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Abstract

■ The ability to make categorical decisions and interpret sen-
sory experiences is critical for survival and interactions across
the lifespan. However, little is known about the human brain
mechanisms that mediate the learning and representation of
visual categories in aging. Here we combine behavioral mea-
surements and fMRI measurements to investigate the neural
processes that mediate flexible category learning in the aging
human brain. Our findings show that training changes the de-
cision criterion (i.e., categorical boundary) that young and older
observers use for making categorical judgments. Comparing the
behavioral choices of human observers with those of a pattern

classifier based upon multivoxel fMRI signals, we demonstrate
learning-dependent changes in similar cortical areas for young
and older adults. In particular, we show that neural signals in
occipito-temporal and posterior parietal regions change through
learning to reflect the perceived visual categories. Information
in these areas about the perceived visual categories is preserved
in aging, whereas information content is compromised in more
anterior parietal and frontal circuits. Thus, these findings pro-
vide novel evidence for flexible category learning in aging that
shapes the neural representations of visual categories to reflect
the observersʼ behavioral judgments. ■

INTRODUCTION

The ability to group sensory events into meaningful cate-
gories is a cognitive skill critical for adaptive behavior and
survival in complex environments (Miller & Cohen, 2001).
Previous psychophysical work has shown that the brain
meets this challenge by taking into account knowledge
from previous experience to achieve flexible learning of
visual categories. In particular, learning has been shown
to shift the internal criterion that observers use for cate-
gorization (i.e., perceptual boundary between categories)
and alter the behavioral relevance of stimulus features
on which observers rely for making categorical decisions
(Palmeri & Gauthier, 2004; Smith, Gosselin, & Schyns, 2004;
Sigala, Gabbiani, & Logothetis, 2002; Goldstone, Lippa,
& Shiffrin, 2001; Schyns, Goldstone, & Thibaut, 1998;
Nosofsky, 1986). Further, recent neurophysiological (Miller
& DʼEsposito, 2005; Duncan, 2001; Miller, 2000) and brain
imaging work (for reviews, see Ashby & Maddox, 2005;
Keri, 2003) has identified the brain circuits involved in
category learning. In particular, frontal brain circuits have
been suggested to be involved in flexible categorical de-
cisions and may modulate the processing of behaviorally
relevant stimulus features for visual categorization in higher
occipito-temporal areas. Despite this recent interest in un-
derstanding brain processes mediating category learning
in young adults, relatively little is known about category
learning in aging and the age-related changes that occur

in brain circuits involved in the representation of visual
categories.

Here we combine behavioral and fMRI measurements
to investigate the neural processes that mediate flexible
category learning in the human aging brain. We used a
categorization task in which young and older observers
were presented with stimuli from a morphing space gen-
erated by varying the spiral angle between radial and
concentric patterns (Figure 1A). Observers were asked
to decide whether the viewed stimulus pattern was either
radial or concentric. This task required observers to com-
pare the sensory input (i.e., the stimulus on each trial) to
an internal criterion defining the categorical boundary in
the stimulus space. Behavioral performance showed that
before training, both young and older observers placed
the categorical boundary near the 45° spiral angle stimulus,
reflecting the middle of the stimulus space on the basis of
physical stimulus properties. However, by training observ-
ers with feedback, we were able to shift the categorical
boundary (to 30° or 60° spiral angle), thereby dissociating
the physical stimuli from their categorical interpretation.
Interestingly, we observed similar behavioral learning ef-
fects for both young and older observers, suggesting that
flexible category learning is maintained in aging.

Using fMRI, we investigated which cortical regions carry
the neural signature of these learning-dependent changes
in the categorical judgments of young and older observers.
We reasoned that such regions would show learning-
dependent changes in the neural representation of visualUniversity of Birmingham, Birmingham, UK
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categories (concentric vs. radial patterns) that correspond
to the behavioral judgments of the observers and reflect
the shift in the category boundary. Previous neuroimaging
studies of cognitive aging have shown differential activity
in the same regions for young and older adults or recruit-
ment of different regions in older adults even when task
performance is matched (Cabeza & Nyberg, 2000; Grady,
2000). We therefore tested whether the cortical circuits
that show learning-dependent changes in the neural repre-
sentation of visual categories and support the ability for
flexible category learning differ in young and older adults.

Isolating neural representations for different visual cate-
gories in the human brain is limited at the typical fMRI res-
olution that does not allow us to discern selectivity for
stimulus features represented by overlapping neural popu-
lations. To overcome this limitation, we used advanced
fMRI analysismethods (multivoxel pattern analysis [MVPA])
that are sensitive to neural information encoded at a finer-
scale than the standard resolution of fMRI measurements
(Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby,

2006; Cox & Savoy, 2003). Our results show that for both
young and older observers, higher occipito-temporal areas
(KO/LOS, LO) and areas along the occipital-parietal (cu-
neus, precuneus) and intraparietal sulcus (VIPs) contain
information that allows the discrimination of stimulus cate-
gories from fMRI signals. More importantly, fMRI signals
in these regions change with learning to reflect the per-
ceived categories and the categorical boundary as shaped
by training. These findings provide novel evidence for flex-
ible category learning in both young and older adults that
shapes the neural representations of visual categories to
reflect the observersʼ behavioral judgments in occipito-
temporal and posterior parietal regions.

METHODS

Observers

Two groups of 14 observers (young adult group: 7 men,
7 women, mean age = 24 ± 2.8 years; older adult group:

Figure 1. Stimulus and
behavioral data. (A) Stimuli:
Four example Glass pattern
stimuli (100% signal) at spiral
angles of 0°, 30°, 60°, and 90° are
shown. The three boundaries
(category boundary 45°, 30°,
60°) and spiral angles tested
are shown by color bars (dark
gray: stimuli that resemble
radial, light gray: stimuli that
resemble concentric) that
indicate the categorical
membership of the stimuli for
each boundary. (B) Behavioral
data collected in the laboratory
are shown for each boundary
session for both young adult
and older adult observers. Solid
lines indicate the cumulative
Gaussian fits of the behavioral
data for each boundary session
(dotted gray: boundary 45°;
thick black: boundary 30°;
dashed gray: boundary 60°).
Error bars indicate the 95%
confidence interval at 50%
concentric threshold following
a bootstrap procedure.
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4men, 10 women,mean age= 74±4.1 years) participated
in the experiment. Two observers from each group were
excluded from the data analysis due to excessive head
movement during scanning. Two additional observers
from both groups were excluded due to the absence of a
breath-hold fMRI scan, poor task performance during
scanning, or low functional signal-to-noise (SNR) ratio
(Supplementary material). All observers had normal or
corrected-to-normal vision (older adults scored 20/20 on
a visual acuity test) and gave written informed consent.
All observers in the older adult group completed a mini-
mental test with scores within the range of normal cogni-
tive ability (mean = 28.3 (max score 30) ± 1.8). The study
was approved by the local ethics committee.

Stimuli

We used Glass pattern stimuli (Seu & Ferrera, 2001; Glass
& Perez, 1973; Glass, 1969) defined by white dot pairs (di-
poles) displayed within a square aperture (7.7° × 7.7°)
on a black background (100% contrast). The dot density
was 3% and the Glass shift (i.e., the distance between
two dots in a dipole) was 16.2 arc min. The size of each
dot was 2.3 × 2.3 arc min2. These parameters were chosen
on the basis of pilot psychophysical studies and in accor-
dance with previous work (e.g., Wilson & Wilkinson, 1998)
showing that coherent form patterns are reliably perceived
for these parameters. We generated concentric and radial
Glass patterns by placing dipoles tangentially (concentric
stimuli) or orthogonally (radial stimuli) to the circumfer-
ence of a circle centered on the fixation dot. Further, we
generated intermediate patterns between these two Glass
pattern types by parametrically varying the spiral angle of
the pattern from 0° (radial pattern) to 90° (concentric pat-
tern) (Figure 1A). For each dot dipole, the spiral angle was
defined as the angle between the dot dipole orientation
and the radius from the center of the dipole to the cen-
ter of the stimulus aperture. Half of the observers were
presented with clockwise spiral patterns (0° to 90° spiral
angle) and half with anticlockwise spiral patterns (0° to
−90° spiral angle). A new pattern was generated for each
stimulus presented in a trial, resulting in stimuli that were
locally jittered in their position.
To control for stimulus-specific training effects and en-

sure generalization of learning, we trained the observers
with 80% signal stimuli but presented 75% signal stimuli
during psychophysics testing (pre- and posttraining test)
and fMRI scanning. This procedure ensured that learning
could not be due to similar local cues between the stimuli
used for training, tests, and scanning but rather global fea-
tures used by the observers for stimulus categorization.

Design

All young adult and older adult observers participated in
two fMRI sessions. Each session was preceded by psycho-
physical training outside the scanner, and the observersʼ

behavioral performance was matched before the two
fMRI sessions (85% correct performance).

Psychophysical Training

First, all observers were familiarized with the task and stim-
uli in a short practice session. Observers were shown Glass
patterns at 100% signal and were instructed to categorize
each stimulus into one of two categories: similar to a radial
Glass pattern (0° spiral angle) versus similar to a con-
centric Glass pattern (90° spiral angle). Then, during the
pretraining test session (categorical boundary at 45°), ob-
servers were presented with Glass patterns (75% signal
level) at 0°, 20°, 30°, 40°, 45°, 50°, 60°, 70°, and 90° spiral
angle and instructed to perform the same categorization
task. Data were collected from 64 trials per spiral an-
gle (576 trials in total). Each stimulus was presented for
300 msec followed by a 500-msec interstimulus interval.
Observers were instructed to categorize the stimuli into
one of two categories: similar to a radial Glass pattern
(0° spiral angle) versus similar to a concentric Glass pat-
tern (90° spiral angle). No feedback was given to the ob-
servers during this session, allowing us to determine the
categorical boundary per observer before training.

Following the pretraining test, observers were divided
into two subgroups and trained to shift their categoriza-
tion responses to a different boundary. Half the observ-
ers were trained with categories defined by a boundary
at 30° spiral angle and the other half with categories de-
fined by a boundary at 60° spiral angle. Observers were
trained with audio error feedback to categorize the stimuli
on the basis of the predefined boundary (boundary at
either 30° or 60°). The stimuli presented were at 80% sig-
nal and the spiral angles used for the 30° boundary session
were 0°, 5°, 20°, 25°, 35°, 40°, 55°, and 90°, whereas for 60°
boundary session were 0°, 35°, 50°, 55°, 65°, 70°, 85°, and
90°. Each stimulus was presented for 300msec, and observ-
ers were instructed to respond as fast as possible, indicat-
ing which category the stimulus belonged to by pressing
one of two keys. Observers were trained (12 trials per
spiral angle, 96 trials per run) until they reached a stable
criterion performance (80% correct). Each training session
comprised multiple runs (ranging from two to five runs).
After training, observers performed the same task without
feedback in a posttraining session (144 trials). Stimuli were
at 75% signal level and presented for 300 msec each. For
the 30° boundary group, observers were tested with stim-
uli 0°, 5°, 10°, 20°, 30°, 40°, 50°, 60°, and 90° of spiral an-
gle, whereas for the 60° boundary group, observers were
tested with stimuli 0°, 30°, 40°, 50°, 60°, 70°, 80°, 85°, and
90° of spiral angle.

fMRI Measurements

All observers participated in two fMRI sessions. In the first
scanning session (after initial testing on the 45° boundary),
observers were presented with stimuli at 15°, 30°, 45°, 60°,
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and 75° spiral angles. In the second scanning session,
observers trained on the 30° boundary space were pre-
sented with stimuli at 0°, 15°, 30°, 45°, and 60° spiral angles,
whereas observers trained on the 60° boundary space were
presented with stimuli at 30°, 45°, 60°, 75°, and 90°. Ob-
servers were instructed to perform a target detection task;
that is, they pressed a button to indicate the presence of a
square stimulus composed of dot dipoles similar to the ra-
dial and concentric stimuli. This target stimulus appeared
equally frequently (two times per block) across conditions.

For each observer, we collected data from six to eight
block-design runs in each session. Each run comprised of
15 blocks of stimuli (each 18-sec duration), with 10-sec
duration fixation blocks at the beginning and at the
end. Each block comprised of stimuli from one of the five
spiral angles and was repeated three times in each run.
The order of the blocks was randomized within each
run, and different block orders were used for each run
and observer. Each block consisted of 12 individual trials,
comprised of 10 Glass pattern stimuli and 2 target stimuli
presented in a randomized order. Within each trial, the
stimulus was presented for 300 msec followed by the pre-
sentation of a fixation cross for 1200 msec (1.5 sec total
trial length). Glass pattern stimuli were presented at 75%
signal level and were redrawn on each trial. Further, to
control for local adaptation due to stimulus repetition
within a block, we generated different stimulus exemplars
by varying the Glass shift (i.e., distance between the two
dots in a pair was 15 or 17.4 arc min), dot density (2.5%,
3%, or 3.5%), and spiral angle jitter (−2°, −1°, 0°, 1°, or
2° relative to the spiral angle for each condition).

Data from twoadditional fMRI scanswere acquired tomea-
sure the BOLD hemodynamic response function (HRF)
and to estimate vascular reactivity. To measure the HRF,
a radial black and white flickering (8 Hz) checkerboard
stimulus was presented against a gray background for
500 msec. The stimulus was repeated 20 times in total
at intervals of 18 sec. Observers fixated on a white cross
in the center of the screen throughout the duration of
the scan. To obtain an estimate of vascular reactivity, ob-
servers performed a hypercapnic breath-holding task. Ob-
servers fixated on a large black dot in the center of a gray
background, and the color of the dot changed between
black and white every 10 sec. Observers were instructed
to hold their breath while the dot was white and to breathe
normally while the dot was black. The depth of subjects
breathing was monitored using pneumatic respiratory bel-
lows to ensure the task was performed correctly.

fMRI Data Acquisition

All experiments were conducted at the Birmingham Univer-
sity ImagingCentre (3TAchieva scanner; Philips, Eindhoven,
The Netherlands). EPI and T1-weighted anatomical (1 ×
1×1mm)datawere collectedwith an eight channel SENSE
head coil. For all fMRI measurements, gradient-echo EPI
data were acquired from 32 slices (whole brain coverage,

repetition time = 2000 msec, echo time = 35 msec, flip
angle = 80°, 2.5 × 2.5 × 3 mm resolution).

fMRI Data Analysis

fMRI data were processed using Brain Voyager QX (Brain
Innovations, Maastricht, The Netherlands). Anatomical data
was used for 3D cortex reconstruction, inflation, and flat-
tening. Preprocessing of functional data included slice-scan
time correction, head movement correction, temporal
high-pass filtering (three cycles), and removal of linear
trends. Within each block, individual trials with head mo-
tion larger than 1 mm of translation or 1° of rotation were
excluded from the analysis. Spatial smoothing (Gaussian
filter; full-width at half maximum, 6 mm) was performed
only for group random effect analysis but not for data used
for the multivoxel pattern classification analysis. The func-
tional images were aligned to anatomical data, and the
complete data were transformed into Talairach space. For
each observer, the functional imaging data between the
two fMRI sessions were co-aligned by registering all vol-
umes to the first functional volume of the first run acquired
during the first session. To avoid confounds from any re-
maining registration errors, we compared fMRI signals be-
tween stimulus conditions within each session rather than
across sessions. A gray-matter mask was generated for each
observer in Talairach space from the anatomical data and
used to select only gray-matter voxels for further analyses.

Multivariate Brain Mapping Based on
Stimulus Category

For each observer, we identified cortical regions whose ac-
tivations correlated with stimulus category by performing a
multivoxel searchlight analysis (Kriegeskorte, Goebel, &
Bandettini, 2006) on data from each scanning session.
In particular, we defined a spherical aperture with radius
of 9 mm and moved this aperture voxel by voxel across
the whole brain (only gray-matter voxels were included).
For voxels within the aperture (98 voxels per aperture,
on average), we used a linear support vector machine
([SVM] Vapnik, 1995) pattern classifier to classify fMRI sig-
nals on the basis of stimulus category (radial vs. con-
centric). That is, we trained the classifier to associate the
fMRI signal from each stimulus block with a label (radial vs.
concentric) that was determined by the category of the
stimulus condition as defined by the boundary in each ses-
sion (Supplementary material).
We averaged the volumes from each stimulus block

(block duration = 18 sec, repetition time =2 sec) to gen-
erate one training pattern per block. To account for the
hemodynamic delay, we shifted the fMRI time series by
two volumes (4 sec). To ensure generalization of the clas-
sification, we used a leave-one-run-out cross-validation pro-
cedure. For each cross validation, one run was left out as
an independent test data set and the data from the rest of
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the runs were used as the training set. The classification
accuracy for each aperture was obtained by averaging
the prediction accuracy across cross validations. The accu-
racy value for each voxel was obtained by averaging the
accuracy values from all apertures in which this voxel was
included. To identify voxels with accuracy significantly high-
er than chance across observers and boundaries, we con-
ducted a second level statistical analysis (t test, p < .05,
cluster threshold estimation 5 mm2).

RESULTS

Psychophysical Data

We tested the observersʼ ability to categorize global form
patterns into one of two categories (radial vs. concentric).
Initial testing showed that both young adults and older
adults set the boundary (50% concentric threshold) be-
tween categories at 44.4 ± 1.1° (group mean ± SE) and
43.4 ± 1.2° spiral angle, respectively. These values for the
categorical boundary correspond closely to the mean of
the physical stimulus space (45° spiral angle). We then
trained observers using auditory feedback on incorrect
trials to assign the same stimuli into different categories
on the basis of a categorical boundary either at 30° or
60° of spiral angle. In particular, we trained half of the
observers on the 30° and the rest on the 60° boundary.
Figure 1 shows that training successfully shifted the per-
ceptual boundary in both young and older adults. Test-
ing the observers without feedback after training showed
that training shifted the observersʼ criterion for categori-
zation close to 30° (young adults, mean ± SE = 31.5° ±
1.6°; older adults, mean ± SE = 31.6° ± 0.5°) for the 30°
boundary group and close to 60° (young adults, mean ±
SE = 56.7° ± 0.6°; older adults, mean ± SE = 58.2° ±
0.9°) for the 60° boundary group (Figure 1B). Fitting the
group behavioral data with a cumulative Gaussian func-
tion (Supplementary material) showed a significant shift
in the boundary (i.e., 45° vs. 30°; 45° vs. 60°) for both young
and older adults as indicated by the nonoverlapping er-
ror bars for 95% confidence intervals estimated on the
basis of a bootstrap procedure. Further, to control for the
possibility that this training-dependent shift in behavioral
performance was due to the stimulus choice for the post-
training test (i.e., different spiral angle conditions were
tested for the observers trained on 30° and 60° boundary),
we conducted a control experiment in which both groups
of observers were tested on the same stimuli (i.e., spiral
angle conditions) before and after training. A significant
shift (bootstrapped 95% confidence intervals) in the thresh-
old of the psychometric function after training relative
to the pretraining performance was observed for both
subject groups (Figure S1). These results suggest that the
learning-dependent changes observed in behavioral perfor-
mance represent a shift in the observersʼ internal criterion
for categorization and are not simply due to stimulus choice
for the posttraining test.

Finally, we fitted individual subject psychophysical data
with a cumulative Gaussian function and calculated the
50% concentric thresholds for each group of observers.
Two-way ANOVAs (Greenhouse–Geisser corrected) on Age
Group (young adults, older adults) and Session showed
significant differences in 50% threshold between sessions,
30° vs. 45° boundary, F(1, 8) = 51, p < .001; 45° vs. 60°
boundary, F(1, 8) = 24.2, p < .001; 30° vs. 60° boundary,
F(1, 16) = 92, p< .001), supporting the training-dependent
performance shift of the boundary. The lack of signifi-
cant interactions between Age Group and Session, 30°
vs. 45° boundary, F(1, 8) < 1, p = .96; 45° vs. 60° bound-
ary, F(1, 8)= 1.21, p= .3; 30° vs. 60° boundary, F(1, 16)< 1,
p = .43), suggests similar learning effects between age
groups.

fMRI Data: Pattern Classification across the
Whole Brain

To investigate which cortical areas contain information
that allows us to discriminate between stimulus categories
(radial vs. concentric), we performed a multivoxel search-
light analysis (Kriegeskorte et al., 2006). We used a linear
SVM to test for cortical areas that showed significantly
higher accuracies for the stimuli at the extreme spiral an-
gle for each boundary session (i.e., 45° boundary: 15° vs.
75°; 30° boundary: 0° vs. 60°; 60° boundary: 30° vs. 90°).

We performed this classification across the whole brain
by defining a searchlight (aperture of 9 mm radius) that
was moved serially throughout the entire cortex to evalu-
ate the information content of voxel patterns across brain
regions. Figure 2 shows group activation patterns averaged
across sessions ( p < .05, cluster threshold estimation
5 mm2) for young (Figure 2A) and older (Figure 2B) adults.
For the young adults, classification accuracy was signifi-
cantly higher than chance in occipito-temporal areas (KO/
LOS, LO), cuneus and precuneus regions, parietal regions
along the intraparietal sulcus (VIPs, POIPs, DIPs), and fron-
tal regions (PMd, SEF, ventral IFG). For the older adults,
classification accuracy was significantly higher than chance
in occipito-temporal areas (KO/LOS, LO), cuneus, precu-
neus, and VIPs. Similar activation patterns were observed,
whenweperformed themultivoxel searchlight analysis using
all stimuli within each category as defined by the boundary in
each session. That is, for the 45° boundary, we trained the
classifier to discriminate between stimuli at 15° and 30° ver-
sus 60° and 75° spiral angle; for the 30° boundary between
stimuli at 0° and 15° versus 45° and 60° spiral angle; and for
the 60° boundary between stimuli at 30° and 45° versus 75°
and 90° spiral angle. These analyses show that in both young
and older adults, occipito-temporal and posterior parietal
regions contain information that allows us to discriminate
between stimulus categories. However, informative activa-
tion patterns in dorsal parietal and frontal regions were pre-
dominantly evident in young rather than older adults.

In contrast, a standard univariateGLManalysis contrasting
the BOLD responses to extreme concentric stimuli against
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the responses to extreme radial stimuli from all sessions
did not show any significant activations (random effects,
p< .05; cluster threshold estimation 5 mm2). This finding
is consistent with the higher sensitivity of multivariate
methods in detecting neural preferences for stimulus cate-
gories encoded at a finer spatial resolution than that of
typical fMRI measurements by pooling weak activation
biases across voxel patterns.

fMR-Metric Functions: Predicting Behavior from
fMRI Data

The searchlight multivariate analysis identified occipito-
temporal, parietal, and frontal regions containing informa-
tion that allows to discriminate between visual categories
(Figure 2). We then investigated which of these cortical
regions show changes in fMRI activation patterns that re-
late to the behavioral learning effect, that is, changes in the
observersʼ decision criterion after training as shown by the

shift in the observersʼ psychometric functions (Figure 1B).
That is, we tested whether we could reliably predict differ-
ences in fMRI signals related to the perceived categories as
shaped by training on the three different boundaries (45°,
30°, or 60° boundary).
For each observer, we identified ROIs on the basis of ac-

tivation patterns from the searchlight analysis (Table S1 for
Talairach coordinates). For young adults, ROIs comprised
of activation patterns in extrastriate visual areas (KO/LOS,
LO), regions along the OPS (cuneus and precuneus), re-
gions along the IPS (ventral, VIPs; dorsal, DIPs), and frontal
regions (PMd, SEF, IFG). For older adults, ROIs comprised
of activation patterns in extrastriate visual areas (KO/LOS,
LO), regions along the OPS: cuneus and precuneus and
ventral IPS (VIPs). Further, using standard retinotopic map-
ping procedures in each individual observer, we identified
V1 and V2 as control visual areas that are known to be en-
gaged in the processing of basic visual features (e.g., ori-
entation) and texture, respectively.

Figure 2. Searchlight classification based on stimulus category. Searchlight maps for (A) young and (B) older observers (data grouped across
observers and boundaries) showing areas with significantly higher accuracy than chance (50% correct) ( p< .05, cluster threshold estimation 5 mm2)
for the classification of fMRI signals based on stimulus category. The t value maps are superimposed on flattened cortical surfaces of both
hemispheres. See Supplementary Table 1 for ROI definition and Talairach coordinates.
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We trained a linear SVM to classify fMRI signals from
these ROIs related to the extreme stimulus conditions in
each category as determined by the boundary (i.e., 45°
boundary: 15° vs. 75°; 30° boundary: 0° vs. 60°; 60° bound-
ary: 30° vs. 90°). We then tested the accuracy of the SVM in
predicting the stimulus category of intermediate stimuli
between the extreme conditions from an independent
data set. For each observer and region, we calculated
the mean performance of the classifier (defined as the pro-
portion of patterns classified as concentric for each stimu-
lus condition) across cross validations. We calculated the
mean classifier performance across observers for each
condition and plotted the data after linear scaling (i.e.,
for each fMR-metric function, we scaled each prediction
by subtracting the minimum value across conditions and
dividing by the difference between maximum and mini-
mum prediction values) to allow comparison between cor-
tical areas. We fitted the classifier predictions (Figures 3
and 4: scaled data; Figure S2: nonscaled data) using the
same procedure as for the behavioral data (Supplementary
data). We refer to these functions as fMR-metric functions
as their estimation resembles closely that of the psycho-
metric functions (Li, Mayhew, & Kourtzi, 2009).
Figure 3A shows that for young adults the classifierʼs

predictions were fitted significantly ( p < .05) using a cu-
mulative Gaussian function (bootstrap estimate of the 95%
confidence interval) for V1, V2, KO/LOS, LO, VIPs, and
PMd (see Table S2 for significance of the data fitting for
each ROI). More importantly, in agreement with the ob-
served changes in psychophysical performance due to train-
ing, fMR-metric functions in occipito-temporal (KO/LOS,
LO), intraparietal (VIPs, DIPs), and PMd regions showed
significant shifts (nonoverlapping bootstrapped confidence
intervals) that matched learning-induced changes in the
30° and 60° categorization boundaries. We quantified these
learning-induced changes using the 50% thresholds of in-
dividual participantsʼ fMR-metric functions, obtained from
all boundary sessions (30°, 45°, and 60°). Figure 3B indicates
the difference between the 50% fMR-metric threshold of
the 45° boundary session and the 50% fMR-metric threshold
of the 30° and 60° boundary sessions, respectively. We cal-
culated this threshold index for ROIs with significantly fitted
fMR-metric functions. Significant differences in the 50%
fMR-metric thresholds between 30° and 60° boundary ses-
sions were observed in KO/LOS, F(1, 8) = 17, p < .01,
LO, F(1, 8) = 44, p < .001, VIPs, F(1, 8) = 18, p < .01,
and PMd, F(1, 8) = 9, p < .01. In contrast, no significant
differences were observed in V1, F(1, 8) = 0.3, p = .6, or
V2, F(1, 8) = 0.1, p = .8, and the 50% threshold remained
close to 45° for both the 30° and the 60° boundary, suggest-
ing that signals in these areas reflect the stimulus space
rather than the category space as shaped by learning.
For the older adult group, we focused on extrastriate vi-

sual areas (KO/LOS, LO), regions along theOPS, and ventral
IPS as these areas were shown by the searchlight analysis to
contain information about stimulus categories (Figure 2B).
Figure 4A shows that for older adults the classifierʼs predic-

tions were fitted significantly using a cumulative Gaussian
function for KO/LOS, LO, and VIPs. Consistent with the
behavioral learning effects, fMR-metric functions in these
areas showed significant threshold shifts between the 30°
and the 60° boundary sessions (Figure 4B). In particular,
we observed significant differences in the 50% fMR-metric
thresholds between 30° and 60° boundary sessions for KO/
LOS, F(1, 8) = 49, p < .001, LO, F(1, 8) = 7, p < .05, and
VIPs, F(1, 8) = 19, p< .01, but not in V1, F(1, 8) = 0.6, p=
.5, or V2, F(1, 8) = 0.9, p = .4.

These results suggest that information about visual
shape categories in occipito-temporal (KO/LOS) and ven-
tral intraparietal regions is shaped by learning and reflects
behavioral performance in categorization tasks. Impor-
tantly, information in these regions allows us to reliably
decode the observerʼs categorical assignment of the stim-
uli on the basis of learned categorization criteria even
when the observers do not engage in the categorization
task. This finding suggests changes in the neural represen-
tations of the perceptual categories rather than simply
task-related modulations. This result holds for both young
and older observers as supported by the lack of significant
interactions between Age Group and Session in these re-
gions, KO/LOS, F(1, 16) = 0.01, p = .9; LO, F(1, 16) = 2,
p = .15; VIPs, F(1, 16) = 0.2, p = .7. However, in young
but not older adults, dorsal parietal (DIPs) and premotor
(PMd) regions appear to contain information about the
perceived visual categories as shaped by learning. Finally,
in both young and older adults, fMR-metric functions in
V1 and V2 were not shifted significantly between boundary
sessions, suggesting that training did not change the stim-
ulus representation in either primary or secondary visual
cortex. This result in early visual areas is consistent with
previous work (Wilson & Wilkinson, 1998), showing that
the processing of global form patterns involves later rather
than early visual areas that are known to be engaged in
orientation (i.e., V1) and texture (i.e., V2) processing.

Control Analyses

Our results show that higher occipito-temporal and pari-
etal regions in both young and older adults contain infor-
mation about the perceived shape categories and change
their processing with learning to reflect the observersʼ cri-
terion (i.e., categorical boundary) in making categorical
judgments. We further conducted additional analyses to
rule out a number of less likely interpretations of our results.

First, to control for the possibility that these results are
due to random correlations in the data, we computed the
fMR-metric functions from randomly permuted fMRI pat-
terns (i.e., we randomized the correspondence between
fMRI data and stimulus labels and estimated the classifier
prediction for each stimulus condition). The lack of signif-
icant fits (Figure S3) suggests that the MVPA predictions
could not be simply accounted for by random variations
in the data but rather reflect a link between task-relevant
behavioral performance and activation patterns.
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Second, our design ensured that the observers were
not biased in their interpretation of stimulus categories
by equating the number of conditions and stimuli across
categories. As a result, the stimulus set tested in the two
sessions could not remain identical when the category
boundary changed across sessions. However, our design
allowed us to directly compare between stimulus condi-
tions (45°, 30°, 60°) that were common across different
boundary sessions. Analysis of the univariate fMRI signals

(Figure S4) showed similar fMRI responses across stimulus
conditions (i.e., when the stimuli were interpreted as the
category boundary or not), suggesting that differences in
the MVPA performance reflect the observersʼ perceived
categories rather than differences in the stimulus statistics
across conditions.
Third, to ensure that any performance differences in the

categorization task between young and older adults did
not confound the fMRI analyses, we asked all observers

Figure 3. fMR-metric curves
for young observers. (A)
fMR-metric curves for each
boundary session (30° and
60° boundary) and ROI. Average
classifier prediction data across
observers were scaled and
fitted with cumulative Gaussian
functions (solid lines).
Error bars indicate the 95%
confidence interval at 50%
concentric threshold using
a bootstrap procedure.
(B) Fifty percent threshold
index (difference between the
50% fMR-metric threshold of
the 45° boundary session and
the 50% fMR-metric threshold
of the 30° and 60° boundary
sessions, respectively) for ROIs
with significantly fitted data
(see Table S2). Error bars
indicate the 95% confidence
interval at 50% concentric
threshold using a bootstrap
procedure.
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to perform the same target detection task during scanning.
Performance in this task for young adults ranged from
59.2% to 86.6% correct for response times (RT) between
854 msec (mean response time) and 1000 msec from stim-
ulus onset, whereas for older adults from 62.7% to 88.6%
correct for response times between 875 msec (mean re-
sponse time) and 1000 msec from stimulus onset. These
results show that both young and observers engaged fully
in the task and that performance did not differ significantly
either between boundary sessions—accuracy, F(1, 18) =

1.3, p = .26; RT, F(1, 16) = 0.1, p = .8—or between age
group—accuracy, F(1, 18) = 1.8, p = .2; RT, F(1, 16) =
0.05, p = .8. Thus, differences in MVPA results between
young and old adults could not be due to differences in task
difficulty across age groups or general slowing of process-
ing in older adults (Porciatti, Fiorentini, Morrone, & Burr,
1999; Kosnik, Winslow, Kline, Rasinski, & Sekuler, 1988).

Fourth, the interpretation of differences in BOLD signal
between young and old adults is complicated by changes
in the vasculature that occur during aging. For instance,

Figure 4. fMR-metric curves
for older observers. (A)
fMR-metric curves for each
boundary session (30° and
60° boundary) and ROI. Average
classifier prediction data across
observers were scaled and
fitted with cumulative Gaussian
functions (solid lines).
Error bars indicate the 95%
confidence interval at 50%
concentric threshold using
a bootstrap procedure.
(B) Fifty percent threshold
index (difference between the
50% fMR-metric threshold of
the 45° boundary session and
the 50% fMR-metric threshold
of the 30° and 60° boundary
sessions, respectively) for
ROIs with significantly fitted
data (Table S2). Error bars
indicate the 95% confidence
interval at 50% concentric
threshold using a bootstrap
procedure.
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decreases in vessel wall compliance (Hajdu, Heistad, Siems,
& Baumbach, 1990), hematocrit concentration (Levin
et al., 2001), and alterations in CBF due to arterial disease
(Hamzei, Knab,Weiller,&Rother, 2003; Pineiro, Pendlebury,
Johansen-Berg, & Matthews, 2002) may alter the neurovas-
cular coupling in older adults and cause differences in mea-
sured BOLD signal compared with young adults performing
the same task (Restom, Bangen, Bondi, Perthen,& Liu, 2007;
DʼEsposito, Deouell, & Gazzaley, 2003; DʼEsposito, Zarahn,
Aguirre, & Rypma, 1999). To control for the possibility that
differences in the activation patterns between young and
old adults may occur due to differences in vascular reac-
tivity, we collected fMRI data in both young and old adults
during a breath-holding task that has been shown to result
in vascular dilation induced by hypercapnia (Handwerker,
Gazzaley, Inglis, & DʼEsposito, 2007). We used the BOLD
signal change induced by this task as an estimate of the
vascular reactivity in each voxel. In particular, for each ob-
server and ROI, we identified voxels that were significantly
active in response to the breath-holding task (GLM regres-
sion analysis, threshold p < .05 uncorrected). Across ROIs,
the mean proportion of voxels selected was 95 ± 4% in
young adults and 94± 5% in older adults. For every selected
voxel in each ROI, we calculated percent BOLD change re-
lated to the hypercapnic response across trials by subtract-
ing the mean of two peak time points from the mean of
the two prestimulus time points. Figure S5A shows that
the percent BOLD signal in response to the breath-holding
task was significantly, F(2.1, 16.8) = 44.2, p< .001, reduced
in older compared with young adults across ROIs, consis-
tent with previous studies (Handwerker et al., 2007). How-
ever, the lack of a significant effect of ROI, F(2.1, 16.8) = 1.2,
p= .3, or interaction between ROI and AgeGroup, F(1, 8)=
0.4, p = .7, suggests that the differences in activation pat-
terns revealed by the searchlight analysis between young
and older adults (i.e., lack of significant patterns in DIPs
and PMd for older adults) could not be simply accounted
for by differences in vascular reactivity across age groups.
Further, we used the BOLD response to the breath-holding
task to normalize the stimulus evoked BOLD signal for
each observer, as previously described (Handwerker et al.,
2007). For each voxel, we divided the percent BOLD signal
evoked by each stimulus block by the percent BOLD evoked
by the hypercapnic breath-holding task. We then used the
normalized signal time course for the multivoxel pattern
classification and the fMR-metric functions (Figures 3 and
4; Figures S2 and S3).

Fifth, previous studies have shown differences in the
peak latency of the HRF between young and older adults
(Huettel, Singerman, & McCarthy, 2001; Taoka et al., 1998)
and decreased spatial extent of activation in older adults
related to either higher noise or lower signal magnitude
(Huettel et al., 2001; Buckner, Snyder, Sanders, Raichle, &
Morris, 2000; DʼEsposito et al., 1999). To control for the pos-
sibility that differences in the activation patterns between
age groups could result from differences in the HRF, we
measured the HRF evoked by a reversing checkerboard

stimulus across ROIs for each observer. Figure S5B shows
no significant difference in the peak HRF latency, F(1.9,
15) = 0.2, p = .6, between young and older adults. The
lack of a significant interaction between ROI and AgeGroup,
F(1, 8) = 0.6, p= .5, justified the choice of the same hemo-
dynamic lag (4 sec) for the voxel time series used in the
MVPA across ROIs for both young and older adults. Fur-
ther, no significant differences were observed in BOLD am-
plitude, F(1.9, 5) = 0.95, p = .5, between young and older
adults. This analysis was confirmed by estimation of the
functional SNR for all voxels per ROI used for the MVPA
(Figure S5C). This analysis did not show any significant dif-
ference in functional SNR across ROIs, F(1.5, 12) = 2.1,
p = .12, age groups, F(1.5, 12) = 0.42, p = .5, or an inter-
action between ROI and Age Group, F(1, 8) = 0.4, p =
.65. Thus, these analyses suggest that the differences in acti-
vation patterns revealed by the searchlight analysis between
young and older adults (i.e., lack of significant patterns in
DIPs and PMd for older adults) could not be simply ac-
counted for by differences in HRF properties (peak latency
or amplitude).
Finally, eye movement recordings conducted during

scanning showed that there were no significant differences
in the eye position, number, and amplitude of saccades
across stimulus conditions and boundaries in either young
or older adults (Figures S6 and S7). This analysis suggests
that it is unlikely that the learning-dependent changes we
observedwere significantly confounded by eyemovements.

DISCUSSION

Our findings provide novel evidence for flexible category
learning in aging. We show that training changes the cri-
terion (i.e., categorical boundary) that young and older
observers use for making categorical judgments and
results in changes in the neural representation of the per-
ceived visual categories that reflect the observersʼ behav-
ioral judgments. In particular, for both young and older
adults, occipito-temporal and posterior parietal regions
contain information that allows us to discriminate be-
tween stimulus categories. More importantly, the informa-
tion content in these regions changes with learning to
reflect the perceived categories and the categorical bound-
ary as shaped by training. The fact that these changes were
observed when observers performed the control (target
detection) task during scanning rather than the categori-
zation task suggests learning-dependent changes in the
representation of the perceived categories rather than
simply task-related modulations.
Interestingly, informative activation patterns in dorsal

parietal and frontal regions were predominantly evident in
young rather than older adults. These activation patterns in
young adults are consistent with the role of fronto-parietal
regions in categorization ( Jiang et al., 2007; Freedman &
Assad, 2006; Duncan, 2001; Freedman, Riesenhuber, Poggio,
& Miller, 2001; Miller, 2000). It has previously been sug-
gested that sensory information about visual categories is
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combined with motor responses to form associations and
representations of meaningful categories in frontal cortex
(Muhammad, Wallis, & Miller, 2006; Toni, Rushworth, &
Passingham, 2001). In turn, these category formation and
decision processes may modulate selectivity for the per-
ceived categories in occipito-temporal areas in a top–down
manner (Op de Beeck, Torfs, & Wagemans, 2008; Mirabella
et al., 2007; Op de Beeck, Baker, DiCarlo, & Kanwisher,
2006; Rotshtein, Henson, Treves, Driver, & Dolan, 2005;
Smith et al., 2004; Freedman, Riesenhuber, Poggio, &Miller,
2003; Sigala & Logothetis, 2002).
Previous studies have shown informative activation pat-

terns extending into prefrontal regions when observers are
engaged in category learning tasks (Li et al., 2009). How-
ever, in our study, observers performed a control (target
detection) task rather than the categorization task in the
scanner. This may account for the reduced informative ac-
tivation patterns we observed in frontal regions for young
adults, consistent with task-dependent engagement of
frontal circuits. Further, the reduction of informative ac-
tivations in anterior parietal and frontal areas for older
adults could not be attributed to differences in task diffi-
culty between age groups, as performance of the control
target detection task was similar for young and older ob-
servers. It is possible that the activation patterns observed
in frontal regions for young but not older adults may me-
diate more complex category learning tasks (e.g., abstract
rule learning) for which performance has been shown to de-
cline with age (Schmitt-Eliassen, Ferstl, Wiesner, Deuschl,
& Witt, 2007; Racine, Barch, Braver, & Noelle, 2006; Filoteo
& Maddox, 2004; Ridderinkhof, Span, & van der Molen,
2002; Chasseigne,Mullet, & Stewart, 1997; Isingrini&Vazou,
1997; Kramer, Humphrey, Larish, Logan, & Strayer, 1994;
Parkin & Lawrence, 1994; Axelrod & Henry, 1992).
These results are consistent with previous studies re-

porting complex alterations in brain activation patterns
for older compared with young adults despite matched
task difficulty and performance in cognitive tasks (Bennett,
Sekuler, McIntosh, & Della-Maggiore, 2001; Grady, 2000;
Madden et al., 1999; McIntosh et al., 1999; Cabeza et al.,
1997). It is possible that the reduced informative signals in
fronto-parietal cortical circuits for older adults relate to dis-
ruption in the coordination of large scale brain networks
supporting interactions between sensory and frontal cir-
cuits (Andrews-Hanna et al., 2007), gray and white matter
loss in frontal cortex (Bartzokis et al., 2004; Head et al.,
2004; Madden et al., 2004; Salat et al., 2004; Resnick, Pham,
Kraut, Zonderman, & Davatzikos, 2003), and functional
underactivation of frontal circuits (Logan, Sanders, Snyder,
Morris, & Buckner, 2002; Rypma, Prabhakaran, Desmond, &
Gabrieli, 2001; Rypma & DʼEsposito, 2000; Cabeza et al.,
1997; West, 1996; Grady et al., 1995; Moscovitch &Winocur,
1995).
Taken together, our findings in young and older adults

suggest that neural signals in occipito-temporal and pos-
terior parietal regions preserve selective information about
the perceived visual categories in aging, whereas this infor-

mation content may be compromised in more anterior
parietal and frontal circuits. These findings advance our
understanding of the neural processes that mediate learn-
ing and experience-dependent plasticity for categorical de-
cisions in the human aging brain in three main respects.
Previous studies have shown that performance declines
with age for categorization tasks entailing learning of ex-
plicit abstract rules and cognitive strategies that guide visual
attention to critical stimulus attributes (Schmitt-Eliassen
et al., 2007; Racine et al., 2006; Filoteo & Maddox, 2004;
Ridderinkhof et al., 2002; Chasseigne et al., 1997; Isingrini
& Vazou, 1997; Kramer et al., 1994; Parkin & Lawrence,
1994; Axelrod & Henry, 1992). However, our findings show
that both young and older adults can flexibly learn new de-
cision criteria (i.e., categorical boundary) that determine
the categorical membership of visual forms on the basis
of stimulus–response associations. This is consistent with
recent studies showing similar performance across age
groups for probabilistic learning of categories on the basis
of implicit stimulus–outcome associations (Fera et al.,
2005; Davis, Klebe, Bever, & Spring, 1998) and with theo-
retical and psychophysical evidence that older adults can
match the performance of younger adults given sufficient
practice (Ratcliff, Thapar,&McKoon, 2006; Richards, Bennett,
& Sekuler, 2006). Interestingly, age-related differences in
perceptual learning have been reported for speech com-
prehension. In particular, similar levels of learning were ob-
served for young and older adults for the initial task but
older adults were unable to show transfer after training
and adapt to differences in speech rate (Peelle & Wingfield,
2005).

Second, previous neuroimaging studies have identified a
large network of cortical and subcortical areas involved in
visual categorization (Ashby & Maddox, 2005; Keri, 2003)
and have revealed a distributed pattern of activations for
object categories in the temporal cortex (Williams, Dang,
& Kanwisher, 2007; OʼToole, Jiang, Abdi, & Haxby, 2005;
Hanson, Matsuka, & Haxby, 2004; Haxby et al., 2001). How-
ever, little is known about age-related changes in the neural
substrates that mediate categorization processes in older
adults. Recent studies show decreased activations in frontal
and subcortical regions (Fera et al., 2005) and reduced
neural specialization for visual categories in the temporal
cortex (Park et al., 2004). Our study extends significantly
beyond the localization of areas involved in categorization
by combining behavioral and advanced MVPA of imaging
measurements to characterize neural representations and
learning-dependent plasticity for visual categories in the
aging brain. In particular, we show that the patterns of ac-
tivation in occipito-temporal and posterior parietal regions
contain selective information for perceived visual cate-
gories that are shaped by training and may support flexible
categorical judgments in aging.

Third, plasticity in the aging human brain has been dem-
onstrated by numerous recent studies comparing the spa-
tial extent of fMRI activations between young and older
adults. These studies show age-related changes in cortical
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organization that relate to underactivation (i.e., decreased
activations in older adults) typically associated with cogni-
tive decline or overactivation (i.e., increased activations
and recruitment of different brain areas for older adults) that
may reflect compensatorymechanismsor difficulty in recruit-
ing specialized neural mechanisms (e.g., Grady, Springer,
Hongwanishkul, McIntosh, & Winocur, 2006; Reuter-Lorenz
& Lustig, 2005; Cabeza, Anderson, Locantore, & McIntosh,
2002; Reuter-Lorenz, 2002). Our work provides an alter-
nate approach in the study of the aging brain by compar-
ing the information content of brain areas engaged in the
representation of visual categories between young and
older participants rather than the amplitude of fMRI signals
that could be confounded by age-related signal changes
due to alterations in neurovascular coupling in aging. In par-
ticular, we take advantage of the higher sensitivity of multi-
variate methods in detecting neural preferences encoded
at a finer spatial resolution than that of typical fMRI measure-
ments. Using multivoxel pattern classification methods, we
evaluate whether small biases across voxels related to the
stimulus preference of the underlying neural populations
are statistically reliable. Comparing fMR-metric functions
that reflect the choices of anMVPA classifier to psychometric
functions that reflect the observersʼ choices, we discern cor-
tical areas that contain information about the perceived
rather than the physical stimulus categories and shape
their representations with learning according to the ob-
serversʼ behavior. Our findings provide novel evidence for
learning-dependent plasticity in similar cortical areas for
young and older adults; that is, higher occipito-temporal
and posterior parietal regions show learning-dependent
changes in the representation of visual categories.

However, cautious interpretation of these findings is
necessary due to the complex nature of the BOLD signal.
First, BOLD signals may differ across age groups due to
age-related alterations in cerebrovascular dynamics. To
control for this possibility, we used measurements of vas-
cular reactivity and hemodynamics and normalized the
BOLD signals used for MVPA for each of the observers
(DʼEsposito et al., 2003). Similar learning-dependent ac-
tivation patterns observed for young and old adults in
higher occipito-temporal and posterior parietal regions
suggest that any remaining differences in neurovascular
coupling between age groups could not significantly ac-
count for our findings. Second, MVPA on fMRI signals al-
lows us to reliably extract information about the sensitivity
of neural populations at a finer spatial resolution by pool-
ing small biases across voxels, but it does not enable us
to discern the nature of the signals that determine this
sensitivity. The learning-dependent activity changes we
observed may reflect changes in the selectivity of single
neurons, correlations across local neural populations, or
input from local or distant neural circuits. Future work
using multivariate approaches for the analysis of both fMRI
and electrophysiology signals would shed more light into
the neural mechanisms that mediate learning-dependent
plasticity across the lifespan.
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