
to the data (Steiger, 1990). In this study, however, all
RMSEAs were larger than .18, which was the RMSEA
observed at 208 angular disparity. In addition, all remain-
ing fit indices converge in suggesting a general lack of
fit. Similar results were found in the extended Jordan
model. Here, the x

2 parameter was also lowest in the 208
condition (x2(14) = 88.36, p < .001) and highest in the
1008 rotation condition (x2(14) = 95.55, p < .001). The
lowest RMSEA was observed in the 208 (RMSEA = 0.18),
indicating a ‘‘poor fit’’ (Kline, 1998).

Changes in Effective Connections across Levels of
Task Difficulty

To ascertain whether the level of task demand induces
changes in connectivity within the neurocognitive net-
work underlying mental rotation, the effective connec-
tions specified by the extended Jordan model were
examined during the lowest and highest levels of task
difficulty (i.e., 08 and 1008 rotation). Initially, a model in
which all path coefficients were constrained to be equal
across the 08 and 1008 rotation condition was compared
with a model in which all paths were allowed to vary
across conditions. As shown in Table 6, the nested model

Figure 4. Intraregional

functional connectivity profiles

across experimental conditions

resulting from the HRF
extracted from the first

eigentimeseries. (A) Zero-

order Pearson correlation
coefficients between the HRF

in the 08 rotation condition

and the HRF in each of the

subsequent conditions for the
selected ROIs. (B) Decrease in

correlation across conditions

for each ROI sorted in

descending order. The largest
decrease was observed in ROIs

whose FWHM of the HRF

increase with RTs (e.g., PP,
PMd). The slope of the profile

was smallest in ROIs whose

temporal parameters of the

HRF were constant across
conditions (e.g., DE, ITp).

Figure 5. (A) Display and timings of individual events. In all condition

stimuli were presented for 10 sec, followed by 6 sec fixation cross,
after which the hemodynamic response (HRF) should have decayed to

baseline level. Because there is no overlap between HRFs, a condition-

specific time series representing signal intensities acquired during a

particular trial condition exclusively can be concatenated (B).
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analysis revealed that the model with variant paths pro-
vided a significant improvement in model fit as compared
to the model with invariant paths (�x

2(6) = 38.15,
p < .001). This result demonstrates that the level of task
difficulty induces changes in interregional connections over-
all. To further examine which paths change significantly
across conditions, a model in which a specific path was
allowed to vary was compared to the model with in-
variant paths. Only two out of the five path coefficients
changed significantly across conditions: (1) the path
coefficient between DE and PP increased significantly
by 0.16 from 08 rotation to 1008 rotation (�x

2(1) = 4.26,
p < .01); (2) the path coefficient between PMd and M1
decreased significantly by 0.31 from 08 rotation to 1008
rotation (�x

2(1) = 14.29, p < .01). All other path co-
efficients were constant across conditions.

Comparison of the Serial Models with the
Parallel Model

The final part of the analysis aimed to compare the serial
networks with the feed-backward network displayed in
Figure 1B. The estimated path coefficients and the
absolute fit indices of this model are summarized in
Table 7. Interestingly, the feed-backward model provid-
ed a better fit than the serial models during 208 and 1008
rotation, but not in the 08 rotation condition. During 08
rotation, the parallel model fitted significantly worse
than the Jordan model (�x

2 = 61.14, p < .001) and
the extended model (�x

2 = 10.7, p < .01). During 208,
the parallel model improved the goodness of fit as
compared to the Jordan model (�x

2 = 3.43, p < .2)
and the extended Jordan model (�x

2 = 32.41, p < .001).
In the 1008 rotation condition, the parallel model im-
proved the goodness of fit as compared to the Jordan
model by �x

2 = 8.35 ( p < .01) and by �x
2 = 20.22 ( p <

.001) as compared to the extended model. The improve-
ment of fit, hence, seems to be rotation specific as it was
not observed in the control conditions providing further
evidence for the hypothesis that mental rotation requires
parallel rather than serial information processing.

DISCUSSION

The main aim of this study was to investigate the validity
of the sequentially organized rotation network originally
proposed by Jordan et al. (2002), and to examine changes
in effective connections across different levels of task dif-
ficulty. Path analysis was combined with a time-resolved
fMRI analysis to relate the results on the network level to
specific changes in the temporal characteristics of the
HRF on the level of individual network nodes. Finally, we
have shown that a model with feedback connections pro-
vided a significantly better fit than the sequential models.

It was firstly demonstrated that the proposed mod-
el did not provide an adequate fit to the data overall,

Table 3. Variance–Covariance Matrix of the Concatenated
First Eigentimeseries for ROIs in the Left Hemisphere
(n = 160)

M1 PMd DE PP ITp OC

08

M1 1.00

PMd .823* 1.00

DE .687* .668* 1.00

PP .755* .818* .694* 1.00

ITp .691* .674* .746* .705* 1.00

OC .646* .584* .529* .525* .500* 1.00

c .634 .732 .783 .766 .769 .821

208

M1 1.00

PMd .684* 1.00

DE .653* .721* 1.00

PP .622* .755* .850* 1.00

ITp .554* .645* .760* .712* 1.00

OC .487* .297* .229* .231* .291* 1.00

c .740 .741 .752 .737 .759 .851

608

M1 1.00

PMd .715* 1.00

DE .704* .841* 1.00

PP .701* .845* .853* 1.00

ITp .693* .837* .861* .829* 1.00

OC .378* .447* .386* .320* .354* 1.00

c .791 .689 .711 .698 .696 .833

1008

M1 1.00

PMd .609* 1.00

DE .610* .851* 1.00

PP .599* .829* .854* 1.00

ITp .569* .813* .869* .848* 1.00

OC .499* .556* .584* .496* .540* 1.00

c .824 .714 .695 .676 .702 .833

(m) = medial, c = residual variance.

*Correlation is significant at the .01 level (two-tailed).
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despite reproducing the interregional covariance ma-
trix significantly better than the independence model
or null model. This suggests that although all nodes
within the network interact during task performance to
a high degree, the causal structure of the model does
not adequately represent the cortical interactions within
the rotation network. The Jordan model is essentially a
feed-forward model in which sequential information
processing prevails. It therefore conforms to traditional
cognitive models describing the complex cognitive pro-
cess underlying mental rotation by a set of functionally
distinct processing stages. These include (1) perceptual
encoding, (2) identification/discrimination of the pres-
ented object and its orientation, (3) mental rotation it-
self, (4) judgment of parity, (5) response selection, and
(6) response execution. These stages are assumed to be
organized sequentially with discrete transmission of in-
formation from one stage to the next, mainly because RTs
increase linearly with the degree of angular disparity
(Corballis, 1988; Shepard & Cooper, 1982). The lack of
fit of the Jordan model thus challenges the feed-forward
sequential nature of the cognitive process underlying
mental rotation. Instead, it seems to point toward more
recent cognitive theories suggesting that certain sub-
processes occur in parallel with the mental rotation stage
(Farah, 1995; Kosslyn, Maljkovic, Hamilton, Horwitz, &
Thompson, 1995). There is also some empirical evidence

coming from psychological studies and EEG studies that
consecutive stages do, indeed, overlap (Heil, Rauch, &
Hennighausen, 1998; Ruthruff & Miller, 1995).

Indirect evidence for parallel processing within the
network can also be found by means of the variance–
covariance matrix. In a discrete or serial network, one
network component transmits its output in a single dis-
tinct message to the subsequent state. Assuming that Re-
gion A projects to Region C via Region B (i.e., A ! B !
C), there should be a partial overlap between A and B, as
well as between B and C. Little or no overlap on the
other hand would be expected between A and C. On the
basis of the models in Figure 3, the expected correlation
coefficient following an increase in RT of approx. 3 sec
from 1.7 sec at 08 to 4.7 sec at 1008 rotation (Ecker et al.,
2006) is approximately 0.4. In the serial Jordan model,
DE is hypothesized to project to PP which, in turn, proj-
ects to PMd. From a theoretical perspective, one would
thus expect a correlation coefficient < .4 between these
regions. The correlation matrix, however, indicates that
the interregional correlations between these regions
were highly significant in all conditions with the lowest
coefficient of r(DE, PP) = .694 at 08 and r(PP,PMd) = .755 at
208 rotation. It is therefore unlikely that the rotation net-
work operates in a strictly serial fashion.

A second reason for the general lack of model fit
might be that the postulated model is incomplete in

Table 4. Estimated (Un)standardized Path Coefficients for the Neuroanatomical Network Underlying MR as Suggested by
Jordan et al. (2002)

08 208 608 1008

b � t b � t b � t b � t

Path Connections

OC ! DE 0.53 0.51 7.51* 0.23 0.26 3.32* 0.50 0.51 7.48*

OC ! ITp 0.50 0.50 7.17* 0.29 0.32 4.20* 0.54 0.54 8.10*

DE ! PP 0.69 0.63 10.28* 0.85 0.55 11.16* 0.85 0.69 11.88*

PP ! PMd 0.82 0.73 13.58* 0.75 0.71 12.55* 0.83 0.74 13.84*

DE $ ITp 0.52 0.50 18.32* 0.53 0.64 20.97* 0.57 0.59 39.26*

Fit Indices

x
2 (df = 9) 59.53 59.37 n/a 83.68

RMSEA .19 .188 n/a .229

AGFI .68 .71 n/a .520

CFI .85 .83 n/a .76

NFI .84 .82 n/a .76

PGFI .48 .50 n/a .43

b = unstandardized path coefficient; b = standardized path coefficient; t = statistical test parameter associated with each path coefficient; RMSEA = root
mean squared error of approximation (Steiger, 1990); AGFI = adjusted goodness-of-fit index; CFI = comparative fit index (Bentler, 1980); NFI = normed
fit index (Bentler & Bonett, 1980); PGFI = parsimony goodness-of-fit index (James, Mulaik, & Brett, 1982); n/a = correlation matrix not positive definite.

*Significant at p < .01.
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terms of the included network components. Apart from
the ROIs suggested by Jordan et al. (2002), several other
regions have repeatedly been found to be activated by
rotation paradigms. These mainly include additional
motor regions such as the supplementary motor area
or SMA-proper, the head of the caudate nucleus in the
basal ganglia, as well as the ventral premotor cortex or
PMv (Vingerhoets et al., 2002; Alivisatos & Petrides, 1997;
Parsons et al., 1995). In addition, several studies have
reported activation in the lateral occipital sulcus or LOS

(Shendan & Stern 2007; Gauthier, Hayward, & Tarr,
2002; Goebel, Linden, Lanfermann, Zanella, & Singer,
1998), in the ventrolateral prefrontal cortex, and in the
parahippocampal place area (Shendan & Stern 2007).
There is also evidence that the parietal cortex might be
further parcellated into functionally different subdivi-
sions (Podzebenko, Egan, & Watson, 2002).

The (in)exclusion of particular nodes naturally changes
the specification of effective connections within the
network. For instance, according to the Jordan model,

Table 6. Variant and Invariant Path Connections in the Extended Jordan Model

Path Coefficient

Path Connection 08 1008 x
2 Invariant (df = 29) x

2 Variant (df = 28) �x
2 (df = 1)

OC ! DE 0.53 0.50 252.09 252.68 0.59

OC ! ITp 0.50 0.54 252.09 252.69 �0.6

DE ! PP 0.69 0.85 252.09 247.83 4.26*

PP ! PMd 0.82 0.83 252.09 251.92 0.17

PMd ! M1 0.92 0.61 252.09 237.80 14.29*

x
2 (in)variant = absolute fit index for the model with (in)variant path coefficients; �x

2 = difference in absolute fit between the variant and invariant
model.

*Significant at p < .01.

Table 5. Estimated (Un)standardized Path Coefficients for the Neuroanatomical Network Underlying MR as Suggested by the
Extended Jordan Model

08 208 608 1008

b � t b � t b � t b � t

Path Connections

OC ! DE 0.53 0.51 7.51* 0.23 0.26 3.32* 0.50 0.51 7.48*

OC ! ITp 0.50 0.50 7.17* 0.29 0.32 4.20* 0.54 0.54 8.10*

DE ! PP 0.69 0.63 10.28* 0.85 0.55 11.16* 0.85 0.69 11.88*

PP ! PMd 0.82 0.73 13.58* 0.75 0.71 12.55* 0.83 0.74 13.84*

DE $ ITp 0.52 0.50 18.32* 0.53 0.64 20.97* 0.57 0.59 39.26*

PMd ! M1 0.92 0.83 18.36* 0.68 0.70 12.21* 0.61 0.67 11.39*

Fit Indices

x
2 (df = 14) 109.97 88.36 n/a 95.55

RMSEA .21 .18 n/a .19

AGFI .48 .67 n/a .58

CFI .79 .83 n/a .80

NFI .78 .81 n/a .79

PGFI .43 .52 n/a .48

b = unstandardized path coefficient; b = standardized path coefficient; t = statistical test parameter associated with each path coefficient; RMSEA =
root mean squared error of approximation (Steiger, 1990); AGFI = adjusted goodness-of-fit index; CFI = comparative fit index (Bentler, 1980); NFI =
normed fit index (Bentler & Bonett, 1980); PGFI = parsimony goodness-of-fit index ( James et al., 1982); n/a = correlation matrix not positive definite.

*Significant at p < .01.
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the posterior parietal cortex projects exclusively to
the PMd and receives a projection from dorsal extra-
striate visual areas. The posterior and inferior parietal
cortex, however, receive projections from multiple sen-
sory regions (i.e., visual, motor, and auditory) (Sakata
& Kusunoki, 1992). Also, the Jordan model places
particular emphasis on the parieto-occipital rather than
the temporo-occipital pathway. The ventral processing
stream might, however, play a major role in closing the
stream of information processing from the visual system
to the frontal premotor regions. From the ITp, informa-
tion is transmitted to the temporal pole, which contains
feed-forward connections to the frontal/prefrontal lobe,
which, in turn, is extensively interconnected with the pre-
SMA and the PMv (reviewed by Picard & Strick, 2001).
In addition, the PMv is connected with the posterior–
parietal lobe (Matelli, Luppino, & Rizzolatti, 1991).

A recent study by Shendan and Stern (2007) has also
demonstrated a direct link between mental rotation and
visual object categorization. Both processes seem to share
a common network of prefrontal, dorsal, and ventral re-

gions of the posterior cortex, highlighting the general role
of these regions in object cognition. Interestingly, there is
evidence coming from ERP studies that the process of
visual object categorization itself involves interactive, re-
current, and feedback processing in occipital and ventral
temporal cortical regions (Shendan & Kutas, 2007). It has
been suggested that object categorization requires three
different stages: (1) early perceptual grouping indicated
by P200, (2) matching the organized percept to stored
visual knowledge reflected by N350, and (3) selection of
a response between 500 and 850 msec. The matching
phase (N350), which is an essential part of mental rota-
tion, naturally requires reciprocal processing between
memory contents and percepts.

Notably, the study by Shendan and Stern (2007) also
highlights the importance of controlling for eye move-
ments in order to dissociate the PMd from the frontal
eye fields. In the present study, a pure eye-movement
condition was not directly compared with the rotation
conditions, and Talairach coordinates were used to iden-
tify individual regions. The Talairach coordinates re-

Table 7. Estimated (Un)standardized Path Coefficients for the Neuroanatomical Network with Feed-backwards Connections
(see Figure 1B)

08 208 608 1008

b � t b � t b � t b � t

Path Connections

OC ! DE �0.03 �0.02 �.37 0.19 0.18 2.68* 0.46 0.45 6.51*

OC ! ITp 0.02 0.02 0.27 0.23 0.22 3.34* 0.45 0.42 6.29*

DE ! PP �0.62 �0.67 �7.98* 1.25 1.28 12.47* 1.76 1.85 15.49*

PP ! ITp 0.92 0.84 12.88* 0.24 0.23 3.36* 0.18 0.16 2.57*

PP ! DE 1.06 0.98 14.96* 0.18 0.18 2.85* 0.08 0.07 1.17*

PP ! PMd 0.24 0.23 3.59* 1.09 0.99 16.00* 1.24 1.07 17.19*

DE $ ITp 0.50 0.42 15.55* 0.50 0.46 15.85* 0.56 0.51 33.37*

PMd ! PP 1.10 1.14 10.94* �0.68 �.74 �8.58* �1.10 �1.27 �11.66*

PMd ! M1 0.92 0.77 15.05* 0.68 0.66 11.03* 0.61 0.60 9.36*

Fit Indices

x
2 (df = 11) 120.67 55.95 n/a 75.33

RMSEA .25 .00 n/a .19

AGFI .43 .74 n/a .67

CFI .80 .91 n/a .92

NFI .79 .90 n/a .91

PGFI .37 .45 n/a .43

b = unstandardized path coefficient; b = standardized path coefficient; t = statistical test parameter associated with each path coefficient; RMSEA =
root mean squared error of approximation (Steiger, 1990); AGFI = adjusted goodness-of-fit index; CFI = comparative fit index (Benter, 1980); NFI =
normed fit index (Bentler & Bonett, 1980); PGFI = parsimony goodness-of-fit index ( James et al., 1982); n/a = correlation matrix not positive
definite.

*Significant at p < .01.

1016 Journal of Cognitive Neuroscience Volume 20, Number 6

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
0
/
6
/
1
0
0
3
/
1
7
5
9
5
3
8
/
j
o
c
n
.
2
0
0
8
.
2
0
0
6
3
.
p
d
f
 
b
y
 
g
u
e
s
t
 
o
n
 
1
8
 
M
a
y
 
2
0
2
1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/20/6/1003/1936954/jocn.2008.20063.pdf by guest on 17 O
ctober 2021



ported for the PMd in our article were also very similar
(32 �11 48; �22 �11 48) to the coordinates reported by
Jordan et al. (2002). The coordinates for the PMd given
by Jordan et al. in MNI space were, on average, 28, �4,
56, which corresponds to the Talairach coordinates 23.8,
�7, 48.6. However, as both regions are so close together
that Talairach coordinates alone might not be specific
enough to dissociate the PMd from the frontal eye fields,
particular care should be taken in future research to dis-
sociate these regions functionally.

It was further demonstrated, on the basis of an ex-
tended version of the Jordan model, that the inter-
regional connectivity changes with the level of task
difficulty. This implies that not all nodes of the network
are functionally homogeneous but exhibit a differential
functional involvement during task performance. Prior
to the investigation of changes in effective connectivity
across levels of task difficulty, a time-resolved fMRI anal-
ysis was carried out. This allowed us to identify changes
in specific temporal characteristics of the HRF on the
level of individual neuroanatomical nodes and to relate
these alterations to the employed experimental design.
It was found that the observed changes in connectivity
on the network level were directly related to the results
of the time-resolved fMRI analysis. No significant change
in connectivity was observed within the visual compo-
nents of the rotation network (i.e., OC, ITp, DE). The
hemodynamic response in these regions is therefore ei-
ther constant across conditions or changes with the level
of task difficulty in a temporally coherent fashion. Time-
resolved analysis has, however, shown that neither am-
plitude nor FWHM of the HRF in visual ROIs is correlated
with RT measures. The analysis on the network level, as
well as on the level of the individual network nodes, there-
fore converge in suggesting that the level of task difficulty
does not affect the functional activation in visual regions.
Instead, the results support previous statements suggest-
ing that visual system activation during mental rotation
reflects visual perception and can be dissociated from
other network components whose response character-
istics indicate an involvement in the mental spatial trans-
formation itself (Ecker et al., 2006; Carpenter et al., 1999).
No significant change in effective connection was also
observed in the forward connection from the parietal ROI
to the PMd, which is also in agreement with the time-
resolved analysis. Although the HRF in visual regions did
not change with RTs, there was a significant increase in
FWHM in both the PMd and the parietal ROI. If the width
of the HRF in both regions increases at about the same
rate, no significant change in path coefficient should be
observed. It therefore seems that the parietal ROI and the
PMd are functionally coupled during task performance
and the fMRI time series changes with the level of task
difficulty in a similar fashion. In addition, the time course
of activation in the PMd and PP can be dissociated from
activation in the visual system as well as in the M1. This
offers further support for the hypothesis that activation

in these regions is directly linked to the time course re-
quired for the computation of the spatial coordinates and
that these regions are thus most likely to participate in
the rotational process itself (Richter et al., 2000).

A significant change in connection strength from 08 to
1008 rotation was observed in two connections exclu-
sively: (1) the forward projection linking the DE with the
PP, and (2) the path from the PMd to M1. As would be
predicted on the basis of the time-resolved analysis, the
path from DE to the PP increased significantly with the
degree of angular rotation, whereas a significant decrease
in path coefficient was seen in the projection from the
PMd to M1. In the DE, the HRF was constantly elevated
for 8.8 ± 1.4 sec in all rotation conditions. In the parietal
ROI, however, the FWHM increased significantly with
the degree of angular disparity. A significant increase in
correlation coefficient between the DE and PP would be
expected. An opposite trend was found in M1 and the
PMd. In M1, the width of the HRF did not change sig-
nificantly with RTs (average FWHM across rotation con-
dition was equal to 4.74 sec), whereas there was a
significant increase in FWHM in the PMd. Thus, as RTs
increase with the degree of angular disparity, the func-
tional coupling between the PMd and the M1 decreases.
In the light of the time-resolved analysis, it would be in-
correct to say that with increased task load, the PP re-
ceives enhanced input from the DE or that the input to
M1 from the PMd is decreased. Instead of representing
the influence one neuronal system exerts over another,
the identified path coefficients in SEM seem to reflect the
overall time course of the experiment.

These findings therefore demonstrate that the ob-
served changes in connectivity on the network level
are directly related to changes in temporal character-
istics of the HRFs between the four different rotation
conditions. The functional dissociation of ROIs on the
basis of the network analysis may therefore change
depending on the overall time course of the experiment
and the way stimuli are presented (i.e., block design,
event-related design). As SEM seems highly specific to
the experimental design or condition, it should there-
fore only be interpreted in the context of that particular
design/condition. Time-resolved fMRI might be used to
guide the interpretation of the path coefficients across
conditions and to predict changes in connectivity on
the network level. This not only applies to SEM but also
connectivity analysis in general.

This raises questions concerning the meaning and
interpretation of path coefficients in general. Mathemat-
ically, path coefficients represent the response in a
dependent variable to a unit change in an independent
variable, as all other variables in the model are held
constant (Bollen, 1989). In the context of fMRI, path
coefficients have also been described as the average
influence of one ROI onto another in a given time in-
terval (McIntosh & Gonzalez-Lima, 1994). Furthermore,
the strength and the sign of a path coefficient have been

Ecker, Brammer, and Williams 1017

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
0
/
6
/
1
0
0
3
/
1
7
5
9
5
3
8
/
j
o
c
n
.
2
0
0
8
.
2
0
0
6
3
.
p
d
f
 
b
y
 
g
u
e
s
t
 
o
n
 
1
8
 
M
a
y
 
2
0
2
1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/20/6/1003/1936954/jocn.2008.20063.pdf by guest on 17 O
ctober 2021



used to describe the strength and nature of the inves-
tigated anatomical connection. Positive coefficients are
believed to reflect neuronal excitation and negative co-
efficients may ref lect neuronal inhibition ( Jennings,
McIntosh, & Kapur, 1998; Nyberg et al., 1996). This
study has, however, shown that path coefficients mainly
reflect changes in temporal characteristics of the HRF
induced by the experimental design. Entirely different
results would have been expected if a different experi-
mental design had been used. In an alternate self-paced
design, which has previously been used for many mental
rotation studies, the stimulus duration ends with RT
so that the stimulus duration and RT are equal (e.g.,
Seurinck, Vingerhoets, Vandemaele, Deblaere, & Achten,
2005). In this case, the width of the HRF would be the
same in all conditions and no changes in connectivity
would be expected across rotation conditions. For exam-
ple, the path coefficient linking the DE with the PP would
be expected to be constant across conditions if the time
course required for visual perception was identical with the
time course required for the mental spatial transformation
(e.g., by presenting a fixation cross as soon as subjects
indicate their decision). This prediction would still be valid
even if the duration of the visual responses was not equal
to the stimulus duration (i.e., transient responses in early
visual areas). Changes in effective connections might thus
only be detected when subprocesses are uncoupled.

Therefore, the optimal experimental design for con-
nectivity analysis should thus aim to maximize region-
specific alterations in the temporal characteristics of the
HRF (i.e., signal width or onset) by subdividing the
overall time course of the experiment into temporally
distinct subprocesses (e.g., for cognition and percep-
tion). This way, a functional dissociation can be achieved
on the network level. Temporal characteristics of the
HRF can be altered maximally by using event-related par-
adigms. Block designs, on the other hand, primarily alter
the amplitude of the HRF, whereas its time course is
dominated by the fundamental frequency or duration of
each block. However, as amplitude differences alone do
not directly affect the correlation between two regions
(see Figure 3), the use of block designs for connectivity
analysis is questionable.

So far, the discussion has focussed on the absolute
model fit of the Jordan model or, rather, the lack of it.
The absolute model fit as a stand-alone index is, how-
ever, generally considered meaningless because it only
indicates how well a postulated model reproduces the
observed interregional correlation matrix. Any numerical
definition of the ‘‘how well’’ is, however, arbitrary. Thus,
the appropriateness of a particular model should, in
principal, only be assessed by comparing it to alternative
models. In the present study, we have further demon-
strated that adding feedback connections to the Jordan
model significantly improved the goodness. The original
model was extended by anatomically plausible feedback
connections from the PMd to the PP and from the PP to

the ITp and the DE. The connectivity in this model
highlights the role of the parietal lobe as multimodal
association areas, which receive input from multiple sen-
sory regions (Lewis & Van Essen, 2000). Rather than
being directly involved in the computation of the spatial
coordinates, this model suggests a more integrative role
of parietal regions mediating information processing
between visual and frontal premotor regions. This seems
to support a previous suggestion, namely, that parietal
activation seems less directly linked to the computation
of the spatial transformation as formerly hypothesized
(Lamm, Windischberger, Moser, & Bauer, 2007; Ecker
et al., 2006).

Finally, a few methodological limitations should be men-
tioned. Most importantly, an all-female subject group was
examined in this investigation. There is growing evidence
that there are gender-specific differences in performance
on mental rotation tasks and in the associated patterns of
cortical activation. Men generally display faster RTs and
higher accuracy than women (Voyer, Voyer, & Bryden,
1995; Linn & Petersen, 1985). As mentioned in the In-
troduction, these behavioral differences are reflected in
the involved cortical networks ( Jordan et al., 2002). The
female pathway exclusively was investigated in the present
study and the results may be different in the male pop-
ulation. In addition, we examined ROIs in the left hemi-
sphere only because activation in M1 was observed in the
left hemisphere exclusively. Thus, the examination of the
rotation network needs to be extended to reflect activa-
tion in both hemispheres and sexes.

In this investigation, SEM was carried out on the basis
of the first eigentimeseries in ROIs. The first eigentime-
series can be compared to a weighted average of the
regional time series in each individual subject. This was
done in accordance to previous investigations (Gavrilescu
et al., 2004; Honey et al., 2003). If SEM is carried out
across an average response pattern, intersubject variabil-
ity is discounted and data from different subjects are
treated as if it came from the same subject. Therefore,
alternative approaches might be used in the future to
specifically account for intersubject variability in SEM. For
instance, Mechelli, Penny, Price, Gitelman, and Friston
(2002) suggested a multisubject network consisting of
ROIs as well as different subjects. In this way, intersubject
as well as condition-specific changes in effective connec-
tions can be detected (Mechelli et al., 2002). Another
approach involves analyzing the data by performing
subject-specific analyses (Goncalves, Hall, Johnsrude, &
Haggard, 2001; Buchel & Friston, 1997).

To conclude, the neurocognitive model underlying men-
tal rotation proposed by Jordan et al. (2002) should be
considered a surface model only and a model with feed-
back projections provided a significantly improved fit to
the observed interregional connectivity matrix. This find-
ing challenges traditional cognitive models describing the
complex cognitive process underlying mental rotation by a
set of sequentially organized, functionally distinct process-
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ing stages. The effective connectivity within this network,
however, changes depending on the level of task difficulty.
Although no significant change in connectivity was ob-
served within the visual subcomponents of the network,
the temporal characteristics of the HRF in the parietal lobe
and in the PMd changed significantly with task demand.
This suggests that the functional activation in these re-
gions is associated with mental spatial transformation it-
self. Using time-resolved fMRI, we have further shown that
the change in path coefficients is directly linked to the em-
ployed experimental design. The results of SEM in fMRI
should therefore only be interpreted in the light of a
specific experimental design and should not be considered
as general indicators of an effective connection between
nodes of a cognitive network.
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