Causal Prefrontal Contributions to Stop-Signal Task Performance in Humans

Michael K. Yeung¹,²*, Ami Tsuchida³*, and Lesley K. Fellows¹

Abstract

The frontal lobes have long been implicated in inhibitory control, but a full understanding of the underlying mechanisms remains elusive. The stop-signal task has been widely used to probe instructed response inhibition in cognitive neuroscience. The processes involved have been modeled and related to putative brain substrates. However, there has been surprisingly little human lesion research using this task, with the few existing studies implicating different prefrontal regions. Here, we tested the effects of focal prefrontal damage on stop-signal task performance in a large sample of people with chronic focal damage affecting the frontal lobes (n = 42) and demographically matched healthy individuals (n = 60). Patients with damage to the left lateral, right lateral, dorsomedial, or ventromedial frontal lobe had slower stop-signal RT compared to healthy controls. There were systematic differences in the patterns of impairment across frontal subgroups: Those with damage to the left or right lateral and dorsomedial frontal lobes, but not those with ventromedial frontal damage, were slower than controls to “go” as well as to stop. These findings suggest that multiple prefrontal regions make necessary but distinct contributions to stop-signal task performance. As a consequence, stop-signal RT slowing is not strongly localizing within the frontal lobes.

INTRODUCTION

The ability to suppress inappropriate actions is key to flexible goal-directed behavior. Work in recent decades has defined component processes of response inhibition (assessed, for example, with go/no-go tasks and more recently with the stop-signal task) with increasing precision. The influential horse-race model conceives of this form of inhibitory control in terms of a race between the “go” response and a second, independent “stop” process (Logan & Cowan, 1984). The stop-signal task provides behavioral indicators of both processes; the “go” RT measured directly on trials that do not require inhibition and the stop-signal RT (SSRT) estimated by varying the delay between go and stop signals in the task (Logan, 1994; Lappin & Eriksen, 1966). This task and the associated computational framework have been widely applied in the study of neuropsychiatric conditions, many of which are characterized by impulsivity or other symptoms of weak inhibitory control (Smith, Mattick, Jamadar, & Iredale, 2014; Lipszyc & Schachar, 2010; Alderson, Rapport, & Kofer, 2007).

It is generally accepted that stop-signal-type response inhibition relies on frontal-striatal circuitry. It has been hypothesized that response inhibition is initiated by the frontal cortex, which activates the subthalamic nucleus and/or the striatum, exciting the globus pallidus pars interna and decreasing thalamocortical output (Aron & Poldrack, 2006; Nambu, Tokuno, & Takada, 2002). However, the evidence supporting this view is mixed, at least with respect to the role of specific frontal lobe subregions in humans. Meta-analyses of fMRI findings with the stop-signal task find more activity in successful-stop trials compared to go or failed-stop trials in several regions: left insula extending to the thalamus and putamen, right insula extending to the inferior frontal gyrus (IFG) and precentral gyrus, superior frontal gyrus including the pre-SMA and premotor cortex, and right middle frontal gyrus (Zhang, Geng, & Lee, 2017; Rae, Hughes, Weaver, Anderson, & Rowe, 2014; Swick, Ashley, & Turken, 2011).

A somewhat different picture arises from loss-of-function experiments. There have been several studies using TMS to alter local cortical function. Notwithstanding the broad, bilateral frontal lobe activation observed in fMRI studies, this work has mainly focused on the right IFG or dorsomedial (DM) PFC. Stimulation over the right IFG influenced SSRT in several (Obeso, Cho, et al., 2013; Obeso, Robles, Marrón, & Redolar-Ripoll, 2013; Verbruggen, Aron, Stevens, & Chambers, 2010; Chambers et al., 2006) but not all (Lee et al., 2016) studies. TMS over the right pre-SMA can also affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013), but this has not been a consistent finding (Lee et al., 2016; Verbruggen et al., 2010), and this region is challenging to reach with TMS. Several studies have found that TMS over the right middle frontal gyrus or primary motor cortex does not affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013; van den Wildenberg et al., 2010; Badry et al., 2009; Chambers et al., 2010) and decreasing thalamocortical output (Aron & Poldrack, 2006; Nambu, Tokuno, & Takada, 2002). However, the evidence supporting this view is mixed, at least with respect to the role of specific frontal lobe subregions in humans. Meta-analyses of fMRI findings with the stop-signal task find more activity in successful-stop trials compared to go or failed-stop trials in several regions: left insula extending to the thalamus and putamen, right insula extending to the inferior frontal gyrus (IFG) and precentral gyrus, superior frontal gyrus including the pre-SMA and premotor cortex, and right middle frontal gyrus (Zhang, Geng, & Lee, 2017; Rae, Hughes, Weaver, Anderson, & Rowe, 2014; Swick, Ashley, & Turken, 2011).

A somewhat different picture arises from loss-of-function experiments. There have been several studies using TMS to alter local cortical function. Notwithstanding the broad, bilateral frontal lobe activation observed in fMRI studies, this work has mainly focused on the right IFG or dorsomedial (DM) PFC. Stimulation over the right IFG influenced SSRT in several (Obeso, Cho, et al., 2013; Obeso, Robles, Marrón, & Redolar-Ripoll, 2013; Verbruggen, Aron, Stevens, & Chambers, 2010; Chambers et al., 2006) but not all (Lee et al., 2016) studies. TMS over the right pre-SMA can also affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013), but this has not been a consistent finding (Lee et al., 2016; Verbruggen et al., 2010), and this region is challenging to reach with TMS. Several studies have found that TMS over the right middle frontal gyrus or primary motor cortex does not affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013; van den Wildenberg et al., 2010; Badry et al., 2009; Chambers et al., 2010) and decreasing thalamocortical output (Aron & Poldrack, 2006; Nambu, Tokuno, & Takada, 2002). However, the evidence supporting this view is mixed, at least with respect to the role of specific frontal lobe subregions in humans. Meta-analyses of fMRI findings with the stop-signal task find more activity in successful-stop trials compared to go or failed-stop trials in several regions: left insula extending to the thalamus and putamen, right insula extending to the inferior frontal gyrus (IFG) and precentral gyrus, superior frontal gyrus including the pre-SMA and premotor cortex, and right middle frontal gyrus (Zhang, Geng, & Lee, 2017; Rae, Hughes, Weaver, Anderson, & Rowe, 2014; Swick, Ashley, & Turken, 2011).

A somewhat different picture arises from loss-of-function experiments. There have been several studies using TMS to alter local cortical function. Notwithstanding the broad, bilateral frontal lobe activation observed in fMRI studies, this work has mainly focused on the right IFG or dorsomedial (DM) PFC. Stimulation over the right IFG influenced SSRT in several (Obeso, Cho, et al., 2013; Obeso, Robles, Marrón, & Redolar-Ripoll, 2013; Verbruggen, Aron, Stevens, & Chambers, 2010; Chambers et al., 2006) but not all (Lee et al., 2016) studies. TMS over the right pre-SMA can also affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013), but this has not been a consistent finding (Lee et al., 2016; Verbruggen et al., 2010), and this region is challenging to reach with TMS. Several studies have found that TMS over the right middle frontal gyrus or primary motor cortex does not affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013; van den Wildenberg et al., 2010; Badry et al., 2009; Chambers et al., 2010) and decreasing thalamocortical output (Aron & Poldrack, 2006; Nambu, Tokuno, & Takada, 2002). However, the evidence supporting this view is mixed, at least with respect to the role of specific frontal lobe subregions in humans. Meta-analyses of fMRI findings with the stop-signal task find more activity in successful-stop trials compared to go or failed-stop trials in several regions: left insula extending to the thalamus and putamen, right insula extending to the inferior frontal gyrus (IFG) and precentral gyrus, superior frontal gyrus including the pre-SMA and premotor cortex, and right middle frontal gyrus (Zhang, Geng, & Lee, 2017; Rae, Hughes, Weaver, Anderson, & Rowe, 2014; Swick, Ashley, & Turken, 2011).

A somewhat different picture arises from loss-of-function experiments. There have been several studies using TMS to alter local cortical function. Notwithstanding the broad, bilateral frontal lobe activation observed in fMRI studies, this work has mainly focused on the right IFG or dorsomedial (DM) PFC. Stimulation over the right IFG influenced SSRT in several (Obeso, Cho, et al., 2013; Obeso, Robles, Marrón, & Redolar-Ripoll, 2013; Verbruggen, Aron, Stevens, & Chambers, 2010; Chambers et al., 2006) but not all (Lee et al., 2016) studies. TMS over the right pre-SMA can also affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013), but this has not been a consistent finding (Lee et al., 2016; Verbruggen et al., 2010), and this region is challenging to reach with TMS. Several studies have found that TMS over the right middle frontal gyrus or primary motor cortex does not affect SSRT (Obeso, Cho, et al., 2013; Obeso, Robles, et al., 2013; van den Wildenberg et al., 2010; Badry et al., 2009; Chambers et al., 2010) and decreasing thalamocortical output (Aron & Poldrack, 2006; Nambu, Tokuno, & Takada, 2002). However, the evidence supporting this view is mixed, at least with respect to the role of specific frontal lobe subregions in humans. Meta-analyses of fMRI findings with the stop-signal task find more activity in successful-stop trials compared to go or failed-stop trials in several regions: left insula extending to the thalamus and putamen, right insula extending to the inferior frontal gyrus (IFG) and precentral gyrus, superior frontal gyrus including the pre-SMA and premotor cortex, and right middle frontal gyrus (Zhang, Geng, & Lee, 2017; Rae, Hughes, Weaver, Anderson, & Rowe, 2014; Swick, Ashley, & Turken, 2011).
et al., 2006), supporting anatomical specificity within the frontal lobes.

Fixed focal lesions provide a second source of causal evidence, with more certainty about the anatomical extent of disruption than TMS. Studies of the effects of frontal lobe damage on response inhibition have yielded surprisingly mixed results. Early work reported that frontal lobe damage led to slower SSRT but did not address subregional contributions (Rieger, Gauggel, & Burmeister, 2003). Donald Stuss and colleagues systematically studied subregional frontal lobe contributions to response inhibition in a relatively large sample, with the go/no-go task. They found that only the left superior medial frontal lobe made a necessary contribution (Picton et al., 2007). A second study by Floden and Stuss (2006), this time with the stop-signal task, also supported a specific role for the DM frontal lobe: That paper reported that damage to the right superior frontal cortex led to slower SSRT. However, these findings are in contrast to another influential lesion study from about the same period showing that the extent of damage to the right IFG correlated with slower SSRT and arguing for a specialized role of the right IFG in response stopping (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003). Yet, another study questioned the laterality of the IFG effect, finding that go/no-go task performance was impaired after left IFG damage (Swick, Ashley, & Turken, 2008). More recently, Roberts and Husain (2015) found intact stop-signal performance in a single case with a restricted pre-SMA lesion, raising questions about the DM frontal contribution to this task. However, that study used a stop-signal procedure with equal probabilities of go and stop trials that might have encouraged strategic slowing and reduced reliability of the SSRT estimate (Verbruggen, Chambers, & Logan, 2013).

This lack of consensus across human lesion studies, as well as uncertain convergence of lesion, TMS, and fMRI findings, poses problems for brain-based models of inhibitory control. This also raises doubts about applying the stop-signal task as a neuropsychological probe for specific frontal-striatal circuitry in neuropsychiatric conditions. Here, we aimed to provide causal evidence of regional frontal lobe contributions to the stop-signal task, studying a large sample of people with focal frontal lobe damage and age-matched healthy controls (HCs). To maximize applicability to the current cognitive neuroscience literature, we applied gold-standard recommendations for behavioral analysis (Verbruggen et al., 2019) and tested frontal lobe contributions with both ROI and voxel-based approaches.

METHODS

Participants

Forty-seven patients with focal damage to the frontal lobes were recruited via the research registries of the Center for Cognitive Neuroscience at the University of Pennsylvania and McGill University (Figure 1). Those with traumatic brain injury or other neurological conditions that might be associated with diffuse brain damage were excluded. All were administered the stop-signal task as part of a larger battery of tests. Forty-two patients met minimal performance

![Figure 1](http://example.com/image1.png)

Figure 1. Flow diagram of participant recruitment and progression through the study. DM = dorsomedial damage patient; HC = healthy control; LL = left lateral frontal damage patient; RL = right lateral frontal damage patient; VM = ventromedial damage patient.
criteria (described below) and were included in the current analysis. The group included 17 with ischemic or hemorrhagic stroke, 18 who had undergone resection of low-grade tumors, and seven with damage because of ruptured aneurysm. Seventeen patients were taking one or more psychoactive medications, most commonly anticonvulsants or antidepressants. All patients were tested at least 6 months (range: 0.7–14.4 years) after the brain injury. The individual lesions of all frontal patients were manually traced from the most recent clinical MRI or computed tomography imaging onto the standard Montreal Neurological Institute (MNI) brain template by a neurologist blind to task performance, using MRICro software (Rorden & Brett, 2000). In all cases, imaging was from at least 6 months after event (typically more than 1 year after event), that is, reflecting the extent of chronic damage. Unfortunately, at this point, records of the imaging type were readily available for only the 23 patients imaged at McGill, nine of whom had computed tomography and 14 had 1.5-T MRI. We are not making anatomical claims at a level of resolution that is likely to be affected by imaging modality.

Sixty-one age- and education-matched healthy participants were recruited via local advertisement in Montreal. None was taking psychoactive medication or reported a history of neurological or psychiatric illness that might interfere with cognition. All control participants scored at least 26 of 30 (M = 27.8, SD = 1.3) on the Montreal Cognitive Assessment (Nasreddine et al., 2005). One was excluded subsequently for failing to meet minimum performance criteria for the stop-signal task (see Stop-Signal Task section), resulting in a final healthy control (HC) sample of 60 participants. All participants provided written informed consent, in accordance with the Declaration of Helsinki. All were paid a nominal fee for their time. The study protocol was approved by the institutional review boards of the University of Pennsylvania and McGill University.

Participants completed a brief battery of cognitive screening tests. Premorbid IQ was estimated using the American National Adult Reading Test (Blair & Spreen, 1989). Attention was assessed with the backward digit span and Corsi span tests, and executive function and language were assessed using the verbal fluency (phonemic [F] and semantic [animals]) and a sentence comprehension test similar to the token test (Lezak, Howieson, & Loring, 2004). Depression symptoms were assessed using the second edition of the Beck Depression Inventory (Beck, Steer, Ball, & Ranieri, 1996). All but two participants also completed a letter 2-back task involving a “go/no-go” decision requirement for a separate experiment: A fixed pseudorandom sequence of letters was presented at the center of the computer screen, one letter at a time. Participants were asked to respond by pressing the space bar as quickly as possible only when the letter they were seeing was identical to the letter they saw two trials before (i.e., target). They were asked to do nothing for all other letters (i.e., nontargets). On each trial, a letter was presented for 500 msec, followed by an ISI of 1500 msec. There were 122 trials, 20 of which were target trials. A subset of the data from the 2-back task has been published previously (Tsuchida & Fellows, 2009). We included letter 2-back performance here as an ad hoc specificity check, considering it as a control task of similar difficulty and with some requirements (e.g., sustained attention, motor response) that seem likely to be shared with the stop-signal task.

Stop-Signal Task

A version of the stop-signal task, similar to the one used in Aron et al. (2003), was administered. Each trial started with a blank screen for 1000 msec. Next, a left- or right-pointing arrow was presented in the center of the screen, and participants were instructed to respond with a left or right key press. The arrow stayed on-screen until a response was made. No time limit was set for responding. Stop-signal trials were randomly interleaved, comprising 25% of the trials. On stop trials, participants heard an auditory tone (i.e., stop signal), in which case they were to withhold the response. Participants were instructed to respond to the arrows as quickly as possible and not to wait for the tone. The arrow stayed on-screen for a maximum of 1000 msec, disappearing when a response was made. The time between arrow presentation and stop signal (stop-signal delay [SSD]) was varied using four equiprobable staircases, starting at SSD values of 100, 200, 300, and 400 msec. The SSD for each staircase was decreased by 50 msec if a participant failed to inhibit a response and increased by 50 msec if the participant successfully inhibited the response. There were five blocks of 64 trials each, totaling 320 trials. During the break between blocks, the RT in the previous block was provided as feedback, and participants were reminded to respond as quickly as possible and not to wait for the tone. The task was presented using E-Prime 1.2 (Psychological Software Tools Inc.).

In accordance with a recent consensus guide to stop-signal task analysis (Verbruggen et al., 2019), SSRT was estimated using the integration method. In this method, the point at which the stop process finishes is estimated by integrating the RT distribution and finding the point at which the integral equals the probability of responding on stop-signal trials. The finishing time of the stop process corresponds to the nth RT, where n refers to the number of RTs in the RT distribution of go trials multiplied by the overall probability of responding on stop-signal trials. SSRT can then be estimated by subtracting the mean SSD from the nth RT. Go trials with a choice error were also included in SSRT estimation. The estimation of SSRT is unreliable if stop RT is larger than go RT or if the probability of inhibition on signal trials greatly differs from 50% (i.e., lower than 25% or higher than 75%). We excluded five participants, including one HC, two left lateral (LL) frontal patients, one DM frontal patient, and one bilateral lateral frontal patient, on the basis of these criteria. In addition,
we excluded one ventromedial (VM) patient who could not follow task instructions and achieved only 15% go trial accuracy.

ROI Analysis

We divided the patients into four groups based on ROIs implicated in the existing literature on response inhibition using the stop-signal (Zhang et al., 2017; Rae et al., 2014; Swick et al., 2011) or go/no-go (Criaud & Boulinguez, 2013; Swick et al., 2011; Simmonds, Pekar, & Mostofsky, 2008) tasks. Patients were assigned to LL (n = 6) or right lateral (RL; n = 12) groups when damage involved the opercular and/or triangular parts of the IFG (BAs 44 and 45) in the left or right hemisphere. Patients were assigned to the DM group (n = 13) when DM PFC, including the premotor cortex, SMA, or pre-SMA, was the main site of damage. All other frontal patients were assigned to what we term the VM group (n = 11): These patients had damage primarily affecting the VM frontal cortex, OFC, and/or pregenual ACC and associated white matter, although the group was defined by the absence of damage to the hypothesized ROIs rather than the presence of VM damage per se. We used MRIcron software (Rorden, Karnath, & Bonilha, 2007) to estimate lesion volumes and generate overlap images (Figure 2). In addition, we examined whether the lesion sites of the patient groups overlapped with regions identified in the fMRI literature using the stop-signal task (Zhang et al., 2017). Figure 3 shows that all groups except the VM group had damage to regions that are consistently activated during successful stopping in the stop-signal task.

We conducted ANOVA and likelihood ratio tests to compare the demographic and neuropsychological test variables among groups. Post hoc Tukey tests were carried out for pairwise comparisons. For the stop-signal and letter 2-back test performance, initial analysis of data from HCs revealed significant effects of age on most of the stop-signal variables (mean go RT: \(r_s = .63, p < .001 \); mean failed-stop RT: \(r_s = .64, p < .001 \); go accuracy: \(r_s = .37, p = .004 \); mean...
SSD: $r_s = .60, p < .001$; SSRT: $r_s = .51, p < .001$) and 2-back task variables (logistic equivalent discriminability measure $d_{L}', r_s = -.31, p = .018$, and mean correct hit RT, $r_s = .30, p = .020$). Because age is also associated with more variable cognitive task performance (Christensen et al., 1999), we applied the age adjustment method proposed by Altman (1993), which considers not only the age-specific mean but also the age-specific standard deviation (SD) of outcome measures. This approach minimized confounding from age in the performance-based analyses, enabling a more accurate estimation of lesion effects. Accordingly, we generated age-adjusted z scores for all variables and used these as the primary variables of interest. However, we provide the raw performance variables in each group to facilitate comparisons with the existing literature.

To generate the age-adjusted z scores (Altman, 1993), a variable of interest (e.g., SSRT) was first regressed by age to obtain the predicted values for that variable at different ages. Next, the age-specific SD was estimated by regressing the absolute values of the residual on age and then multiplying the predicted values of the absolute residuals by $\sqrt{(\pi/2)}$. Finally, the age-adjusted z score was computed by subtracting the predicted from the observed value of the variable at a given age and then dividing it by the estimated age-specific SD. We used the data from the HC group to derive the age-specific SD and computed the age-adjusted SSRT for each participant.

In addition, Shapiro–Wilk tests revealed a violation of the normality assumption for some performance variables ($ps < .05$). In HCs, Shapiro–Wilk tests revealed nonnormal distributions for the age-adjusted z scores for SSRT, $p = .025$, mean go RT, $p = .031$, mean failed stop RT, $p = .029$, and go accuracy, $p < .001$, on the stop-signal task and for mean hit RT on the 2-back task, $p < .001$. In patients, the age-adjusted z scores for some stop-signal task variables were not normally distributed (LL: mean go RT, $p = .021$; RL: SSRT, $p = .001$; mean go RT, $p = .021$; VM: go accuracy, $p = .001$). There was an extreme outlier in the RL group, but this outlier was not removed because this individual met the criteria for SSRT estimation and was 97% accurate on the stop-signal task.

Because some of these variables were still not normally distributed after log-transformation (e.g., the age-adjusted z scores for SSRT in the RL group), and the sample sizes of the ROI groups were not large, we used nonparametric Kruskal–Wallis tests to compare performance among groups. Significant group effects were followed up with post hoc one-tailed Mann–Whitney U tests for pairwise group comparisons (each frontal group vs. HCs) to test the directional hypothesis that performance in those with frontal damage was worse than that in HCs. Significance level for these post hoc tests was Bonferroni corrected (i.e., to $p < .013$) for the four group comparisons. The significance level was set at .05 for all other statistical tests, unless otherwise specified. We also report the effect size r, calculated as z/\sqrt{N}, where the z value is approximated from the U test statistics, and N represents the sample size (Fritz, Morris, & Richler, 2012). All analyses were performed using SPSS 23.0 (IBM Inc.).

Lesion-Symptom Mapping

We followed up the ROI analysis with voxel-based lesion-symptom mapping (VLSM; Rorden et al., 2007) and support vector regression lesion-symptom mapping (SVR-LSM; Zhang, Kimberg, Coslett, Schwartz, & Wang, 2014) to identify the clusters of damage within the frontal lobes that contributed to impaired stop-signal performance. The performance measure of interest (i.e., age-adjusted z score for SSRT) was entered as a continuous variable.

For the VLSM analysis, statistical comparisons were made for each eligible voxel, comparing the performance of patients with a lesion affecting a given voxel to that of patients with a lesion sparing that voxel. We used the nonparametric Brunner–Munzel test to perform statistical comparisons on a voxel-wise basis (Brunner & Munzel, 2000), as implemented in the open-source NPM and MRlcon software (Rorden et al., 2007). In this analysis, only voxels affected in at least three cases (i.e., $\geq 5\%$ of the whole sample) were included (Sperber & Karnath, 2017). Clusters with at least 50 voxels yielding a z score greater than 1.65 (uncorrected $p < .05$) are reported. We used the Brunner–Munzel test because the age-adjusted z scores for SSRT among the 42 patients were not normally distributed (Shapiro–Wilk test: $p < .001$), rendering the use of parametric tests inappropriate. Although Spearman’s correlation showed no significant correlation between lesion volume and the age-adjusted z scores for SSRT among patients, $r_s = .17, p = .29$, we performed the VLSM analysis after regressing lesion volume out of the age-adjusted z scores for SSRT to remove error variance related to lesion size.

The SVR-LSM was performed using the SVR-LSMtbx (Zhang et al., 2014). This method uses all lesion voxels as input and finds a behavior predictive model; the trained model’s predictive hyperplane is then back-projected into the data space, which can be overlaid on a brain template for interpretation. In accordance with the findings and recommendations of previous studies (Wiesen, Sperber, Yourganov, Rorden, & Karnath, 2019; DeMarco & Turkeltaub, 2018; Zhang et al., 2014), the cost parameter C and the parameter γ were set at 30 and 5, respectively. Only voxels damaged in at least three patients were selected. Lesion size was controlled for using direct total lesion volume control (Zhang et al., 2014). The SVR-\(\beta\) map was thresholded using false discovery rate correction ($q = .05$) and cluster size correction (≥ 50 voxels).

RESULTS

Demographic and Neuropsychological Characteristics

Demographic information and screening neuropsychological test results are provided in Table 1. There were
no significant differences in age, sex, or education between frontal patients and HCs, ps > .11. Among patients, there were no significant differences in lesion volume, \(p = .18 \), or time after brain injury, \(p = .94 \).

Stop-Signal Task Performance

Table 2 presents the stop-signal task performance of all participants who met the performance criteria for the task. All participants (except one VM patient excluded from analysis) performed the go trials at ≥ 85% accuracy. A Kruskal–Wallis test revealed no significant difference in the age-adjusted \(z \) scores for go accuracy among groups, \(p = .22 \).

Figure 4 presents the SSRT of each group. Kruskal–Wallis tests revealed a significant difference in the age-adjusted \(z \) scores for SSRT among groups, \(\chi^2 = 14.22, p = .007 \). Post hoc Mann–Whitney \(U \) tests showed that the LL group had significantly slower SSRT than HCs (\(p = .002, r = .35 \)). Although not reaching the Bonferroni-corrected threshold of \(p < .013 \), all frontal groups had a tendency for slower SSRT than HCs (RL: \(p = .034, r = .22 \); DM: \(p = .018, r = .24 \); VM: \(p = .043, r = .20 \)). Thus, although only the LL group differed significantly from the HC as a group, damage to any of the predefined prefrontal subregions tended to be associated with slower SSRT, with medium effect sizes in all groups.

All the results were identical when the SSRT of each participant was reestimated by substituting all RTs slower than 2000 msec with this maximal response latency (Verbruggen et al., 2013); the number of RTs slower than 2000 msec did not significantly differ among groups (Kruskal–Wallis test: \(p = .058 \)). We also checked the robustness of the SSRT results by substituting parametric tests after removing an extreme outlier value in the RL group and replacing it with the next most extreme value in the same group. Effects were very similar to those reported. To test for finer-grained structure–function relationships, including any that might cross prespecified ROI boundaries, the relationship between SSRT and lesion

Table 1. Demographic, Clinical, and Neuropsychological Characteristics of HC and Frontal Patient Groups

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>DM</th>
<th>VM</th>
<th>LL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>60</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.8 (15.9)</td>
<td>57.9 (10.9)</td>
<td>52.5 (12.9)</td>
<td>48.5 (9.6)</td>
<td>50.0 (12.8)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>26:34</td>
<td>6:7</td>
<td>3:8</td>
<td>3:3</td>
<td>1:11</td>
</tr>
<tr>
<td>Education (years)</td>
<td>15.0 (3.0)</td>
<td>13.9 (3.7)</td>
<td>14.3 (3.5)</td>
<td>14.5 (1.9)</td>
<td>12.6 (4.1)</td>
</tr>
<tr>
<td>BDI</td>
<td>4.9 (4.6)</td>
<td>13.2 (12.5)</td>
<td>13.6 (6.9)</td>
<td>7.7 (8.4)</td>
<td>16.3 (9.3)</td>
</tr>
<tr>
<td>ANART IQ(^b)</td>
<td>123.2 (6.8)</td>
<td>121.2 (6.5)</td>
<td>121.3 (11.6)</td>
<td>112.3 (7.0)</td>
<td>113.3 (10.8)</td>
</tr>
<tr>
<td>Backward digit span</td>
<td>5.2 (1.5)</td>
<td>5.2 (1.8)</td>
<td>4.3 (1.6)</td>
<td>3.5 (0.6)</td>
<td>4.5 (0.9)</td>
</tr>
<tr>
<td>Backward Corsi span</td>
<td>4.9 (1.2)</td>
<td>3.8 (1.5)</td>
<td>3.9 (1.6)</td>
<td>4.5 (0.6)</td>
<td>4.3 (1.1)</td>
</tr>
<tr>
<td>Fluency—F</td>
<td>14.4 (4.4)</td>
<td>9.4 (5.4)</td>
<td>13.9 (3.5)</td>
<td>6.3 (3.5)</td>
<td>11.2 (4.3)</td>
</tr>
<tr>
<td>Fluency—Animal</td>
<td>21.7 (5.3)</td>
<td>17.8 (4.7)</td>
<td>18.7 (4.9)</td>
<td>12.3 (5.3)</td>
<td>15.6 (4.9)</td>
</tr>
<tr>
<td>Sentence comprehension accuracy (%)</td>
<td>97.9 (6.2)</td>
<td>97.3 (5.5)</td>
<td>99.3 (2.4)</td>
<td>91.7 (7.6)</td>
<td>95.8 (7.7)</td>
</tr>
<tr>
<td>2-Back (d_1')</td>
<td>6.7 (1.8)</td>
<td>5.2 (1.5)</td>
<td>5.7 (2.6)</td>
<td>5.6 (2.0)</td>
<td>6.5 (2.2)</td>
</tr>
<tr>
<td>2-Back hit RT (msec)</td>
<td>695.5 (157.1)</td>
<td>807.9 (134.8)</td>
<td>664.4 (111.1)</td>
<td>815.6 (140.4)</td>
<td>742.4 (162.9)</td>
</tr>
<tr>
<td>Lesion volume (cc)</td>
<td>–</td>
<td>50.8 (60.8)</td>
<td>17.1 (13.3)</td>
<td>27.6 (15.6)</td>
<td>40.4 (24.8)</td>
</tr>
<tr>
<td>Time after injury (years)</td>
<td>–</td>
<td>4.0 (2.7)</td>
<td>4.1 (2.7)</td>
<td>4.0 (3.3)</td>
<td>4.7 (3.6)</td>
</tr>
</tbody>
</table>

Sex distribution was compared using the likelihood ratio test. Asterisks indicate the significance level of ANOVA. ANART = American National Adult Reading Test; BDI = Beck Depression Inventory; MoCA = Montreal Cognitive Assessment.

* \(p < .05 \).
*** \(p < .001 \).
\(^a \) Patients versus HCs (Tukey test: \(p < .05 \)).
\(^b \) Not all patients completed the ANART.
<table>
<thead>
<tr>
<th></th>
<th>HCs</th>
<th>DM</th>
<th>VM</th>
<th>LL</th>
<th>RL</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>60</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean go RT (msec)</td>
<td>613.9 (135.9)</td>
<td>714.7 (106.4)</td>
<td>620.0 (145.7)</td>
<td>742.2 (137.9)</td>
<td>788.8 (289.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go accuracy (%)</td>
<td>98.7 (1.5)</td>
<td>98.6 (1.0)</td>
<td>96.9 (4.2)</td>
<td>98.2 (2.6)</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsuccessful stop RT (msec)</td>
<td>509.7 (93.4)</td>
<td>599.1 (96.3)</td>
<td>501.1 (90.4)</td>
<td>589.6 (84.7)</td>
<td>597.4 (81.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression rate (%)</td>
<td>56.8 (7.4)</td>
<td>57.4 (5.3)</td>
<td>53.6 (8.9)</td>
<td>61.0 (7.8)</td>
<td>59.5 (8.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean SSD (msec)</td>
<td>338.6 (96.0)</td>
<td>356.5 (64.4)</td>
<td>299.3 (117.4)</td>
<td>368.1 (65.4)</td>
<td>380.8 (90.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRT (msec)</td>
<td>278.9 (86.2)</td>
<td>346.7 (90.3)</td>
<td>313.0 (70.9)</td>
<td>379.9 (105.9)</td>
<td>427.5 (315.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean go RT</td>
<td>0.00 (0.98)</td>
<td>0.68 (0.92)</td>
<td>0.07 (1.16)</td>
<td>1.51 (1.17)</td>
<td>1.20 (2.15)</td>
<td>14.57</td>
<td>.006**</td>
</tr>
<tr>
<td>Go accuracy</td>
<td>−0.16 (1.40)</td>
<td>−0.45 (1.12)</td>
<td>−1.80 (3.22)</td>
<td>−0.48 (2.20)</td>
<td>−0.55 (1.57)</td>
<td>5.79</td>
<td>.22</td>
</tr>
<tr>
<td>Unsuccessful stop RT</td>
<td>0.01 (0.98)</td>
<td>0.84 (0.88)</td>
<td>−0.13 (0.95)</td>
<td>1.39 (1.06)</td>
<td>0.83 (1.14)</td>
<td>17.33</td>
<td>.002**</td>
</tr>
<tr>
<td>Suppression rate</td>
<td>0.00 (0.97)</td>
<td>−0.10 (0.91)</td>
<td>−0.52 (1.48)</td>
<td>0.96 (1.30)</td>
<td>0.18 (1.58)</td>
<td>5.25</td>
<td>.26</td>
</tr>
<tr>
<td>Mean SSD</td>
<td>0.00 (0.95)</td>
<td>0.05 (0.90)</td>
<td>−0.52 (1.32)</td>
<td>0.61 (0.80)</td>
<td>0.29 (1.26)</td>
<td>5.17</td>
<td>.27</td>
</tr>
<tr>
<td>SSRT</td>
<td>0.00 (1.03)</td>
<td>0.70 (1.13)</td>
<td>0.55 (0.97)</td>
<td>1.70 (1.26)</td>
<td>1.61 (3.47)</td>
<td>14.22</td>
<td>.007**</td>
</tr>
</tbody>
</table>

Asterisks indicate the significance level of Kruskal–Wallis tests.

** p < .01.

* Patients versus HCs (one-tailed Mann–Whitney U tests: p < .013; Bonferroni-corrected).

Figure 4. Boxplots of SSRT in HCs and DM, VM, LL, and RL frontal patients. Asterisks indicate the significance level of Mann–Whitney U tests (patients vs. HCs). *p < .05, **p < .013.
location was also tested using VLSM and SVR-LSM. As can be seen from the power map in Figure 5, the sample had sufficient statistical power (i.e., voxels damaged in at least three people) to detect effects in most parts of the medial wall of the frontal cortex, bilateral IFGs, and right middle frontal gyrus.

None of the voxels in the VLSM analysis using the Brunner–Munzel tests survived correction for multiple comparisons. However, uncorrected results revealed damage to the left IFG and insula \((x = −43, y = 25, z = 6; BA 13/45)\), right insula (MNI coordinates: \(x = 40, y = 8, z = 14; BA 13\)), and left pre-SMA \((x = −7, y = 37, z = 48; BA 8)\) as most strongly linked with slower SSRT (Figure 5).

Medina, Kimberg, Chatterjee, and Coslett (2010) argued that the Brunner–Munzel test would yield large Type I errors if the sample size of either lesion or the control group was less than 10 and suggested the use of a more conservative permutation-derived correction when using these tests in the context of small samples. In this study, no voxels survived any kind of multiple comparison correction even before the permutation-derived correction, and we report uncorrected voxels with \(z > 1.65\) only to illustrate brain regions most associated with SSRT. Thus, our interpretation of the VLSM results would not change after considering the sample size requirement of the Brunner–Munzel test.

Figure 5. The power (top row) and statistical maps (second to bottom rows) of voxel-based lesion symptom mapping computed for SSRT \((n = 42)\). Clusters of at least 50 significant voxels (red) are embedded in yellow circles (one-tailed Brunner–Munzel tests, thresholded at \(p < .05\), uncorrected).
As for the SVR-LSM analysis, no voxels survived correction; therefore, we report the SVR-β map showing the top 5% voxels with the highest β values (i.e., most predictive of SSRT) for illustration purposes. Similar to VLSM, SVR-LSM identified damage to the bilateral IFG/insula and subregions within the DM frontal cortex (x = 1, y = 12, z = 66; BA 6; bilateral SMA but not left pre-SMA) to be most strongly associated with slower SSRT. Unlike VLSM, it identified damage to the right frontopolar cortex and OFC (x = 10, y = 57, z = −6; BA 10/11) as most strongly linked with slower SSRT, in keeping with the ROI analysis.

An early study by Aron et al. (2003) found positive correlations between SSRT and lesion volume in both the right BA 44 (r = .57) and BA 45 (r = .65). In an effort to replicate this observation, we calculated one-tailed Spearman’s correlations to assess the relationships between the raw SSRT and lesion volume in these two Brodmann’s areas. No significant correlation was found for BA 44, \(r_s = -.08, p = .31 \), BA 45, \(r_s = .00, p = .49 \), or BA 44 and BA 45 combined, \(r_s = .11, p = .47 \).

Differential Contributions of Prefrontal Regions to Response Stopping

Because the estimation of SSRT depended on the probability of inhibiting a response, mean SSD, and go RT, we next asked which of these variables drove the slower SSRT in the frontal patients. Kruskal–Wallis tests revealed no significant group differences in the age-adjusted z scores for the probability of inhibiting a response or for mean SSD, ps > .26. However, we found a significant...
difference in the age-adjusted z scores for mean go RT, $\chi^2 = 14.57, p = .006$. Post hoc Mann–Whitney U test with an adjusted p value of .013 revealed that both the LL, $p = .003$, $r = .33$, and DM, $p = .007$, $r = .29$, groups had significantly slower go RT than HCs (Figure 6A). At the uncorrected p value threshold of .05, the RL group also had slower go RT, $p = .021$, $r = .24$, whereas the VM group was indistinguishable from controls, $p = .49$, $r = .00$.

Further analysis revealed that this response slowing was not specific to go trials, because there was also a significant group difference in the age-adjusted z scores for mean RT on failed stop-signal trials, $\chi^2 = 17.33, p = .001$, which was again driven by significantly slower failed-stop RT in the LL group, $p = .003$, $r = .33$, and DM group, $p = .004$, $r = .31$, compared to HCs (Figure 6B). Failed-stop RT in the RL group was also significantly slower than in HCs, $p = .011$, $r = .27$. In contrast, the VM group was as fast to respond as HCs, $p = .35$, $r = .05$. The effect sizes for both the go RT and failed-stop RT were medium for the DM, LL, and RL groups, whereas they were very small for the VM group. Thus, the LL and DM groups, and the RL group to a lesser extent, were all slower than HCs to go, regardless of trial type.

Despite instructions and feedback that emphasized rapid responses, it is possible that the slow RT in the frontal groups was attributable to strategic slowing (i.e., “waiting” for the stop signal). We compared the mean raw go RT across the four blocks of the task to evaluate whether slowing occurred over the task, within each group. Friedman tests revealed no significant differences in mean go RT across blocks in any group, although there was a statistical trend for the effect of block in the LL group, $\chi^2 = 6.60, p = .086$ (all other groups: $ps > .14$). Thus, go RT was relatively stable over time throughout the task at the group level, with the exception of the LL group tending to slow down across blocks. We also examined slowing at the individual level by analyzing the slope of a regression line fit to mean go RT across the four blocks. A Friedman test revealed no significant differences in the slope among the five groups, $\chi^2(4) = 5.62, p = .23$, but there was large variability in this slope among patients. For the 42 patients, Spearman’s correlation (two-tailed) revealed no significant correlation between the slope of mean go RT and the age-adjusted z score for SSRT, $r_s = .23, p = .15$, suggesting a weak, if any, relationship between slowing across blocks and SSRT among frontal patients.

One study has found that the SSRT estimated by the block-based integration method was more accurate than that estimated using the experiment-wise integration method when participants exhibit slowing over time (Verbruggen et al., 2013). To check the robustness of our results, we repeated the analyses with the block-based method: SSRT was estimated for each block separately before averaging the four estimates. The block-based integration method yielded results similar to the experiment-wise integration method. That is, a Kruskal–Wallis test revealed a significant difference in the age-adjusted z scores for SSRT among groups, $\chi^2(4) = 16.82, p = .002$. Post hoc Mann–Whitney U tests showed that the LL group, $p = .005$, $r = .32$, RL group, $p = .004$, $r = .31$, and DM group, $p = .008$, $r = .28$, had significantly slower SSRT than HCs. At the uncorrected p value threshold of .05, the VM group also had slower SSRT, $p = .019$, $r = .25$. These results indicate that the finding of slower SSRT after damage to any frontal region is robust across estimation methods.

Specificity

The finding that damage to any of the prespecified prefrontal regions was associated with slower response stopping could be explained by a more generic deficit because of brain damage or illness, such as psychomotor slowing, inattention, or low motivation. To address the specificity of the stop-signal task observations, we took advantage of a second data set available in the same sample (missing data for two frontal patients) to compare performance on a letter 2-back task that involved a “go/no-go” response requirement (i.e., button press to targets, no response to nontargets). Mann–Whitney U tests conducted on the age-adjusted z scores for d_1 and hit RT with an adjusted p value of .013 showed that only the DM group had a significantly lower d_1 ($M = −0.75, SD = 0.74$), $p = .008$, $r = .28$, and slower hit RT ($M = 0.78, SD = 0.92$), $p = .003$, $r = .33$, than HCs. At the uncorrected p value threshold of .05, the LL group also had a slower d_1 ($M = −0.70, SD = 1.11$), $p = .040$, $r = .22$, and slower RT ($M = 0.88, SD = 1.03$), $p = .029$, $r = .24$, than HCs. By contrast, the d_1 and hit RT of both RL group ($d_1: M = 0.08, SD = 1.13$; RT: $M = 0.19, SD = 1.30$) and VM group ($d_1: M = −0.59, SD = 1.44$; RT: $M = −0.22, SD = 0.79$) were comparable to those of HCs, $ps > .15, rs < .12$. Regardless of the measure, the effect sizes were medium for the DM and LL groups, and the effect sizes were small or very small for the RL and VM groups.

The DM and LL groups exhibited impairment in both tasks, whereas the RL and VM groups exhibited impairment only in the stop-signal task. To directly explore whether there was a dissociation between the stop-signal and 2-back task performance in RL and VM patients but not in DM and LL patients, we performed two separate mixed ANOVAs, with Group (HC and DM/LL; HC and RL/VM) as the between-participant factor and Task (SSRT, d_1) as the within-participant factor on the age-adjusted z scores (the age-adjusted z score for d_1 was reversed such that a higher score represented poor performance). Groups that exhibited a similar pattern were combined to increase power; the results must be taken with caution given that this analysis is post hoc. For the ANOVA with the RL/VM group, the main effect of Group was significant, $F(1, 81) = 7.11, p = .009, \eta^2_p = .081$. More importantly, the interaction between Group and Task was also marginally significant, $F(1, 81) = 3.71, p = .058, \eta^2_p = .044$. For the ANOVA with the DM/LL group, the main effect of Group was significant,
$F(1,75) = 17.09, p < .001, \eta_p^2 = .19$, but the interaction between Group and Task was not, $F(1,75) = 0.82, p = .37, \eta_p^2 = .01$. These results suggest the possibility of a dissociation between stop-signal and 2-back task performance in RL/VM patients only.

DISCUSSION

This study examined the effects of focal frontal lobe damage on the widely used two-choice stop-signal task, aiming to provide causal evidence for the regional prefrontal contributions to response stopping. We failed to find strong evidence for a localized effect of damage to a specific prefrontal region. Rather, we found that damage to any of the prefrontal regions tended to prolong SSRT compared to HCs. The VLSM and SVR-LSM analyses confirmed diffuse effects of frontal damage on SSRT. The uncorrected z score and SVR-β maps indicated that bilateral IFG and underlying white matter, extending to the insula, as well as the DM frontal cortex, were most associated with slower SSRT.

These findings provide converging support for the extensive functional neuroimaging literature on this task. Several recent fMRI meta-analyses have shown activation in bilateral IFG and superior frontal cortex during successful response stopping (Zhang et al., 2017; Rae et al., 2014; Swick et al., 2011). Although our study focused on frontal lobe damage, we also observed effects of damage in the anterior insula bilaterally, in keeping with the fMRI literature. However, damage to the IFG and insula typically co-occur, given their shared vascular supply, so this observation in this sample should be interpreted with caution. A study including patients with insula lesions sparing the IFG is needed to strongly test the independent contribution of the insula to stop-signal task performance.

We took advantage of preexisting data on a letter 2-back task with some demands in common with the stop-signal task to provide evidence that the rather diffuse effect of frontal damage observed on the stop-signal task was not merely a nonspecific consequence of brain damage. Although RL and VM patients had increased SSRT on the stop-signal task, they were not particularly slow or inaccurate on the 2-back task. These findings suggest that the impaired stop-signal task performance in these patients cannot be readily explained by generic factors such as inattention, nonspecific response slowing, or low motivation. Instead, it seems likely that multiple prefrontal regions, their interconnections, and their connections with striatal systems are required for stop-signal task performance, such that focal damage in many frontal lobe areas can yield impairment. However, this study was not designed to assess potential contributions from posterior brain regions. Given the unexpectedly diffuse effect of damage to any of the frontal ROIs on stop-signal task performance, we cannot entirely exclude that the observed impairment in all patient groups may be because of brain damage in general.

Previous efforts to demonstrate a critical role for frontal lobe subregions in response inhibition have provided mixed results. Some of this variability is inherent to lesion studies, which often involve small samples with heterogeneous coverage of key cortical regions and white matter tracts. There are also potentially important differences in the parameters of the behavioral tasks used across studies. Here, we recruited a large sample, with power to test several regions implicated in the task by individual lesion studies, TMS research, and fMRI findings. Aiming for replication, we used task parameters that were very similar to those in Aron et al. (2003). We also adopted recent consensus guidelines for behavioral analysis (Verbruggen et al., 2019), minimizing the risk of “cherry-picking” with respect to the behavioral data. Although our findings corroborate those reported by Aron et al. (2003) that damage to the right IFG prolongs SSRT, the strong specificity claim put forward in that study is not supported. Instead, we also find evidence for contributions of left IFG and bilateral DM frontal lobe (likely pre-SMA specifically, with left hemisphere damage more strongly linked to impairment than right). These additional regions have been implicated in prior lesion studies. A critical role for the DM frontal cortex was noted by Floden and Stuss (2006), although not confirmed by a single case study of a patient with right pre-SMA damage, albeit with stop-signal task parameters that differed from those used in the other studies (Roberts & Husain, 2015). Swick et al. (2008) also reported increased false alarms on the go/no-go task in 12 patients who had a maximal lesion overlap in the left posterior IFG.

Given that previous studies using the stop-signal (Floden & Stuss, 2006; Aron et al., 2003) and go/no-go tasks in patients with frontal damage (Swick et al., 2008; Picton et al., 2007) have not implicated the VM frontal lobe, our finding of SSRT slowing in the VM group, albeit only at an uncorrected threshold, was unexpected. Of note, the Swick et al. (2008) study shows maximal lesion overlap in the OFC group in the anterior OFC, whereas the group we studied had maximal damage to the posterior OFC extending into subcortical structures and adjacent insula while, by design, sparing the IFG. Lesion-symptom mapping inconsistently identified the contribution of OFC subregions to SSRT at an uncorrected threshold. Thus, we speculate that the observed effects in the VM group may be related to disruption of white matter connections between the inferior frontal lobe and subcortical regions—circuits that have been hypothesized to underlie response inhibition, or motor control in general (Aron & Poldrack, 2006; Nambu et al., 2002), rather than to damage to OFC or VM PFC. Further work will be needed to address this possibility, perhaps by systematically characterizing the distant as well as local impact of focal lesions (Foulon et al., 2018; Nomura et al., 2010).

In agreement with some previous findings (Aron et al., 2003; Rieger et al., 2003), frontal patients overall were found to have slower go RT, with the notable exception of the VM group. In contrast, Floden and Stuss (2006)
reported intact go RT in frontal patients, but unlike other studies and this study, Floden and Stuss used a different two-choice RT task involving letter stimuli and a fixed SSD. The discrepancy in findings with respect to response speed may thus be due to different task characteristics. In this study, DM and LL frontal patients were found to be slower to respond on both the stop-signal and 2-back tasks. Thus, the slowed responses in the stop-signal task might be attributable to general response slowing in those groups. In contrast, RL patients were slow to go on the stop-signal but not the 2-back task, suggesting disruption of a “go” process specific to the stop-signal task. Although we instructed the participants to respond as quickly as possible, RL patients might have strategically slowed their responses to increase the likelihood of successful response suppression, that is, to compensate for impaired stopping. Future work would benefit from including a baseline block without stop-signal trials to better characterize strategic slowing, if any.

It is not clear why the mean go RTs reported in this study were more than 100 msec longer than those reported in Aron et al. (2003), despite highly similar stop-signal procedures. The two study samples had comparable demographics. Aron et al. (2003) did not report the probability of stopping on stop-signal trials, but it was stated that convergence to a 50% suppression rate was ensured and that mean SSD was computed after convergence on this suppression rate. In this study, all groups had a mean suppression rate greater than 50% (e.g., HC: 57%). Thus, the slower go RTs may be because of more slowing among our participants, although they nonetheless meet currently recommended performance criteria for SSRT estimation.

The present findings of the diffuse effect of frontal lesions on stop-signal task performance may reflect the complexity of this task. Despite its conceptual elegance, the stop-signal task engages multiple component processes, including the establishment of stimulus–response relationships, response selection, stop-signal detection, behavioral adjustment, and monitoring of responses over time. Previous studies have implicated the DM frontal cortex in selection of appropriate responses (Mostofsky & Simmonds, 2008) and rapid, within-trial response adjustment (Modirrousta & Fellows, 2008); the IL frontal cortex in task setting (Stuss & Alexander, 2007); and the right (inferior) frontal cortex in monitoring (Stuss & Alexander, 2007) and implementing a brake over response tendencies (Aron, Robbins, & Poldrack, 2014). Thus, stop-signal task performance can be conceived of as the product of several component processes, each of which draws critically on different parts of the frontal lobe. Accordingly, impaired SSRT can reflect impairment in any one or more of these processes, each potentially related to disruption of specific regional frontal lobe damage or associated circuits.

Stuss et al. suggested a different framework, proposing that the frontal subregional contributions to inhibitory control involved energization, task setting, and monitoring processes (Stuss & Alexander, 2007). The stop-signal task would presumably draw, at least to some degree, on all of these. The present results are broadly compatible with this alternate framework, although our study was not designed to test it.

In summary, our findings demonstrate that multiple subregions within the PFC are necessary for performance of the stop-signal task. Although slowed SSRT (i.e., impaired stop process) can reflect dysfunction of any prefrontal region, the pattern of both slowed go RT and slowed SSRT was observed after damage to LL, RL, or DM frontal regions. This reconciles much of the existing lesion literature, which has found evidence for a role for each of these regions individually. These findings suggest caution in interpreting the frontal lobe basis of observed impairments of stop-signal task performance in neuropsychiatric conditions such as attention-deficit/hyperactivity disorder or obsessive–compulsive disorder (Lipszyc & Schachar, 2010; Alderson et al., 2007). Likewise, the stop-signal task may be a useful probe of frontal function in neurological conditions but cannot be used to support finer-grained subregional localization within the frontal lobes.

Acknowledgments
We thank the database managers at the University of Pennsylvania (Mariana Stark) and the McGill Cognitive Neuroscience Research Registry (Arlene Berg and Christine Déry) as well as clinical colleagues at both sites for their help with patient recruitment and data management. Appreciation is also extended to the volunteers who made this research possible through their generous participation. This work was supported by the Canadian Institutes of Health Research and a Canada First Research Excellence Fund grant to McGill University (Healthy Brains for Healthy Lives).

Reprint requests should be sent to Michael K. Yeung, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong, China, or via e-mail: kin-chung-michael.yeung@polyu.edu.hk.

Author Contributions
Michael K. Yeung: Conceptualization; Formal analysis; Investigation; Methodology; Visualization; Writing—original draft; Writing—review & editing. Ami Tsuchida: Conceptualization; Data curation; Investigation; Project administration; Visualization; Writing—review & editing. Lesley K. Fellows: Conceptualization; Data curation; Funding acquisition; Investigation; Methodology; Supervision; Writing—review & editing.

Funding Information
Lesley K. Fellows, Canadian Institutes of Health Research (http://dx.doi.org/10.13039/501100000024). Lesley K. Fellows, Canada First Research Excellence Fund (http://dx.doi.org/10.13039/501100010785).

