
interpretations of complexneuroanatomical data have
limitations. Another reason is a pragmatic one; it is often
not feasible in a single neuroanatomical study to inject
every region of the frontal cortex with both retrograde
and anterograde tracers (but advances are being made;
see Markov et al., 2014). Thus, to study the intrinsic con-
nections from all or most frontal regions, neuroanatomists
must combine results from multiple studies, which is a
major challenge given that different parcellation and
naming schemes are often used across studies.

Over the past 15 years, tools such as CoCoMac (Collations
of Connectivity in the Macaque) database (Bakker et al.,
2012; Kötter, 2004) have been developed, which house
a large corpus of macaque connectivity data in an anno-
tated form and coordinate-free registration algorithms
that can operate on the annotated CoCoMac data (Bakker
et al., 2012; Bezgin, Wanke, Krumnack, & Kötter, 2008;
Kötter, 2004), that allow tracer results from multiple par-
cellation schemes to be combined. At the same time, the
growing field of “connectomics” has introduced quantita-
tive, observer-independent methods using graph theory
for studying the large-scale organization of complex brain
networks (Bullmore & Sporns, 2009). Combining these
resources has enormous potential to advance scientific
knowledge about the intrinsic organization of the frontal
cortex by offering replicable, quantitative, and unbiased
methods for testing an established anatomical theory
and exploring new connectional patterns. For example,
studies by Passingham et al. (2002) and Averbeck and
Seo (2008) using CoCoMac data, along with multidimen-
sional scaling and hierarchical clustering techniques, have
shown that frontal subregions by virtue of their complex
intrinsic and extrinsic connections each have a unique
“connectional fingerprint,” which likely reflects functional
specificity. Moreover, these studies demonstrate that
there is a topological organization of frontal subregions’
long-distance connections that roughly maps on to the
dual-axis model (Barbas & Pandya, 1989). In essence, these
previous studies have provided quantitative and observer-
independent validation for the qualitative observations
made by skilled neuroanatomists.

Here, our aim was to examine the intrinsic connections
of macaque frontal cortex using observer-independent
quantitative methods to test to the hypothesis that frontal
cortical subregions can be divided into distinct networks
along its rostrocaudal and dorsoventral axis. Given evi-
dence for dual-axis frontal topology in the extrinsic wiring
of frontal cortex, our aim here was to utilize sensitive
graph-theory methods to examine whether a dual-axis
organization is also reflected in the local white matter
connections among frontal subregions. We applied a
graph-theoretical community detection algorithm
(Newman & Girvan, 2004) to a graph of macaque frontal cor-
tex derived from the results of 400+ studies in the CoCoMac
database (Modha & Singh, 2010; Stephan et al., 2001).
Community detection algorithms subdivide or partition a
network into smaller“modules” so as to maximize within-

module connections and minimize between-module con-
nections. This analysis capitalizes on the assumption that
the brain maintains efficient and robust communication
via connections that are clustered among regions with
similar functions yet tend to be relatively sparse among
regions with disparate functions (Sporns & Zwi, 2004).
We use the term“modularity” and “modules” to refer to
the quantitative value of network separability and the result-
ing network partition, respectively. We do not assume that
regions within a module have the same specific function
but rather that, based on their interconnectedness, regions
within a module are more functionally related than regions
in other modules and form a processing subnetwork.

METHODS

Data Set

The data set used for this study was drawn from the
CoCoMac database (Stephan et al., 2001) and was pub-
lished previously by Modha and Singh (2010). CoCoMac
houses results from over 400 original neuroanatomical
reports (spanning 100 years of research) and supplies
more than 200 different mapping schemes and 30,000
anatomical connections. The database was designed to
help provide logical solutions for the“parcellation prob-
lem” (Felleman & Van Essen, 1991)—the challenges asso-
ciated with comparing results across different brain
parcellations without the use of a common coordinate
frame. CoCoMac does this by storing tracer and mapping
information in a logical/relational form rather than a
spatial form. Specialized coordinate-free registration algo-
rithms have been developed to work with CoCoMac data
to construct large-scale topological macro-connection
matrices (i.e.,“graphs”) of the macaque brain that in-
corporate tracer results from across different parcellation
schemes (Blumenfeld, Bliss, Perez, & D’Esposito, 2014;
Bakker et al., 2012; Bezgin, Vakorin, van Opstal, McIntosh,
& Bakker, 2012; Stephan & Kötter, 1998). In such network
graphs or connectivity matrices, brain regions are repre-
sented as nodes and white matter tract connections be-
tween nodes are represented as edges (Bullmore &
Sporns, 2009). The connectivity matrix used for this study,
published previously (Modha & Singh, 2010), is a macaque
brain graph containing 383 unique cortical and subcortical
nodes and 6,602 directed edges. Briefly, Modha and
Singh (2010) constructed this matrix by first extracting all
the brain regions listed inthe CoCoMac database with
unique sets of anatomical connections and mapping rela-
tionships. This comprehensive set of unique regions,
along with all anatomical connections, was then combined
into a single directed graph.

This data set has several strengths for our purpose: It is
large (many nodes and edges), comprehensive (drawn
from the entire CoCoMac corpus), unbiased (fully data-
driven construction), and robust. However, two limitations
of this data set are noteworthy. First, this graph has a
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hierarchical structure in that a region and its connections
are represented at multiple spatial scales. For example,
the original graph contained a single node for frontal cor-
tex as well as a node for pFC and nodes for many sub-
regions of pFC (e.g., Area 47/12). Thus, the connections
of one subregion (i.e., Area 47/12) populate not only
Node area 47/12’s connections but also those of the pre-
frontal node as well as those of the frontal node. To ad-
dress this limitation, we removed redundant higher-level
nodes from the graph (i.e., the frontal and prefrontal
nodes). The second limitation is that this network allows
for spatially overlapping brain regions (e.g., 6Va, M2-FL)
from different parcellation schemes to make unique con-
tributions to the network. Although this promotes robust-
ness in the graph, it can lead to the possibility that a given
region of cortex can be assigned to multiple modules.
Thus, it has the potential to complicate the interpretation
of our results. In the analyses presented in our Results sec-
tion, we take steps to address this later spatial overlap/
multiple assignment issue.

To address the first issue and create a graph of frontal
cortex at a single level of resolution, we extracted a sub-
graph consisting of the nodes and directed edges com-
prising the frontal cortex. We then removed redundant
higher-level nodes from the graph (i.e., the frontal and
prefrontal nodes) and binarized the resulting matrix leav-
ing an undirected binary graph of the frontal cortex par-
cellated at a single level of resolution with 53 nodes and
269 undirected edges (Table 1). We take further steps to

address the second, spatial overlap, issue in our analyses
presented in the Results section.

Analysis

We applied Newman’s modularity (Newman & Girvan,
2004) using simulated annealing (Guimerà, Sales-Pardo,
& Amaral, 2004). This metric compares the number of
within-module with between-module connections and
thus reflects the strength of a graph’s modular organiza-
tion. Modularity, or Q, is defined as

Q ¼
Xm

i¼1

eii − a2
i

� �

where eii is the fraction of edges that connect two nodes
within a module i, ai is the fraction of edges connecting a
node in module i to any other node, andm is the total
number of modules. Modularity will be 1 if all edges fall
within a module, and it will be 0 if there are no more
connections within a module than would be expected
by chance. According to Newman and Girvan (2004),
typical values ofQ range from 0.30 to 0.60 in relatively
large and modular graphs (Newman & Girvan, 2004).

In subsequent analyses, we computed two nodal
metrics that examine the roles of nodes within their
module. The within-module degree (WMD) is az-scored
measure of the number of intramodule connections to
each node. The WMD value for each nodei, WMDi, is
defined as

WMDi ¼
ki − �ksi

� ksi

where ki is the number of connections between nodei
and other nodes in its modulesi, �ksi is the average degree
of all nodes insi, and � ksi is the standard deviation of the
degree of all nodes insi. This gives a relative (z-scored)
measure of how well connected any node is to other
nodes within its own module (Guimerà & Nunes Amaral,
2005).

The participation coefficient (PC) is a measure of the
number of intermodule connections for each node nor-
malized by their expected value. The PC value for each
node i, PCi, is defined as

PCi ¼ 1 −
XNM

s¼1

kis

ki

� � 2

whereki is the total number of connections to nodei and
kis is the number of connections between nodei and
nodes in module s. If a node has connections uniformly
distributed to all modules, then its PC value will be 1; on
the other hand, if its links are concentrated within its
own module, its PC value will be 0 (Guimerà & Nunes
Amaral, 2005).

Table 1. Frontal Nodes Drawn from Modha and Singh (2010)
Used for This Study

Lateral Nodes

Caudal, motor, and
premotor regions

Gu, 4c, PrCO, ProM, M2-HL,
M2-FL, F2, F4, F5, F6, F7,
6Vb, 6Va

Dorsolateral pFC 8Ad, L9, D9, 8B, PS, 9/46d,
46d, 46f, 46dr

Ventrolateral pFC 44, 47/12, 9/46v, 45A, 45B,
46v, 46vr

Frontal polar cortex 10v, 10d

Medial Nodes

Caudal regions SMAc, SMAr, 24d, 24c,
24b, 24a

Mid to rostral regions 32, M9, 10m

Orbital Nodes

Caudal regions OFap, 13M, 13L, 13a

Mid to rostral regions 12l, 12m, 12o, 12r, 11m,
11l, 14O, 14r, 10o
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