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A fundamental difficulty for image- or appearance-based models of face recognition is to distinguish variations in image
structure between two different individuals from those that can occur for a given individual due to changes in lighting, facial
expression, or pose. The research described in the present article was designed to examine how human observers are able
to cope with this problem. In two experiments, observers performed either a match-to-sample task (Experiment 1) or
same–different identity judgments (Experiment 2) for photographs of unfamiliar individuals. A key aspect of these studies is
that the matching or same stimulus pairs were never identical; that is to say, they always differed in terms of facial
expression or the pattern of illumination. In order to provide a quantitative assessment of appearance-based models, we
also measured the optical differences for each pair of same or different images using a variety of possible distance metrics
based on the pattern of pixel intensities or wavelet decompositions. These difference measures were then correlated with
the accuracy of observers’ judgments for each individual stimulus pair. The results clearly show that human observers can
readily distinguish relevant from irrelevant image changes in comparisons of facial identity, but that this performance cannot
be explained by any of the appearance-based models we tested.
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Introduction

The ability of human observers to reliably identify faces is a
truly remarkable phenomenon. Despite the fact that all human
faces have a similar overall structure, we are able to identify
people from different vantage points, and with different
patterns of illumination, facial expressions, hair styles,
makeup, or clothing accessories, such as hats or glasses. We
can also identify people after they undergo a growth spurt,
gain or lose weight, or suffer the effects of aging. These
observations suggest that the identity of an individual’s face
must be based on some remarkably abstract property that is
somehow unaffected by all of the transformations that faces
typically undergo in the natural environment.
There are two general approaches that have been

described in the literature for how faces might be
perceptually encoded within the human visual system.1

One common hypothesis that we will refer to generically
as the feature-based approach is that faces are represented
by the local shapes of their distinctive features (e.g., the
eyes, nose, mouth, and chin) and the spatial relationships
among those features (Barton, Zhao, & Keenan, 2003;
Cooper & Wojan, 2000; Sadr, Jarudi, & Sinha, 2003). The

primary evidence to support this hypothesis is that face
recognition is significantly impaired when images are edited
to remove facial features or spatially rearrange them (Bruce
& Young, 1998; Ellis, Shepherd, & Davies, 1979;
Nachson, Moscovitch, & Umilta, 1995; Sinha, 2002a;
Sinha & Poggio, 1996, 2002; Young, Hay, McWeeny,
Flude, & Ellis, 1985). A feature-based approach is also the
strategy that was first employed in the earliest computa-
tional models of face recognition within the field of
machine vision (Craw, Ellis, & Lishman, 1987; Goldstein,
Harmon, & Lesk, 1971; Kanade, 1973; Kaya & Kobayashi,
1972). Although these models are able to achieve satisfac-
tory performance when facial features are extracted
manually, their success has been limited by the inherent
difficulty of developing robust algorithms for the automatic
extraction of facial features under general viewing con-
ditions (e.g., Brunelli & Poggio, 1993).
In an effort to circumvent this difficulty, other research-

ers have proposed an image- or appearance-based
approach to face recognition that bypasses the problem
of feature extraction altogether (Biederman & Kaloscai,
1997; Meytlis & Sirovich, 2007; Sirovich & Kirby, 1987;
Tarr & Gauthier, 1998; Turk & Pentland, 1991). The basic
idea of this approach is to represent images of faces as
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arrays of pixel intensities or wavelet outputs that are
analogous to the response patterns of photoreceptors on
the retina or simple cells in V1. Recognition is achieved
by comparing images to stored templates using a suitable
metric such as Euclidean distance. Because appearance-
based representations generally result in an excessive
number of dimensions, it is common for these models to
employ a data reduction algorithm such as principal
components analysis (PCA), which can reduce the number
of dimensions by two or three orders of magnitude, yet
still account for almost all of the variance among the set
of images to be represented. The primary advantage of
appearance-based models relative to feature-based
approaches is that they are mathematically well specified
and can therefore be implemented as actual working
models without requiring human intervention for the
extraction of meaningful features.
There is some research to suggest that these appearance-

based algorithms might also be considered as viable
models of human face recognition. One of the primary
limitations of appearance-based algorithms is that they
have difficulty coping with image differences that are
irrelevant to an individual’s identity, such as those
resulting from changes in illumination, facial expression,
or pose. Empirical studies have shown, however, that
human facial identity judgments are also impaired by
these irrelevant image changes (Braje, 2003; Braje,
Kersten, Tarr, & Troje, 1998; Hill & Bruce, 1991, 1996;
Hill, Schyns, & Akamatsu, 1997; Liu & Chaudhuri, 2002;
O’Toole, Edelman, & Bülthoff, 1998; Tarr, Kersten, &
Bülthoff, 1998; Troje & Bülthoff, 1998), thus suggesting
that the performance of these algorithms is similar to that
of human observers. Of particular interest in this regard is
that line drawings of famous faces, which isolate the
information that is most relevant for feature-based
approaches, produce much lower recognition rates than
is typically obtained with photographs (Benson & Perrett,
1994; Davies, Ellis, & Shepherd, 1978; Rhodes, Brennan,
& Carey, 1987). Although these findings may appear at
first blush to provide strong empirical support for an
appearance-based model of human face recognition, the
impact of this evidence is muddled by the absence of
quantitative measures to evaluate differences among the
facial images observers are asked to judge. The results show
clearly that recognition is impaired by irrelevant image
changes, but it has not yet been determined if the magnitude
of these impairments is consistent with those that would be
expected based on current computational algorithms.
There are two important issues that need to be

considered in order to provide a quantitative evaluation
of appearance-based algorithms as potential models of
human face recognition. First, it is important to keep in
mind that there are many possible methods for measuring
image differences that have been described in the
literature, and there have been no systematic studies to
evaluate the extent to which they are consistent with one
another. Thus, in order to provide a general assessment of

appearance-based approaches, it is necessary to examine a
reasonably broad sample of possible similarity metrics.
A second important issue for evaluating the psychological

validity of face recognition models is to select a method for
comparing their quantitative predictions with the perfor-
mance of human observers. Themost common procedure for
accomplishing this goal in prior studies has been to compare
the overall percentage of correct responses (Valentin, Abdi,
Edelman, & O’Toole, 1997; Wallraven, Schwaninger, &
Bülthoff, 2005). Note, however, that this is a relatively
crude criterion, because it is possible for two models to
achieve the same overall accuracy with quite different
patterns of errors. A more stringent analysis for evaluating
face recognition models is to compare their performance
with human observers for all of the individual stimuli
employed in an experiment in order to demonstrate if the
relative difficulty among different stimulus items is the
same for the model as it is for observers (Burton, Miller,
Bruce, Hancock, & Henderson, 2001).
In light of these observations, the research described in

the present article was designed to provide a quantitative
assessment of the extent to which appearance-based
models can account for the ability of human observers to
distinguish images of different individuals under varying
conditions of illumination, facial expression, or partial
occlusion. A key aspect of these studies is that images
depicting the same individual were never identical: They
always differed in terms of facial expression or the pattern
of illumination. To facilitate subsequent analyses, we also
measured the overall similarity of each pair of images the
observers were asked to judge using a wide variety of
possible distance metrics based on the pattern of pixel
intensities or wavelet decompositions. These difference
measures were then correlated with the accuracy of
observers’ judgments for each individual stimulus pair.

Experiment 1

Methods
Apparatus

The experiment was controlled by a Dell Dimension
8300 computer with a 21-inch CRT display. The spatial
resolution of the display was 640 � 480 pixels. This
display subtended 32 by 24 degrees of visual angle when
viewed from a distance of 76 cm. The timing of the
experimental displays and response collection were con-
trolled with E-Prime by Psychological Software Tools.

Stimuli

The faces used in this study were from the AR database
(Martinez & Benavente, 1998). This database contains
full-color photographs of over 100 persons under various
conditions. In an attempt to eliminate obvious recognition
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cues, we only included photographs of 17 men without
facial hair or eyeglasses and with any distinctive moles or
acne removed using Adobe\ Photoshop. Only images of
men were used because women’s hairstyles and use of
cosmetics are often quite distinctive.
The images were pre-processed to simplify subsequent

analyses. First, the photographs were converted from RGB
to grayscale images. Then the images were normalized, first
for orientation by rotating the image such that the eyes share
the same vertical position, then for scale by resampling the
images to align the mouths, chins, and ears and to fill a frame
of 156 � 215 pixels (Martinez, 2003). Finally, to increase
contrast and to give all the images the same dynamic range,
the histogram equalization algorithm in MATLAB\ Image
Processing Toolbox was applied. Six different images
resulting from these normalization procedures are shown
in Figure 1. Note that these faces have four possible
expressions (neutral, angry, smiling, and screaming) and
three possible patterns of illumination (ambient, spotlight
on the left, and spotlights from both the left and right).

Procedure

Observers performed a match-to-sample task as outlined
in Figure 2. A neutral expression under ambient illumi-
nation was used as the sample face on every trial. This
was followed by two alternatives, which had changed in
either expression or illumination. One alternative shared
the same identity as the sample (the “match”), whereas the
other did not (the “foil”). The observers were instructed to
ignore any changes in expression or illumination and to
select which of the two alternatives depicted the same
person as the sample. Each trial began with a fixation
cross for 2000 ms. Then the sample face was presented for
650 ms, followed by a 500 ms mask consisting of a

random grouping of textured objects. The alternatives
were then displayed for 650 ms, again followed by a
500 ms mask. These presentation speeds were selected
based on pilot experiments to avoid ceiling and floor
effects, such that the overall level of accuracy would be
approximately 75%. Observers made a key press response
to indicate which of the two alternatives matched the
identity of the sample. If no response was detected before
the next sample face was presented, the trial was excluded
from subsequent analyses. Before the experiment began,
there was a practice sequence of ten trials with feedback.
For the experiment itself, no feedback was given. A total
of 200 trials were presented in 10 blocks of 20 trials with
short breaks in between blocks.

Trial construction

The selection of images employed in this experiment
was designed specifically to make many of the identity
judgments difficult for appearance-based models. For
example, if the similarity between the sample and match
images was always greater than the similarity between the
sample and foil images, then any appearance-based
measure would perform at or near 100 percent accuracy.
In order to prevent this, the stimulus set was constrained
so that the range of differences between the match and the
sample, as measured by correlation, would be approx-
imately equal to the range of differences between the foil
and sample. Although image correlation is only one of
many possible measures that could be used to constrain
the construction of stimulus triads, this procedure ensured
that appearance-based models would produce incorrect
responses on a substantial number of trials.

Observers

Twenty nine Ohio State University students participated
in the experiment; 18 received course credit and 11 were
paid. All had normal or corrected-to-normal vision.

Figure 1. Conditions from the AR database used in the experi-
ments. These images have been converted to intensity images
and warped as described in Martinez (2003).

Figure 2. Trial sequence for Experiment 1.
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Results

Figure 3 shows the percentage of correct responses for
each of the illumination and expression conditions,
excluding the 0.0039 proportion of trials for which no
response was recorded. Overall, the mean level of
accuracy was 79% and the average response time was
938 ms. Note that there were no significant differences in
performance among any of pair-wise combinations of
conditions involving changes in facial expression or the
pattern of illumination.
To assess the predictions of appearance-based models

for performing this task, we used several commonly
employed techniques for representing low level image
structure. One approach is to consider each image as a
vector in a high-dimensional space, where each individual
pixel defines a dimension, and the intensity of the pixel
defines a specific position along that dimension. An
alternative representation that is perhaps more biolog-
ically plausible is to approximate the encoding of image
structure as a set of filter outputs that are designed to
mimic the responses of simple cells in area V1 of the
visual cortex. In our implementation of this approach,
these cells were modeled as log Gabor filters with six
different orientations with a separation and bandwidth of
30 degrees, five different scales with a separation and
bandwidth of 1.4 octaves, and two different phases (even
and odd symmetric) in all possible combinations. The
selection of five scales was constrained so that the
wavelength of the smallest filter would cover at least
three pixels, and the wavelength of the largest filter would
be no larger than the size of the image. The output of each
filter at each image location was computed in the Fourier
domain as described by Kovesi (1999). Much like a pixel-
based representation, the set of filter outputs for any given
image can be thought of as a vector in a high-dimensional
space, where each individual Gabor filter defines a

dimension, and the output of the filter defines a specific
position along that dimension.
We also performed a principal components analysis in

order to produce more streamlined versions of both the
pixel and Gabor representations. One hundred principal
components were extracted from an independent training
set of 858 images of male faces from the AR database
(Martinez & Benavente, 1998). The training and test sets
were mutually exclusive to mimic the novelty of the faces
for the observers in our experiment. The training set
included images of 34 individuals with all of the
expression and illumination conditions used in the present
experiment, plus several others that were not used in order
to better simulate our subjects’ breadth of experience with
faces. These additional conditions included illumination
with a bright spotlight from the right and images of
individuals who wore sunglasses or a scarf.
For the PCA representations, each image was approxi-

mated as a linear weighted sum of the principal compo-
nents (i.e., eigenfaces) that were calculated from the
covariance matrix obtained from the training set of images
(Turk & Pentland, 1991). As with the pixel and Gabor
representations, an image is again considered as a vector
in a high-dimensional space, but the dimensions are
defined by the principal component weights rather than
pixel intensities or the outputs of Gabor filters. In the PCA
representation, we employed a total of 100 components,
which accounted for over 99% of the data variance.
Following Pentland et al. (1993), we excluded the first
three principal components from the representation,
because they are often most heavily influenced by
variations in illumination as has been demonstrated by
Belhumeur and Kriegman (1998). This produced slightly
improved fits of the PCA models to human performance in
the present experiment than when the first three compo-
nents were included.
For each of these alternative representations, we used

multiple metrics for quantitatively measuring the differ-
ence between any pair of image vectors. The first of these
measures involved computing the Euclidean distance
between their respective vector endpoints. We also
performed a dot product on each pair of image vectors
to compute the angle between them. The primary differ-
ence between these approaches is that the distance
measure is sensitive to variations in image contrast,
whereas the angle measure is not. For the PCA represen-
tations, we also employed a Mahalanobis distance metric,
in which the space is warped according to the variances
and covariances determined by the training samples. This
is because PCA will select those dimensions that carry
most of the covariance of the data. Using these as a
distance metric ensures we appropriately weight the PCA
dimensions by the relative amounts of covariance they
account for.
One possible method for assessing the psychological

validity of face recognition models is to compare their
relative accuracy on face matching tasks with the

Figure 3. Observer accuracy across expression and illumination
conditions in Experiment 1.

Journal of Vision (2008) 8(15):5, 1–12 Wilbraham, Christensen, Martinez, & Todd 4

Downloaded from jov.arvojournals.org on 09/16/2019



performance of human observers (Valentin et al., 1997;
Wallraven et al., 2005). To facilitate that analysis in the
present experiment we computed the predicted response
on each trial for each of the possible difference measures
described above. The predicted response in this context
between the match and the foil is the one that is
quantitatively most similar to the standard. Table 1 shows
the percentage of correct responses predicted by each
measure. Note that all of the models performed well above
chance and that their overall levels of accuracy were quite
similar to the performance of human observers with the
same stimuli.
A more stringent analysis for assessing the psycholog-

ical validity of these models is to compare the relative
image differences on individual stimulus triads (i.e., the
standard, match, and foil) with the accuracy of observers’
judgments on those triads. To facilitate that analysis in the
present study, we computed the difference in image
structure between the sample and match on each trial,
and subtracted that from the difference between the
sample and foil. Thus, positive numbers would be
obtained for trials in which the match was most similar
to the sample, and negative numbers would be obtained
when the foil was more similar. These difference
measures could then be correlated using logistic regres-
sion with the percentage of trials that the observers
correctly identified the match for each individual stimulus
triad. The basic idea from the perspective of an appear-
ance-based model is that observers should be most
accurate for triads with large positive difference measures
and least accurate for triads with large negative difference
measures. The results of these regression analyses are
presented in Table 2. Although most of these correlations
were statistically significant because of the large number
of degrees of freedom, none of the measures could
account for more than 20% of the variance in the accuracy
of observers’ judgments among different triads. For the
PCA representations, we also performed a moving
window procedure as described by O’Toole, Abdi,
Deffenbacher, and Valentin (1993) to see if the fits could
be improved by only considering subsets of the principal
components for measuring image differences. Although
the optimal subsets produced somewhat better fits than the
overall PCA, none of them produced r2 values above 0.22.
Thus, these findings indicate that the pattern of errors for
these appearance-based models had relatively little over-
lap with the errors produced by human observers.

In order to interpret these results, it is first necessary to
measure the consistency among different observers in
their overall patterns of errors. Suppose, for example, that
each observer employed a different strategy for perfor-
ming the required task. If the patterns of errors produced
by these strategies were sufficiently heterogeneous, then
the lack of regularity in the behavioral data would make it
impossible for any model to account for a high proportion
of the variance. In order to assess this issue, we employed
a modified K-folds cross-validation procedure to compare
the patterns of errors among different observers (Efron &
Tibshirani, 1993). The observers were divided into two
near equal subsamples, and we calculated the percentage
of correct responses within each subsample for each of the
different stimulus triads that were presented over the
course of the experiment. The relative accuracies among
triads in one subsample were then correlated with those in
the second subsample using logistic regression. This was
repeated iteratively for all possible subsamples, and then a
grand mean r2 was calculated. The results reveal that there
was a high degree of consistency among the different
observers such that the average r2 value from the K-folds
analysis was 0.715. When considered in combination,
these findings provide strong evidence that there was a
reliable pattern of errors in the observers’ face matching
judgments, but that this pattern cannot be explained by
any of the appearance-based measures we examined.
In an effort to better understand these results, we sorted

all the triads in a spreadsheet based on the difference
between human and model performances. The results of
this sorting revealed quite clearly that the changes in
illumination and changes from a neutral to a scream
expression had the largest effects on the image-based
models, but that these changes had relatively little impact
on the accuracy of observers’ judgments.
We also performed an additional analysis to assess any

learning that may have taken place over the course of an
experimental session. A t-test revealed that there was
indeed a statistically significant improvement (p G 0.01) in
the overall accuracy of observers’ responses from 76% in
the first half of a session to 82% in the second half. This
could have resulted from an increased familiarity with the
experimental task, or from learning the most salient
features of the 17 depicted individuals who were pre-
sented over multiple trials with different facial expressions
and patterns of illumination.

Measure Euclidean Cosine Mahalanobis

Raw pixels 0.68 0.72 –

Gabor filter outputs 0.71 0.78 –

Pixel PCA 0.74 0.72 0.72
Gabor filter PCA 0.68 0.72 0.76

Table 1. Mean proportion correct for appearance-based measures
for Experiment 1. For purposes of comparison, the proportion of
correct responses for human observers was 0.78.

Measure Euclidean Cosine Mahalanobis

Raw pixels 0.189* 0.039* –

Gabor filter outputs 0.092* G0.001 –

Pixel PCA 0.072* 0.089* G0.001
Gabor filter PCA 0.085* 0.089* 0.156*

Table 2. Logistic regression r2 values for Experiment 1. Each
measure was regressed against mean observer accuracy for
each individual stimulus triad. All values with an asterisk are
statistically significant (p G 0.01).
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Experiment 2

Experiment 2 was designed to investigate another type
of low level image change that is irrelevant to facial
identity, yet would likely pose severe problems for
appearance-based models of face recognition. Suppose
that you see someone for the first time through a screen
door, and later see the same person through a different
type of screen or through a clear window. These changes
in the pattern of occlusion would produce large variations
in low level image structure, but to what extent would
they influence your ability to recognize the person?
Experiment 2 was designed to address this question.

Methods
Stimuli

The apparatus was identical to Experiment 1, and the
same faces from the AR database were used. However, for
this experiment, new stimuli were created by applying a
checkerboard pattern over the images (see Figure 4). The
checkerboard alternated between occluding black pixels
and non-occluding pixels in 7 square-pixel blocks.

Procedure

Observers performed a face matching task in which they
had to judge whether two sequentially presented faces

were the same or different. Each trial began with the
presentation of a fixation cross for 1500 ms. This was
followed in sequence by a 1000 ms presentation of the first
face in the center of the display screen, and a 500 ms
presentation of a mask that was composed of over-
lapping textured objects. The second face was then
presented for 1000 ms, followed by a second mask for
500 ms (see Figure 5). The second face was offset from
the center of the display screen by 4 degrees in a
randomly selected direction. Observers were required to
indicate as quickly as possible whether or not the two
presented faces had the same identity by pressing an
appropriate response key on the computer keyboard. If no
response was detected before the next face was presented,
the trial was repeated at the end of the experiment. The
first face in each sequence was always presented with a
neutral expression and an ambient illumination, and it was
always covered with a checkerboard mask. The second
image always had an expression or illumination change as
in Experiment 1, and it could have four different types of
checkerboards (see Figure 4): one that was identical to the
checkerboard on the first face, one that was phase shifted
by 90 degrees or 180 degrees, or with no checkerboard at
all.
As in Experiment 1, observers were instructed to ignore

changes in expression and illumination when making their
identity judgments. In addition, they were also told to
ignore the checkerboard pattern. No feedback was
provided during the experiment, though all observers
were shown 10 practice trials with feedback at the
beginning of an experimental session. Following this
practice, each observer viewed 120 trials in 6 blocks of
20 trials each, with short breaks in between blocks.

Observers

Thirty Ohio State University students participated in the
experiment for course credit. All had normal or corrected-
to-normal vision.

Figure 4. Checkerboard conditions in Experiment 2. The phase
changes are most easily noted by focusing on the lower left
corner of each image.

Figure 5. Trial sequence for Experiment 2.
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Results

Figure 6 shows the proportion of different responses for
both “same” and “different” trials for each of the
checkerboard conditions. Overall, the mean level of
accuracy was 72% (dV= 1.20) and the average response
time was 1098 ms.
The differences between each pair of images were

computed using the same computational procedures as
described for Experiment 1. For the measures involving
PCA, the principal components were obtained from an
independent training set of 858 images as described in
Experiment 1. Note that these images were not masked by
checkerboards.
One obvious strategy for performing same–different

judgments within an appearance-based framework would
be to set some threshold difference in low level image
structure, such that pairs with differences above that
threshold would be judged as “different”, and all others
would be judged as “same”. To determine the predicted
performance for all of the alternative difference measures,
we computed the optimal threshold that would produce the
highest levels of accuracy. The results of this analysis for
each of the different measures are presented in Table 3.
Note that the PCA measures consistently outperformed

those in which the images were represented in terms of
pixel intensities or Gabor filter outputs. The highest level
of performance was obtained for the pixel-based PCA
representation when image differences were computed
using the angle measure. Using the most optimal thresh-
old, this measure discriminated faces correctly on 78% of
trials (dV= 1.19). The results for this measure in all of the
checkerboard conditions are plotted in Figure 7.
To measure the consistency of performance across

different observers, we used the same K-folds cross-
validation procedure as described for Experiment 1. The
observers were divided into two equal subsamples, and we
calculated the percentage of “different” responses within

each subsample for each of the possible image pairs that
were presented over the course of the experiment. The
relative proportions of “different” responses among the
stimulus pairs in one subsample were then correlated with
those in the second subsample using logistic regression.
This was repeated iteratively for all possible subsamples,
and then a grand mean r2 was calculated. The results
reveal that there was a high degree of consistency among
the different observers such that the average r2 value from
the K-folds analysis was 0.723.
Additional analyses were performed to determine if any

of the appearance-based models could account for
variations in difficulty among the different stimulus pairs.
This was achieved by correlating the proportion of
“different” judgments for each pair with the magnitude
of their low level image differences using logistic
regression. The results of this analysis are presented in
Table 4 for all of the possible distance metrics we

Figure 6. Mean observer performance for all of the checkerboard
conditions of Experiment 2.

Measure Euclidean Cosine Mahalanobis

Raw pixels 0.57 0.57 –

Gabor filter outputs 0.65 0.62 –

Pixel PCA 0.69 0.78 0.69
Gabor filter PCA 0.70 0.69 0.69

Table 3. The mean proportion of correct responses for appear-
ance-based measures in Experiment 2, which were calculated for
the threshold yielding the highest dV value. For purposes of
comparison, the proportion of correct responses for human
observers was 0.72.

Figure 7. Probability of different responses for the PCA pixel
model across all the checkerboard conditions in Experiment 2,
using the threshold that produced the highest discrimination
performance.
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considered. Although most of these correlations were
statistically significant because of the large number of
degrees of freedom, none of the measures could account
for more than 22% of the variance in observers’ judg-
ments among different stimulus pairs. These fits were
improved somewhat using an optimal subset of compo-
nents in the PCA analyses as described by O’Toole et al.
(1993), but the largest r2 value obtained by that procedure
was only 0.28, thus indicating that the pattern of errors for
these appearance-based models had relatively little over-
lap with the errors produced by human observers.
As in Experiment 1, we attempted to determine how the

patterns of errors for the appearance-based models
deviated from those of human observers by sorting all
the stimulus pairs in a spreadsheet based on the difference
between human and model performances. The results
revealed that the changes in the checkerboards, changes in
illumination, and changes from a neutral to a scream
expression had the largest effects on the image-based
models, but that these changes had much less influence on
observers’ judgments. We also performed an additional
analysis to assess any learning that may have taken place
over the course of an experimental session. In contrast
to Experiment 1, there was no significant improvement
(p 9 0.1) in the overall accuracy of observers’ responses
between the first and second halves of the experimental
sessions.

Discussion

The research described in the present article was
designed to investigate the extent to which appearance-
based models of face recognition can account for the
ability of human observers to discriminate facial identity.
There are several important aspects of these studies that
deserve to be highlighted. First, the stimulus displays were
selected so that accurate performance on a match-to-
sample or same–different task would require observers to
distinguish changes in facial identity from changes in
other properties such as facial expression or the pattern of
illumination. Second, the difference between each pair (or
triad) of images was measured using a wide variety of

distance metrics in order to test a broad sample of possible
appearance-based models. Third, the performance of each
model was evaluated by calculating the difference
between each pair (or triad) of images the observers were
asked to judge and correlating those differences with the
percentage of correct responses for each stimulus. Note
that this is a much more sensitive measure than a simple
comparison of overall accuracy, which is the criterion
most commonly employed for assessing the psychological
validity of face recognition models.
In both experiments, some of the appearance-based

models we considered were able to achieve an overall
level of accuracy that was similar to that of human
observers. It is important to keep in mind, however, that
the overall level of accuracy may be a misleading measure
of performance for two reasons. First, the accuracy
achieved by human observers in the present experiments
was intentionally lowered by the brief presentation times
in order to avoid ceiling effects. Had observers been
allowed to peruse the stimulus pairs (or triads) with
unlimited viewing time, the proportion of errors in their
responses would have been substantially reduced. Second,
measures of overall accuracy are incapable of revealing
whether the pattern of errors by human observers is
consistent with what would be predicted by computational
models. Regression analyses on the relative performance
for individual stimulus items provide a more powerful
way of addressing this issue, and the results from both
experiments provide strong evidence that the 10 appear-
ance-based models we tested are incompatible with
human performance. On average, the low level image
differences accounted for only 8% of the variance in the
accuracy of observers’ judgments for different stimuli in
Experiment 1, and only 13% of the variance in Experi-
ment 2. One important issue that needs to be considered
when interpreting these findings is the relative degree of
consistency among different observers. Suppose, for
example, that there were large individual differences
among observers in the information they used to deter-
mine whether or not two images depicted the same person.
Combining the results from a sufficiently heterogeneous
group of subjects could potentially produce so much noise
in the data that there would be little or no structure for any
model to fit. In an effort to examine that possibility we
performed a cross validation procedure in which we
correlated the performance for each pair of images among
different groups of observers. The average correlation
between groups was 0.85 in both experiments. Thus, these
findings indicate that there was a high degree of
consistency among observers, and that the reliable
variations in performance for different stimuli cannot be
accounted for by any of the appearance-based models we
examined.
It is interesting to note that the present results appear to

be in conflict with an earlier study by Biederman and
Kalocsai (1997), who investigated visual priming with
filtered images of objects and faces. The stimuli in their

Measure Euclidean Cosine Mahalanobis

Raw pixels G0.001 0.044* –

Gabor filter outputs 0.135* G0.001 –

Pixel PCA 0.193* 0.199* 0.157*
Gabor filter PCA 0.222* 0.224* 0.102*

Table 4. Logistic regression r2 values for Experiment 2. Each
measure was regressed against the mean proportion of different
responses on each possible stimulus pair. All values with an
asterisk are statistically significant (p G 0.01).
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study included pairs of complementary grayscale images
in which every other Fourier component (8 scales � 8
orientations) was included in one member and the
remaining components were included in the other.
Observers were more accurate and had faster reaction
times at identifying famous faces or objects when the
images were identical to those presented in an earlier
block. This priming effect also occurred for objects when
a complimentary image was presented, but no priming
occurred for complimentary images of faces. Biederman
and Kalocsai concluded from this that the representation
of a face, unlike that of objects, is specific to the original
filter outputs of its Fourier components.
In order to assess the validity of this conclusion it is

useful to consider the set of images presented in Figure 8.
The image on the left is one of the stimuli from the
present experiments. The image in the middle has a phase
spectrum that is identical to the one on the left and an
amplitude spectrum that was selected randomly from a
uniform distribution. The image on the right, in contrast,
has an amplitude spectrum that is identical to the one on
the left, and a phase spectrum that was selected randomly
from a uniform distribution. Note that the information
about facial identity is preserved in the middle image even
though the amplitudes of all the Fourier components have
been randomly scrambled from the original image. This
demonstration suggests that it is the alignments of the
Fourier components that provide the primary information
for the perceptual analysis of faces rather than their
amplitudes. Scrambling the amplitude spectrum removes
most of the luminance gradients within the original image,
but it does not affect the contour structure of the facial
features or the polarity of light and dark regions. These
are the properties encoded by the phase spectrum that we
suspect are most important for the perceptual analysis of
faces.
One potentially important difference between the

experiments reported by Biederman and Kalocsai (1997)
and those reported here is that they used a name
verification task with images of famous people, whereas
we used a same–different identity task with images of

unfamiliar individuals. Hancock, Bruce, and Burton
(2000) have argued that the perceptual processing of
familiar and unfamiliar faces may be quite different, but
that it is the representations of unfamiliar faces that are
most likely to be based on relatively low level image
descriptions, such as the one proposed by Biederman and
Kalocsai. Because familiar individuals have been seen in
so many different contexts, it would be reasonable to
expect that the representation of their faces would
incorporate whatever context invariant properties makes
them perceptually distinct from one another. Indeed, this
view is supported by the finding that caricatures of
familiar faces, which exaggerate distinctive features, are
sometimes easier to recognize than the undistorted faces
themselves (e.g., see Rhodes, Byatt, Tremewan, &
Kennedy, 1997).
Given that the pattern of performance of appearance-

based models in the present investigation was quite differ-
ent to that of humans, it is tempting to conclude that
observers may incorporate a feature-based approach for
performing same–different identity judgments, or perhaps
some hybrid model that combines both approaches (e.g.,
Schwaninger, Wallraven, & Bülthoff, 2004; Wallraven
et al., 2005). The computational analysis of facial features
typically involves a graph representation that captures the
spatial arrangements of fiducial points, such as the corners
of the mouth and eyes (Wiskott, Fellous, Krüger, & von
der Malsburg, 1997). The primary limitation of these
analyses as models of human face recognition is that there
are no reliable procedures for localizing the fiducial points
without manual intervention. One attempted solution to
this problem is to use corner detectors to localize features
in regions that exhibit high curvatures of pixel intensities
within their neighborhood (Schwaninger et al., 2004).
Although this avoids the need for manual intervention, the
fiducial points detected by this procedure are only loosely
coupled to those that are marked by human observers.
More accurate methods of extracting fiducial points have
been developed that use manually marked images to train
a system, which then operates autonomously subsequent
to this training (Ding & Martinez, 2008; Heisele, Serre,

Figure 8. A grayscale image of a face (left), the same image with a randomly scrambled amplitude spectrum (middle), and the same
image with a randomly scrambled phase spectrum (right).
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Pontil, & Poggio, 2001). However, even with the addition
of supervised learning, none of these systems would be
able to cope with the checkerboard occlusions employed
in Experiment 2 of the present study, and they cannot
therefore account for the finding that these occlusions had
relatively little impact on human performance.
Another possible approach to face recognition that is in

some ways intermediate between feature-based and
appearance-based models is to design a set of higher
order filters that are sensitive to spatial relations that
remain relatively invariant across different contexts. An
excellent example of this general approach is the model of
face detection developed by Sinha (2002b) based on a
template that captures the ordinal relations of image
intensity on a human face that remain invariant over
widely varying patterns of illumination. A similar
approach has also been adopted for face recognition by
Jiang et al. (2006). Their model is designed to capture the
processing hierarchy within the human visual system in
which the complexity of neurons’ preferred stimuli and
the size of their receptive fields increase progressively as
information is propagated from primary to inferotemporal
cortex. Jiang et al. have tested their model with 6804
possible parameter sets, and they found 35 that produced
good fits to empirical data produced by human observers
in a same–different identity paradigm. This finding high-
lights the difficulty of constructing a model based on
higher order features in a principled manner, because
there are no obvious constraints on the set of possible
features to be considered. It is also important to note,
moreover, that the facial images used by Jiang et al.
(2006) did not include any identity-irrelevant variations in
image structure, such as changes in illumination, expres-
sion, or pose, so it remains to be determined whether their
approach can successfully cope with these changes.
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Footnote

1
It is important to note that the terms feature-based and

appearance-based have been used in a variety of ways in

the both the face and object recognition literatures. Within
the context of this paper, our usage of the term feature-
based model applies specifically to models that analyze
the shapes and/or configurations of namable structures on
the human face, such as the eyes, nose, or chin. Because
there are currently no automatic procedures for extracting
these features, these models all involve some form of
manual intervention. Our usage of the term appearance-
based model, in contrast, refers to models that operate
directly on pixel data or the outputs of wavelet filters
without the need for manual intervention. Although these
components of raw image data have also been referred to as
features in a mathematical context, they are fundamentally
different from the components used by feature-based
models, because they do not correspond directly to namable
structures that can be described using colloquial speech.
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