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Abstract

■ Although much is known about decision making under uncer-
tainty when only a single step is required in the decision process,
less is known about sequential decision making. We carried out a
stochastic sequence learning task in which subjects had to use
noisy feedback to learn sequences of buttonpresses.We compared
flat and hierarchical behavioral models and found that although
bothmodels predicted the choices of the group of subjects equally

well, only thehierarchicalmodel correlated significantlywith learning-
related changes in themagneto-encephalographic response. The
significant modulations in the magneto-encephalographic signal
occurred 83 msec before button press and 67 msec after button
press. We also localized the sources of these effects and found
that the early effect localized to the insula, whereas the late effect
localized to the premotor cortex. ■

INTRODUCTION

Coherent sequences of decisions are an important fea-
ture of organized behavior, and real-world decisions are
often made with uncertainty. Given the importance of co-
herent behavior and the fact that it is often disrupted by
brain disorders (McKenna & Oh, 2005; Schwartz, Reed,
Montgomery, Palmer, & Mayer, 1991; Andreasen, 1979a,
1979b; Penfield & Evans, 1935), there is a need to under-
stand the neural processes involved in the learning and
orchestration of sequences of decisions. However, most
work on decision making has focused on single-step de-
cisions (Wittmann, Daw, Seymour, &Dolan, 2008; Fellows
& Farah, 2007; Daw, OʼDoherty, Dayan, Seymour, &
Dolan, 2006; Hsu, Bhatt, Adolphs, Tranel, & Camerer,
2005; Samejima, Ueda, Doya, & Kimura, 2005; Glimcher
& Rustichini, 2004).

In the current study, we addressed several aspects of
sequential decision making. The first questions we ad-
dressed were when and where do the cognitive processes
relevant to learning sequences from stochastic feedback
take place? We used magneto-encephalographic (MEG)
imaging, which has high temporal precision, to record
brain activity during the task. This allowed us to define
in time when cognitive processes became active and al-
lowed us to analyze data on a movement-by-movement
basis, without making movements artificially slow. Further-
more, we used source localization tools to estimate where
in space these processes were taking place. As such, we
examined how the signals related to learning in the task
evolve over time and space.

In addition, we were interested in the extent to which
subjects used optimal strategies to learn in our task. In an
interesting contradiction, two dominant fields of enquiry
separately describe behavioral processes as either opti-
mal (Knill & Saunders, 2003) or heuristic, which implies
suboptimality (Kahneman, Slovic, & Tversky, 1982). To a
large extent, these perspectives come from studying dif-
ferent classes of behaviors (Trommershauser, Maloney,
& Landy, 2008). Many who study sensory–motor integra-
tion have found that subject performance can have fea-
tures of optimality (Kording & Wolpert, 2006; Knill &
Saunders, 2003; Trommershauser, Maloney, & Landy,
2003a, 2003b; Ernst & Banks, 2002; Todorov & Jordan,
2002; Jacobs, 1999; Kersten, 1999; Knill & Richards, 1996;
Poggio, Torre, & Koch, 1985), whereas those who study
decision under risk have consistently shown that subject
performance is not optimal and instead heuristic (Gilovich,
Griffin, & Kahneman, 2002; Payne, Bettman, & Johnson,
1992; Tversky & Kahneman, 1986; Kahneman et al.,
1982), the neural correlates of which are currently being
explored (Tobler, Christopoulos, OʼDoherty, Dolan, &
Schultz, 2008). Thus, the difference may have to do with
the class of behavioral process being studied as well as
other features, including whether models are updated
with learning (Trommershauser et al., 2008).
The stochastic sequence learning task we used has ele-

ments of both sensory–motor integration and decision
making, as the uncertainty in our task is external and not
due to noise in the sensory–motor system. Furthermore,
by bringing decision making into a sequential frame-
work, we examined aspects of the cognitive processes
that underlie decision-making behaviors that do not
exist in single-step decision-making paradigms. Specifically,
we asked whether subjects were able to learn optimal1University College London, 2Århus University Hospital, Denmark
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sequences of decisions when information at other points
in the sequence affected the current choice. This relation-
ship among parts of a sequence can be modeled using a
hierarchical model. Many important human behaviors, in-
cluding speech, contain hierarchical structure between se-
quence elements, but it is not clear if these processes are
solved by a domain general system or by a domain-specific
language system (Fiebach & Schubotz, 2006).

METHODS

Subjects and Task

Fourteen subjects (7 men) carried out a stochastic se-
quence learning task while being scanned. Informed con-
sent was obtained from each subject in accordance with
procedures approved by the Joint Ethics Committee of
the National Hospital for Neurology and Neurosurgery
and the Institute of Neurology, London. Each trial began
with the presentation of a green outline circle at the cen-
ter of the screen, which cued the subjects to execute a
movement (Figure 1A). They responded by executing a
button press with either their left or right thumb. After
each response, they were given feedback about whether
they had pressed the correct button for that movement
of the sequence. If they were correct, the outline circle
filled green (positive feedback), and if they were incorrect,
the outline circle filled red (negative feedback). After the
feedback had been given for 200 msec, they were again
presented with a green outline circle that cued the next
movement of the sequence. They again pressed one of
two buttons and were given feedback. This was repeated

four times, such that each trial was composed of four
button presses, with each button press followed by feed-
back. In 15% of the cases, the wrong feedback was given.
In other words, if they had pressed the correct but-
ton, they were given red (negative) feedback, and if they
had pressed the incorrect button, they were given green
(positive) feedback. Thus, the feedback from any individ-
ual button press did not necessarily allow the subjects to
correct their mistakes and execute the correct sequence in
the subsequent trial. Integrated over trials, however, the
subjects could infer the correct button press sequence.

Exact task timing depended on the RTs of the subjects
and in the case of visual feedback, on where the screen
refresh cycle was when we initiated draw commands. The
mean RT following the pacing cue was 385 msec (SD =
284 msec). Visual feedback followed the button press by
40 msec (SD= 6msec). The mean time between the feed-
back and the presentation of the subsequent pacing cue
was 226 msec (SD= 9msec), and the mean time between
button presses was 602 msec (SD= 275 msec). The break
between trials was indicated with a blank screen that lasted
1 sec.

We used 6 of the 16 possible sequences (i.e., 4 button
presses with either the left or the right thumb gives 16 pos-
sible sequences), which were balanced for first-order but-
ton press probabilities and contained at least two left and
two right button presses. The sequences used were LLRR,
RRLL, LRLR, RLRL, LRRL, and RLLR. Each subject executed
eight sets of six blocks, where each block was one sequence
(Figure 1B). A single set consisted of all six sequence blocks
where the order of theblockswas chosen pseudorandomly.
For example, a block of Sequence 4 followed by a block of

Figure 1. Task. (A) Top shows sequence of images presented in a single trial. Bottom shows timing of events. Each cue, button press, feedback
series is presented four times in a single trial. Cue and positive feedback were green; negative feedback was red. (B) Sequence of sets, blocks, and
trials. Each set is composed of six sequence blocks. Subjects progress through a single sequence block by learning and executing the sequence
correctly eight times. (C) Sequence of analyses presented in Results.
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Sequence 1, and so forth. In each block, subjects had to de-
termine the correct sequence using the stochastic feedback
and execute it correctly eight times before they advanced to
the next block. Subjects were informed when the block
switched, and thus they knew when they had to start learn-
ing a new sequence. If they failed to complete the sequence
correctly eight times by 20 trials, they were advanced to the
next sequence. If the subjects completed all blocks of trials,
each sequence was executed correctly 64 times within a
session, resulting in a total of 384 correct sequences and
1,536 correct button presses for each subject. In addition,
subjects received at least one set of training on all six se-
quences before entering theMEG andwere instructed that
they only had to determine which of the six sequences was
correct in the current block. The training familiarized them
with the six sequences, the stochastic feedback, and the
other aspects of the task. The subjects were not told
specifically that all sequences would require two left and
two right button presses. Thus, within the experiment,
the subjects were familiar with the mechanics of the task
and the sequences, and their task was to use the stochastic
feedback for each sequence to estimate which sequence
was correct and then execute that sequence.

The task was challenging, and we found post hoc that
in about 9% of the blocks, the 12 subjects retained for
analysis failed to learn the sequence. Specifically, they
went through 20 trials without learning to criterion. With
respect to the MEG analysis described below, we carried
out the analysis both with and without the blocks of data
in which they failed to reach criterion. Although includ-
ing or not including these data affected the exact F values
of the MEG analysis, the rank order of the fit of the three
models was the same (see Results), and the plots showing
the spatial distribution of the effects were similar. We
report results for the analyses in which we excluded the
blocks in which subjects did not learn.

Data Analysis

Analyses proceeded in a series of steps (Figure 1C). First,
we fit behavioral models to each subjectʼs learning data.
Then, we extracted themovement-by-movement estimates
of learning from each subjectʼs behavioral model. This
learning estimate (quantified as the probability that the sub-
ject knew which button they should press at each point in
time) was then regressed on the data in sensor space to see
if the button-press-related activity was modulated by learn-
ing. We then used source localization on a subject-by-
subject basis to localize the significant effects that we found
in sensor space. After localizationwas done for each subject,
the results were used to carry out SPM statistics on whether
the localizations were significant across subjects.

Behavioral Model

We fit Bayesian statistical models to the subjectsʼ behavior.
The models allowed us to quantify trial by trial how much

the subjects had learned about which sequence or which
button was correct in the current block. The subjects
could press either the left or the right button at each point
in the sequence, and therefore they had a binary decision.
The model assumes that the subjects were trying to learn
the sequence and therefore that they were trying to op-
timize the number of times green feedback was received.
Statistically, this can be accomplished by remembering
how often green feedback was given for the left (or right)
button at each point in the sequence. For example, if
green feedback was given more often for the left button,
then the left button should be pressed. Thus, the model
integrates information about red versus green feedback
given for left and right button presses individually for each
of the four button presses in the sequence.
The model began with a binomial likelihood function

for each movement of the sequence, given by

pðDT ∣θi; jÞ ¼ θ
ri; j
i; j ð1−θi; jÞNj−ri; j ð1Þ

where θi, j is the probability that pressing button i (i ∈
{left, right}) on movement j ( j ∈ {1,…,4}) would be fol-
lowed by green feedback. The variable ri, j, defined be-
low, is the number of times reward (green feedback)
was given when button i was pressed on movement j
(or red feedback was given when the other button was
pressed), and Nj is the number of trials. The vector DT

represents all the data collected up to trial T for the cur-
rent block, which in this case are the values of r and N.
This was the only data relevant to inferring the correct
sequence of button presses. Importantly, the model does
not contain any information about previous sequences
from the current set. Subjects were not told that all se-
quences were given in each set, and therefore it was un-
likely that they would be able to infer set boundaries and
use this information to improve learning.
The probability that the left button should be pressed

for movement j after T trials (i.e., that it is more likely to
be the correct button) is given by

ΔF
j;T ≡ PF

j;TðB ¼ LÞ ¼ pTðpðθleft; j∣DTÞ > pðθright; j∣DTÞÞ

¼ ∫
1

0
pðθleft; j∣DTÞ∫

θleft; j

0
pðθright; j∣DTÞdθright; jdθleft; j: ð2Þ

We have written the posterior here (i.e., p(θright, j|DT)).
Button probabilities were equally likely in the experiment
so the prior was flat and the posterior is just the normal-
ized likelihood for this estimate. The superscript F on Δ
indicates that this is the probability used for button
presses in the flat model.
For the hierarchical model, a few additional computa-

tional steps were necessary to compute the button prob-
abilities. In effect, the hierarchical model uses feedback
about all four button presses in the sequence to estimate
the probability that either the left or the right button is
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correct at each individual point in the sequence. This is
the feature that distinguishes it from the flat model, and
this is possible because not all button press combinations
were used in the experiment and therefore certain possi-
bilities could be eliminated. We eliminated these possi-
bilities computationally as follows. Given that we had
an estimate of the probability that either the left or the
right button should be pressed at each point in the se-
quence, we could calculate the probability that each of
the sequences was correct. This probability was given
by

PðDT ∣skÞ ¼ ∏
4

j¼1
ΔF

j;TBj;k þ 1−ΔF
j;T

� �
ð1−Bj;kÞ

� �
; ð3Þ

where Bj,k is 1 if the left button was correct for move-
ment j, sequence k (sk), and 0 if the right button was cor-
rect. Formally, B is the conditional probability of the left
button being correct given the sequence, but because it
is a delta function, we have not used probability notation.
The posterior probability of each sequence was then given
by Bayes rule

PðSÞ ≡ Pðsk∣DTÞ ¼ PðDT ∣skÞpðskÞ
PðDTÞ : ð4Þ

Again, we have used a flat prior on sequences, as this
was in fact the prior in the experiment, so p(sk) = 1/6 for
all sequences.
In the hierarchical model, these sequence probabilities

can then be used to infer the button probabilities. As men-
tioned above, the hierarchical model uses information
about all four button presses to infer the probabilities of
each individual button press (Equation 3). In Equation 4,
the individual button probabilities were used to infer the
sequence probabilities. These sequence probabilities can
then be used to infer the button probabilities under the
hierarchical model. This was calculated as

ΔH
j;T ≡ PH

j;TðB ¼ LÞ ¼
X6

k¼1

Bj;kpðsk∣DTÞ; ð5Þ

Where again Bj,k was 1 if the left button was correct for
movement j, sequence k, and 0 if the right button was cor-
rect. Incidentally, although the second-order transitions be-
tween buttons were not balanced (i.e., L→ R vs. L→ L), the
hierarchical model subsumes andmodels this fact bymod-
eling all the correlations between button probabilities.
Equations 1–5 describe an ideal observer model, but it

is likely that the subjectsʼ behavior will deviate from this
model. To better predict their behavior, we added two
parameters to the basic model that allowed for differential
weighting of positive and negative feedback. These pa-
rameters affect both the flat and the hierarchical model.
When the models were fit to the subject behavior, differ-

ent parameters were fit under each model to individual
subjects, as shown in the Results section.

The differential weighting was implemented by using
the following equation for the feedback:

f bpositive ¼ 0:5þ α
:

f bnegative ¼ 0:5þ β
ð6Þ

The subscripts positive and negative indicate whether the
feedback was positive (green) or negative (red). The total
reward (feedback) in Equation 1 was then given by

ri; j ¼
XT
t¼1

f bpositive uðtÞ þ f bnegative ð1−uðtÞÞ: ð7Þ

The parameter u(t) is 1 if green feedback was given and 0
if red feedback was given on trial t. Thus, α and β scale
the amount that is learned from positive and negative
feedback. For an ideal observer, both parameters would
be .5. The parameters α andβwere fit to individual-subject
decision data bymaximizing the likelihood of the subjectʼs
sequence of decisions, given the model parameters. Thus,
we maximized:

pMðD*∣α;βÞ ¼ ∏
N

t¼1
ΔM
t Ct þ 1−ΔM

t

� �ð1−CtÞ
� �

; ð8Þ

whereC is the choice that the subjectmade for eachmove-
ment (C = 1 for left, C = 0 for right), and the superscript
on Δ and p indicates the probability calculated under
either the flat or the hierarchical model (i.e., M = F or
M = H) and D* indicates the vector of decision data, Ct,
or the sequence of button presses. This function was max-
imized using nonlinear function maximization techniques
in Matlab. Examination of the likelihood function around
themaximum likelihood estimates showed that likelihood
values dropped off smoothly and in a relatively Gaussian
way as the parameter values changed. We also tried multi-
ple starting values for the parameters (0, 0.1, 0.3, and 0.5)
and found that the algorithm always converged to the
same answer. Thus, our estimates were not likely local
minima. In part, this could be due to the large amount
of data that was collected for each subject.

Two of the subjects performed very poorly in the task
(Subjects 5 and 8), and their parameter values reflected
this as they had values near zero for both α and β, im-
plying no integration of the feedback. Once the param-
eters were found that maximized the likelihood, either
Equation 2 (PF(B)) or Equation 5 (PH(B)) was used to
generate the probability, on a trial by trial basis, that the
subject knew which button to press at each point in the se-
quence, and Equation 4was used to estimate the sequence
probability (P(S)), given the feedback from the current
block.
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Finally, for model comparison on the behavioral data the
log-likelihood ratio for the two models was calculated as:

llr ¼ log pFðD*∣α;βÞ−log pHðD*∣α;βÞ: ð9Þ

Because the models had the same number of parameters,
no corrections for degrees of freedom had to be done.
We could simply compare the fit of the two models on a
subject-by-subject basis and look at the distribution of
the llr across subjects to see if it was significantly positive
or negative.

We also examined three other models that were exten-
sions of the basic model. None of them fit the subject
behavior better than the flat model, and therefore we will
not go into the formal description of the models. How-
ever, it is worth describing them briefly as we did explore
various possibilities, beyond the flat and hierarchical
models, for how subjects might have been performing
the task. We were trying to model the possibility that sub-
jects were integrating information over the first few trials
of the block, but at some point they decided which se-
quence they thought was correct in the block. In that
case, the subjectsʼ probability estimate would jump from
its current value to 1. Effectively, we were trying to model
the possibility that when the probability estimate crossed
a threshold the subjects were sufficiently confident of
which sequence they were executing and their belief es-
timate went to 1 or some very high value. We did this in
three ways. First, we passed the button press probabili-
ties (Equation 2) generated by the basic model through
a soft-max function (Bishop, 1995). This function is used
to convert value estimates in reinforcement learning mod-
els into probabilities. It contains a temperature parameter
that controls how much probabilities are amplified. In ef-
fect, it causes the probabilities during learning to go much
more quickly to 1. We estimated the temperature as a free
parameter but found that it did not improve the fit. The
second approach was to implement a threshold. In this
case, when the belief value crossed that threshold it was
set to 1. In the third case, we switched from the button
probability generated by Equation 2 to the sequence but-
ton probability generated by Equation 5 when the prob-
ability passed a threshold. The threshold was always
allowed to vary as a free parameter. As stated, however,
none of these three approaches worked better than the
basic button model.

MEG Data Acquisition and Preprocessing

MEG data were recorded using 275 third-order axial gra-
diometers with the Omega275 CTF MEG system (VSM
MedTech, Vancouver, Canada) located in a magnetically
shielded room. The signals were recorded at a sampling
rate of 480 Hz. Visual stimulus lag was estimated using a
photodiode to measure the onset time at the screen
relative to the signal sent from the task control compu-

ter to the data acquisition computer and was found to
be 25 msec. This delay was used in calculating all of
our timing values. Data analysis was carried out using
SPM5 (Wellcome Department of Imaging Neuroscience,
London) and custom written Matlab routines to imple-
ment the behavioral model.
We began the analyses by low-pass filtering the MEG

signal at 50 Hz and downsampling to 120 Hz. The data
were then epoched into a 400-msec window centered
on the button press. Trials with a response that had an
absolute value greater than 3000 fT were discarded as
outliers. Statistical analysis and source localization was
carried out using SPM. Details of the general linear model
(GLM) that was fit are given below. Gaussian random
field theory was used to control for multiple comparisons
in either 2-D space× 1-D time (sensor space) or 3-D space
(source space) (Kiebel, Kilner, & Friston, 2007; Kilner,
Kiebel, & Friston, 2005). Sensors were converted into a
2-D space using Gaussian interpolation. Smoothing was
never done across both time and space. Thus, the signals
were first filtered in time and then filtered in space at a
single time point.
When relevant sensor space effects were identified, we

estimated the sources of these effects using source re-
construction algorithms in SPM5. For each subject, we con-
structed a forward model describing the transformation
between distributed dipole sources and themagnetic field
distribution measured by the MEG sensors. Sources were
modeled using the 7204 vertex template corticalmesh avail-
able in SPM5, defined in Talairach and Tournoux coordi-
nates. It was coregistered to the sensor locations via three
fiducial marker positions (Mattout, Henson, & Friston,
2007), and the gain matrix of the lead-field model was then
computed using a spherical head model, and source es-
timates were computed using restricted maximum like-
lihood estimation to invert the forward model within a
parametric empirical Bayes framework (Mattout, Phillips,
Daunizeau, & Friston, 2007; Mattout, Phillips, Penny, Rugg,
& Friston, 2006). This inversion proceeded using multiple
sparse empirical priors for covariance components (Friston,
Harrison, et al., 2008). The greedy search algorithm (Friston,
Chu, et al., 2008) provided an optimalmixture of sparse prior
components. This produced source reconstructions for each
experimental condition and for each subject.
We then compared activation levels on the mesh

across subjects using a random effects model (i.e., a sec-
ond level model in SPM). Voxels were accepted at an un-
corrected p value of .01, and all significance values are
reported at cluster level corrected for whole brain. Sources
were estimated in a 2 × 2 design, Probability × Button,
where probability was low or high (i.e., early or late learn-
ing). Significance of the probability factor was calculated
by first computing main effect contrasts subject by subject
and then doing univariate t tests.
For the GLM regressions that looked for an effect of the

learning-related probabilities on the MEG sensor response,
we carried out analyses in twoways. First, we examined the
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probability of the button that was actually pressed, under
both the flat and hierarchical models. Thus, the first level
regressor was given as

nðtÞ ¼ ΔM
t Ct þ 1−ΔM

t

� �ð1−CtÞ: ð10Þ

Interestingly, this regressor was not significant under either
model (data not shown). We then used a regressor that had
only the probability of the correct button press or sequence
at the current point in time. This was given by

mðtÞ ¼ ΔM
t Bj; k þ 1−ΔM

t

� �ð1−Bj; kÞ: ð11Þ

This regressor is what is plotted in Figure 4. It tracks
learning more closely and is the same whether the most
probable or the least probable button was pressed. The
sequence probability given by Equation 4 was also used, in
which case the currently correct sequence was plugged in
as the right-hand side of Equation 11.
When carrying out these analyses, we correlated the

regressor, m(t), on a movement-by-movement basis with
the time-varying MEG responses at each sensor and each
time point in the 400 msec window around button press,
similar to what is done in fMRI data with voxels. In our
case, we treated the 2-D sensor space by 1-D time space
as a 3-D volume, as described above. Thus, we fit the fol-
lowing GLM to each point in the 3-D volume

qx; y; l ¼ a0 þ bmðtÞ þ cgðtÞ þ dmðtÞgðtÞ ð12Þ

where qx,y,l indicates the response or MEG equivalent
voxel in the 3-D volume (i.e., x and y = position and l =
time around button press) and g(t) is the button press for
that movement, which is a dummy variable with values−1
and 1. The last parameter is an interaction term. This model
was fit to individual subjects, and then the parameter esti-

mates for the individual subjects were taken to the second
level in an SPM random effects approach.

RESULTS

Behavior

Fourteen subjects carried out the stochastic sequence
learning task (Figure 1), in which they had to learn se-
quences of four left/right button presses (e.g., LLRR,
LRLR, etc.). Explicit feedback was given after each button
press, but 15% of the time inaccurate feedback was given.
Two of the subjects failed to learn the sequences to cri-
terion, so their results will not be discussed further. It
took the remaining 12 subjects, on average, 3.2 trials of
learning with each new sequence before they executed a
complete trial correctly, where a correct trial was defined
as pressing all four buttons in the sequence correctly
(Figure 2A). The subjectsʼ performance reached a plateau
by about three trials correct (about six total, i.e., com-
bined correct and error trials) in each block, and they
executed the sequence in the remaining trials with few
errors. When the performance was examined as the serial
position of the movement, results were similar. It could
be seen, however, that the early movements of the se-
quence were learned slightly faster (Figure 2B). There
was also a small bias to perform better on the early and last
movements of the sequence between correct Trials 3
and 4 (Figure 2B), consistent with the primacy and re-
cency gradients seen in most sequence tasks (Averbeck,
Chafee, Crowe, & Georgopoulos, 2002). However, later
in the block, the performance reached a ceiling, and this
effect could not be seen.

In the task, the subjects made a sequence of four left
or right button presses. Thus, there were 16 possible se-
quences (24). However, we only used 6 of the 16 possible
sequences in the experiment. Because we only used a
subset of the possible sequences, there were correlations
between the correct button presses, and feedback about

Figure 2. Learning rate. (A) Fraction correct complete sequences (i.e., four correct button presses) and number of trials it takes to get one trial
correct. Both are plotted as a function of the number of correct trials in the current block. (B) Fraction correct individual button presses for first
though fourth button press in each sequence.
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button presses at other points in the sequence could be
used to better infer the correct button at the current point
in the sequence. For example, if in a particular block the
subject was certain that the first two button presses were
LL, they would predict that the subsequent button presses
were RR even if the evidence for RR was equivocal because
LLRR was the only sequence we used that started with LL.
These correlations between button presses can be repre-
sented with a hierarchical structure.

We explored the hypothesis that subjects took this
hierarchical or correlational structure into account when
theywere learning the sequences. To do this, we predicted
the subjectsʼ behavior with two different models, one
which did not take the hierarchical structure into account
(Figure 3A, flat model) and onewhich did (Figure 3B, hier-
archical model). Behavioral parameters were optimized
for each subject under eachmodel. We found that subjects
learned more from positive feedback than negative feed-
back under both models (Figure 3C). The parameter
values were also lower for the hierarchical model than
the flat model. This is due to the fact that the hierarchical
model is more efficient with the data because it correctly
models the actual stochastic process used in the experi-
ment. Because parameters were optimized under each
model, learning rates for the two models were similar,
although the hierarchical model tended to learn more
smoothly across trials because it integrated information
across buttons, as can be seen in a single example block
from a single subject (Figure 4).

We next examined whether we could find differences
in the ability of the two models to predict the behavior of
the subjects. We did this by computing a t test on the log-
likelihood ratio of the two models across subjects. A neg-
ative log-likelihood ratio for a single subject favored the
hierarchical model. There was, however, no significant dif-
ference between the models, across our subjects, t(11) =
1.8, p = .09. We did find that the behavior of the subjects
who learned better was better described by the hierarchi-
cal model. Thus, the total number of trials it took subjects
to finish the task, which is ameasure of how efficiently they

learned, was negatively correlated with the log-likelihood
ratio (r=−0.76, p< .01,n=12). In other words, the hier-
archical model better predicted the behavior of subjects
who learned more efficiently.

MEG Responses—Parametric Effect of Probability

We measured MEG responses while subjects learned and
executed the sequences. We began by examining effects
in sensor space, that is, by looking at task effects on the
temporal response in the interpolated scalp map around
the time of button press (200 msec before to 200 msec

Figure 3. Probability model of learning. (A) Flat architecture, in which feedback about individual movement affects only that movement.
(B) Hierarchical architecture, in which feedback about individual movements is used to infer the sequence, which is then used to infer the
movements. (C) Mean and SEM of parameter values across the 12 subjects for positive (α) and negative (β) feedback under the two models.

Figure 4. Probabilities for an example block under flat and hierarchical
models. Probability that the feedback up to the current trial supported
the correct button press under the flat model (PF), the correct
button press under the hierarchical model (PH), or the correct
sequence (P(S)) at each point in the sequence, as it evolves within
a single example block of trials. Xs above the x-axis indicate the
movements on which the subject pressed the incorrect button, and
asterisks indicate the movements in which the wrong feedback was
given (i.e., if the subject pressed the correct button for the sequence,
they were given red feedback, and if the subjects pressed the incorrect
button, they were given green feedback).
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after button press). All analyses in sensor space were car-
ried out by converting the 2-D sensor × 1-D time data into
a 3-D volume, which allowed us to carry out corrections for
multiple comparisons using the tools developed for fMRI
data (see Methods). Reported statistical results are based
on clusters of samples that exceeded a threshold.
In our analyses of the MEG data, we compared the rel-

ative ability of three different learning-related variables,
taken directly from the behavioral models discussed
above, to predict the change in the MEG response with
learning (Figure 4). We examined the button probabilities
under the flat (PF(B)) and hierarchical models (PH(B)),
and we also considered the probability of the sequence
(P(S)). In all cases, these probabilities were derived on a
movement-by-movement basis with the models fit to the
behavioral data of the individual subjects, including sepa-
rate modeling of positive and negative feedback, as de-
scribed above. These probabilities represent how much
has been learned about the sequence before the current
button press. Thus, they represent the subjectsʼ knowl-
edge of which button should be pressed or which se-
quence is correct in the current block. We also included
the button that was pressed and the interaction between
the probability and the button that was pressed in the
analysis (see Equation 12).
As we were interested in studying the learning effect,

we only carried out our analysis on blocks in which the
subjects completed eight sequences correctly, although
results in sensor space were similar when all blocks were
used (data not shown). There were no significant clusters
for the button probability under the flat model (PF(B);

p = .24, t test, cluster level, df = 11), and there was
one cluster that just missed significance under the button
probability for the hierarchical model (PH(B); p = .052,
t test, cluster level, df= 11). The sequence effect, however,
had two significant clusters (P(S); p < .05, t test, cluster
level, df= 11), one had a maximum at 83msec before but-
ton press (Figure 5) and extended above threshold from
108 to 67 msec before button press. The other had a
maximum at 67 msec after button press (Figure 6) and ex-
tended above threshold from 58 msec after until 150 msec
after button press. There was also a significant interaction
between the sequence probability and the button that was
pressed in the cluster which followed the button press
( p < .05, t test, cluster level, df = 11, max at 67 msec,
above threshold from 58 to 100 msec after button press),
but not for the cluster that preceded the button press.

These modulations of the MEG response manifested as
changes in the temporal evolution of the signal just be-
fore and after button press (Figure 5B); that is, the tem-
poral response was different depending on how well the
sequence had been learned in the current block. In all
cases, there was an increase in the signal early in the block,
when the sequence was not well learned (P(S) = 0.33),
leading to a decrease later in the block when the sequence
was well learned (P(S) = 1.0). This could also be seen in
sensor space, as the parametric regressor was negative in
the region with significant effects (Figure 5C). Thus, as the
probability increased across the block (Figure 4), the MEG
signal decreased. Interestingly, these learning-related dif-
ferences occurred before and after the peak response (Fig-
ure 5B). This suggests that the peak response reflects a

Figure 5. Significant sensor
modulation with probability
83 msec before button press
based on sequence model. (A)
Interpolated map of p values in
sensor space. Only p values
below .001 are shown, and all
values plotted are the negative
log of the p value (i.e., a value of
2 is .01). (B) Temporal response
at a single sensor (indicated in
panel A with white circle). Each
line represents predicted
response averaged across
subjects for one probability,
with probabilities indicated on
right of panel. (C) Contrast of
parametric regressor
representing probability main
effect in the GLM. (D)
Estimated source of effect. Plot
shows a significant cluster
of voxels (peak activation:
x = −30, y = 2, z = 10) in the
insula. Clusters were significant
bilaterally.
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purely motor effect, which is not modified by learning,
whereas the learning effects are related to preparatory
and postmotor processing.

As there were differences in how well the hierarchical
and nonhierarchical models predicted the behavior of in-
dividual subjects, we were interested in whether there
would be correlations between the relative fit of the mod-
els and how well the sequence model fit the behavior of
individual subjects. To test this, we examined the correla-
tion of the relative fit of the models, measured with the
log-likelihood ratio, and the contrast estimates for individ-
ual subjects. We did not, however, find that there were
significant correlations, after corrections for multiple com-
parisons, in the fit of the models and in the contrast esti-
mates for the sequence model.

Given that these effects were only significant under the
sequence model and not the flat model, we next assessed
whether the contrast estimates (i.e., the parametric regres-
sors from the GLM) were significantly larger for the se-
quence model than for the flat model by comparing the
distribution of contrast values across subjects between the
two models at the peak location, 83 msec before and
67 msec after button press. Neither of these distributions
were significantly different ( p= .55, unequal variance t test,
n = 24). We did, however, find that there was a significant
difference in the variance of the second level contrast distri-
bution at 83msec before ( p< .05, F test,df=11, 11) and an
almost significant difference at 67 msec after ( p = .056,
F test, df=11, 11) between the sequencemodel and the flat
model. Thus, the increased significance under the sequence
model is due to lower variance in the second level contrasts
as opposed to a larger mean of the parametric modulator.

Next, we used source localization to identify the possible
locations of the sequence probability effects. Significant
effects in source space were assessed by estimating dis-
tributed activation levels on a cortical mesh for individual
subjects and then carrying out second level statistics in
SPMon these activation levels.We first assessed the source
of the probability effect seen at−83 msec, using a window
from−117 to−67 msec. We used a window slightly larger
than the window over which the sensor effect was signifi-
cant as the algorithm rarely converged for small windows.
We found a significant source ( p < .05) bilaterally in the
insula, just lateral to the striatum (Figure 5D).
Next, we carried out source localization for the signifi-

cant effect 67 msec after button press, using a window
from 50 to 150 msec after button press. We found a sig-
nificant source for the probability effect at this time in
premotor cortex (Figure 6D; p < .05). There was an ad-
ditional significant source ( p < .05) in early visual cortex
bilaterally (left side x = −28, y = −82, z = −14), per-
haps reflecting an attentional effect on the assessment
of the feedback and a source at the frontal pole (x = 12,
y = 64, z = −12).

DISCUSSION

We examined the behavioral and neural correlates of
learning in a stochastic sequence learning paradigm.
Comparing flat and hierarchical behavioral models sug-
gested that both predicted the subjectsʼ decisions equally
well. However, only the sequence probability from the
hierarchical model resulted in significant correlations
with the MEG signal, and this significance was due to less

Figure 6. Significant sensor
modulation with probability
67 msec after button press. (A)
Interpolated map of p values in
sensor space. Only p values
below .001 are shown, and all
values plotted are the negative
log of the p value (i.e., a value of
2 is .01). (B) Temporal response
at a single sensor (indicated in
panel A). (C) Contrast of
probability main effect in the
GLM. (D) Estimated source of
effect. Plot shows a significant
cluster of voxels (peak
activation: x = −50, y = 6,
z = 24) in the premotor
cortex.
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variance in the contrast estimates across subjects. When
we localized the learning-related signals, we found a
cluster of activity in the insula that preceded the button
press and a cluster in the premotor cortex that followed
the press.

Behavior

Our sequence task had important features that allowed
us to assess how well subjects were learning and whether
they were optimal. The learning coefficients show that
subjects were not optimal, as positive and negative feed-
back should have been weighted similarly, whereas in
fact subjects relied more on positive feedback as has
been seen previously in sequence learning (Averbeck,
Sohn, & Lee, 2006). In the task, a hierarchical structure
is optimal, whereas a flat structure is not. The behavioral
data suggested that subjects that learned better tended to
learn in a more hierarchical manner. Perhaps additional
training on the sequences would have benefitted the sub-
jects who did not learn as well. Future experiments could
clarify this point.

Imaging Results

Two different learning-related signals emerged in the
MEG sensor data, one just before button press and one
just after button press. The early signal was near the mid-
line, whereas the later signal was lateralized over the right
side, although the left side signal may have been just be-
low significance. When we carried out source localization
on these two signals, we found a source in the insula for
the early signal and a source in premotor cortex for the
later signal. Some caution in interpreting these results is
necessary, however, as it is difficult to know how pre-
cisely the MEG sensor signals can be localized.
Previous fMRI studies have shown activation in the insula

during motor learning (Floyer-Lea & Matthews, 2004), and
this area has a direct projection to the striatum (Chikama,
McFarland, Amaral, & Haber, 1997) and as such it likely
takes part in a network of areas related to updating actions
on the basis of feedback. Previous work has also shown ac-
tivity in this area during outcome anticipation that is either
negatively or positively valenced (Knutson & Greer, 2008;
Volz, Schubotz, & von Cramon, 2004; Critchley, Mathias, &
Dolan, 2001). Although the MEG signal that was localized
to the insula preceded the button press by 83 msec, it is
likely that the press has already been initiated at the corti-
cal level at this time. Therefore, this signal may represent
anticipation of either a red or a green outcome, where the
anticipation is scaled by howmuch the subject has learned
in the block. Once the sequence is well learned, green
feedback is highly likely. It is also interesting that, unlike
the signal that follows the button press, this signal was
not modulated by the button that was pressed as we did
not find an interaction effect in the sensors. This makes
it unlikely that this signal was directly involved in learning,

as there was no information about the action. This signal
may be more related to oneʼs subjective sense of progres-
sion through the block, asmany studies implicate the ante-
rior insula in subjective interoception (Craig, 2009).

Activation in premotor cortex has been seen in tasks
with hierarchical structure (Koechlin & Jubault, 2006;
Schubotz & von Cramon, 2003, 2004), and the sequence
probability is hierarchical as it represents the entire series
of button presses in the order that they unfold. As there
is an interaction between sequence probability and the
button that was pressed, this signal may have a more di-
rect role in updating the probability information based
on the feedback.

A series of studies by Koechlin and colleagues have also
suggested that when tasks have explicit hierarchical struc-
ture, task factors that map to different levels of the cogni-
tive hierarchy map to different locations in frontal cortex
(Badre & DʼEsposito, 2007; Koechlin & Summerfield,
2007; Koechlin& Jubault, 2006; Koechlin, Ody,&Kouneiher,
2003). The behavior being studied in their work, how-
ever, differs in important ways from the behavior we have
studied. Specifically, the studies by Koechlin et al. did not
examine decision making in a framework where subjects
had to deal with uncertainty about the relationship be-
tween actions and outcomes. Rather, the previous studies
used rule-based cognitive tasks where the link between
stimulus/action/feedback was deterministic given the be-
havioral rule. Stochasticity in these tasks was implied by
the frequency with which the rule changed across blocks.
However, all of the informationwas always provided by the
task, and the mapping between actions and outcomes was
deterministic. This is very different from the task we have
used, which required subjects to deal with uncertainty in
an effort to infer the sequence (rule) that was in operation.
In our task, even if one knew which sequence was correct
in a particular block, one would not be able to predict the
feedback on an individual button press. As such, different
cognitive processes are likely required to solve our task.
The advantage of our approach is that we were able to test
directly whether subjects were using hierarchical or flat
statistical models when learning the sequences. Thus, we
have provided imaging evidence for hierarchical control in
a task that could have been solved using a flat model,
although the behavioral data were more equivocal. It is
not clear what the alternative model would be in the tasks
used by Koechlin et al. In their experiments, however, it is
less of an issue as they were not studying learning but
rather performance of a complex cognitive task.

One important caveat to the model comparison ap-
proach we have taken, with respect to the imaging data,
is that we have examined significance by linearly correlat-
ing the model prediction with the MEG signal (Behrens,
Hunt, Woolrich, & Rushworth, 2008; Wittmann et al.,
2008; Behrens, Woolrich, Walton, & Rushworth, 2007;
Daw et al., 2006). Linear correlations, however, do not
allow one to infer conclusively that the underlying neural
responses are necessarily favoring one model over the
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other. More specifically, the sequence probability is a
nonlinear function of the button probability under the
flat model. As such, there cannot be more information
in the underlying neural response about the sequence
variable than there is about the button probability be-
cause of the data processing inequality (Cover & Thomas,
1991). Thus, our inference relates only to the specific
functional form that we have examined, the linear rela-
tionship, and does not tell us about the detailed neural
representation of this probability. For this, single-unit
studies can be more valuable, partly for practical reasons.
It is in many cases possible to examine the relationship
between single-unit firing rate responses and various be-
havioral variables graphically and fit models accordingly.
Also, there are often more trials available for fitting more
complex models. The high dimensionality of MEG data
makes examining the relationship between time varying
signals and task variables highly complex. Interestingly,
the data from the single-unit studies have consistently
shown, in many brain areas and in many similar tasks, that
sequence information is explicitly represented in the brain
(Averbeck et al., 2006; Tanji, 2001; Nakamura, Sakai, &
Hikosaka, 1998).

Comparison with Single-unit Studies

One of the goals of the present study was to approach a
question we have already examined in macaques at the
single-cell level (Averbeck et al., 2006) in humans using
an imaging approach. We had originally intended to
use a task that was as similar as possible to the task used
in the macaque study. However, unlike macaques that
require several trials to learn a three-movement se-
quence with explicit feedback, human participants given
a four-movement sequence learn it in about one trial
(unpublished data). This rapid learning makes study-
ing the learning process difficult, and this is why we
made the task more difficult by introducing the sto-
chastic feedback.

The second difference has to do with the nature of the
information that can be extracted from single-unit data
versus MEG imaging data. Specifically, in the macaque
study, we were able to track learning by following the
emergence of a signal in single neurons that explicitly re-
presented the sequence that was correct in the current
block. However, we were not able to extract sequence-
specific information from the MEG signal (unpublished
data). Thus, we had to use a different approach to exam-
ine the learning-related changes in neural activity. Given
this difference, however, the premotor signal that follows
the button press is in many respects comparable with the
location we studied in the macaque, as the activity in the
macaque was just anterior to the FEFs, and we used eye
movements as our behavioral output in the macaque.
Thus, premotor cortex and caudal area 46may have similar
functions for different effectors.

Conclusion

In conclusion, we found that when subjects learned effi-
ciently, they learned hierarchically. Furthermore, the
learning-related variable thatmost strongly correlatedwith
the imaging data was the probability of the sequence, a
parameter that is present in the hierarchical model but
not in the flat model. Thus, the imaging data and to some
extent the behavioral data suggest that when efficient sub-
jects were faced with learning a sequence that had hier-
archical structure, they were able to take advantage of
that structure.

Reprint requests should be sent to Dr. Bruno B. Averbeck, UCL
Institute of Neurology, Sobell Department, Box 28, Queen
Square, London WC1N 3BG, UK, or via e-mail: b.averbeck@
ion.ucl.ac.uk.
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