Fire in the Interface

I wish to commend the Journal and authors Winter, Vogt, and Fried for their excellent article, “Fuel Treatments at the Wildland-Urban Interface” (January/February). Acceptance of effective fuel treatment at the interface has been a national problem since at least a generation ago, at which time I was employed by the Forest Service. As a “specialist,” I had the opportunity to view with alarm interface problems in Idaho, Washington, New Mexico, and California. It was my observation then that local residents demonstrated little interest in fuel hazard reduction near their homes unless a fire had occurred recently and nearby.

Sadly, as a member of the Berkeley Fire Safety Commission from 1992 to 2001, I found that the level of interest in fuel hazard reduction in the Berkeley Hills after the 1990 firestorm—25 lives and 3,000 homes lost in Oakland and 65 homes lost in Berkeley—cooled almost as fast as the ashes. We were able to develop and are maintaining a cooperative buffer zone between the wildland zone and nearby homes. The intent was to create a “defensible” zone, where it was safe for the fire departments to make a stand. Fortunately the open, park-like area of oak woodland (minus eucalyptus trees) was well-accepted by the local residents. The city has been providing green dumpsters and chipping foliage during the spring months. In general, selective

(Continued on page 38)
prescribed burning was not considered practical, not only because of the general air pollution but also because smoke from burning poison oak was a potential threat during even small burns.

I hope to see more “interface articles” in the future.

Carl C. Wilson
Oakland, California

Projecting Consumption

The complex, encompassing model for the current RPA projections and the frankness about past projections for timber products are impressive (March). Translating the 50-year RPA projections into annual changes to be summed into land-use change and making a comparison with a simpler analysis may help users grasp the RPA. Our simple model, described in the October 2000 Journal, sums the annual percent changes in population, income, wood consumption per GDP, millers’ efficiency, imports, and wood growth per hectare to quantify changes in forest area.

If population and income annually rise a combined 2.00 percent, RPA’s projected 0.65 percent rise of national wood consumption means wood consumption per GDP falls 1.35 percent. RPA’s projected 0.21 percent decline of the fraction of the 0.65 percent met by American forests means US harvest increases 0.44 percent annually. If millers continue using nearly all wood received and foresters speed timber growth 0.50 percent, then the forces add to the RPA’s 0.06 percent annual shrinkage of harvested timberland.

Does this grasp of RPA show leverage for faster shrinkage? Because wood consumption per GDP annually fell 2.87 percent during the entire 20th century and 2.75 percent during the 1990s, it may well decline faster than RPA’s 1.35 percent. Also, growth could improve faster than RPA’s 0.50 percent. During 1952–96 growing stock per acre of industry land accelerated 0.89 percent annually. A decline of 2 percent for wood consumption per GDP and a 1 percent rise of growth added to the RPA’s projected changes of population, income, millers’ efficiency, and imports would shrink harvested area by 1.21 percent annually instead of the projected 0.06 percent. Compounded to 2050, this rate would free more than one-third of US timberland for alternative uses instead of one-thirtieth, a forest conservation achieved by changing consumption and, satisfyingly for members of SAF, by foresters speeding tree growth!

Jesse H. Ausubel
New York City
Paul E. Waggoner
New Haven, Connecticut

Rose Should Be Read

Robin Rose hit the nail on the head (“Perspective,” March). I just hope enough people are listening.

Plenty of books have been written on this subject, but one I would recommend is The Land Was Everything: Letters from an American Farmer by Victor Davis Hanson (Simon & Schuster, 2000).

Joseph Landino
Columbia, North Carolina