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ABSTRACT

Using integration constraints and scale analysis, van Leeuwen and De Ruijter focused on the steady aspect

of the downstream flow in the momentum imbalance articles of Nof and Pichevin appearing in the 1990s and

later on. They correctly pointed out that when the steady downstream flow is exactly geostrophic then it must

obey the additional downstream (critical) condition u2 5 g9h (where u is the speed, g9 is the reduced gravity,

and h is the thickness). They then further argue that this additional condition provides ‘‘a strong limitation on

the generality of their results.’’ These results for steady flows have been incorrectly generalized by the typical

reader to eddy generating unsteady flows, which was the focus of Nof and Pichevin.

The current authors argue that, although the van Leeuwen and De Ruijter condition of u2 5 g9h is valid for

a purely geostrophic and steady flow downstream, it is inapplicable even for the steady aspect of the Nof and

Pichevin solutions because the assumption of a purely geostrophic flow (i.e., fu 5 2g9hY and y 5 0) was never

made at any downstream cross section in Nof and Pichevin. Instead, the familiar assumption of a cross-stream

geostrophic balance in a boundary current, which is slowly varying in the downstream direction, as well as

time, has been made (i.e., fu ’2g9hY , y � u, and small ›/›t but nonzero). Perhaps the current authors

originally were not as clear about that as they should have been, but this implies that the basic state around

which van Leeuwen and De Ruijter expanded their steady Taylor series does not exist in Nof and Pichevin;

consequently, their expansion fails to say anything about both the time-dependent and the time-independent

Nof and Pichevin. In the current authors’ view, the ‘‘strong limitation’’ that they allude to does not exist.

1. Introduction

The easiest way to introduce the Nof and Pichevin

momentum imbalance idea is via a northward outflow

problem (e.g., Pichevin and Nof 1997; Nof 2005) rather

than via a retroflection problem, which is more difficult

to understand. (Ironically, this is actually the order that

we did the original work, but the sometimes treacherous

road of getting submitted articles to appear reversed the

order in which they were published.) In an attempt to

make this note at least semi-self-contained, we reproduce

below a few figures and equations from the earlier Nof

and Pichevin articles.

Consider the hypothetical steady northward (inviscid)

reduced gravity outflow situation shown in Fig. 1. The

integrated momentum flux along the coast (obtained by

an integration of the x momentum equation along the

contour ABCDA) is

ðL

0
(hu2 1 g9h2/2 2 f c) dy 5 0, (1)
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where u is the speed along the coast, h is the thickness,

f is the Coriolis parameter, c is the streamfunction, g9 5

gDr/r (where Dr, r are the density difference/density

of the layers and Dr/r � 1), and L is the width of the

boundary current downstream at CD (i.e., y 5 L when

h 5 0). Note that symbols and abbreviations are defined in

both the text and the appendix. Here, L, which is a weak

function of x, depends on the outflow potential vorticity

and is on the order of the Rossby radius,

RD 5 (2g9Q)1/4/f 3/4,

where Q is the outflow’s volume flux (equal to g9H2/2f ,

where H is a depth scale). Assuming steadiness, one

dimensionality (i.e., y� u but nonzero), and geostrophy

in the cross-stream direction at CD (but allowing the flow to

vary on a much longer downstream length scale; see, e.g.,

Charney 1955) and neglecting terms ;O(bRD/f0) ; (0.01),

we get

ðL

0
hu2 dy 5 0. (2)

Obviously, (2) cannot be satisfied so there cannot be a

steady outflow of the kind pictured in Fig. 1. This is what

Nof and Pichevin called the paradox. Aside from the

momentum constraint discussed here, there may also be

a yet-unknown hydraulic constraint involving a condition

similar to the familiar criticality of uniform flow alluded

to by van Leeuwen and De Ruijter (2009, hereafter

VL-DR) (u2 5 g9h). This would ensure the establishment

of stationary waves downstream because their propaga-

tion tendency will be arrested by the advection. Whether

such an additional condition exists is of no consequence

to the more general time-dependent Nof and Pichevin

problem discussed below. (Note that the above hypo-

thetically steady problem is defined here as problem 1,

whereas the more general time-dependent problem will

be defined, in a moment, as problem 2).

Nof and Pichevin resolved the paradox by arguing

that a chain of eddies (Fig. 2) is formed on the western

side of the outflow to compensate for the momentum

flux of the jet on the eastern side. This way the momen-

tum flux of the westward moving eddies balances the

momentum expressed by (2) via a nonzero term on the

right-hand side of (2). Because eddies move westward

(due to b) much more slowly than their orbital speed

(which is on the same order as the mean flow downstream),

they are much larger than RD (see Nof and Pichevin), and

so is the x scale of the downstream current.

Nof and Pichevin then took the above and applied it to

the (Southern Hemisphere) retroflection case (Fig. 3) near

a coastline with zero slant (g / 0 so that the coast is zo-

nal). Here, there are two currents with their momentum

flux pointing westward (because the momentum is pro-

portional to u2 not u) so the mass flux going into the eddies

is larger than in the northward outflow problem and, as

a result, the eddies themselves are also larger (see Nof and

Pichevin 1996; Pichevin et al. 1999). It is no surprise,

therefore, that retroflection eddies are the largest rings in

the World Ocean (Olson and Evans 1986; Olson 1991).

We see that the Nof and Pichevin case actually in-

volves two sub-problems. The first is a simple northward

outflow problem from a point source on a beta plane or

its analogous retroflection along a zonal wall. This pro-

blem involves a hypothetical eastward coastal current

that is initially assumed to be steady and slowly varying

in x. This is referred to as problem 1. We then reject this

possibility on the ground that it does not satisfy the

FIG. 1. A schematic diagram of the hypothetical (Northern

Hemisphere) steady configuration shown by Nof and Pichevin to

be impossible on a b plane (adapted from Nof 2005). This is because

the along-shore momentum flux of the slowly varying downstream

boundary current, which is pushing westward, is not balanced. As

a result, eddies are periodically shed on the left-hand side (Fig. 2).

FIG. 2. Schematic diagram showing the Nof and Pichevin reso-

lution of the momentum imbalance paradox. The ‘‘wiggly’’ arrow

denotes migration. Because of the imbalance shown in Fig. 1,

anticyclonic eddies are generated on the left-hand side (looking

offshore). Through b these eddies are forced to propagate to the

left. Nof and Pichevin obtained their analytical solution by

equating the momentum flux through EA to the momentum flux

through CD. The base eddy, which is the eddy in contact with the

source, should be distinguished from the already detached eddies

downstream.

AUGUST 2012 C O R R E S P O N D E N C E 1367

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/42/8/1366/4522713/jpo-d-11-0160_1.pdf by guest on 30 O
ctober 2020



momentum integral and regard this as a paradox. Nof

and Pichevin then address the second problem where

the steadiness is relaxed to allow for eddies to periodi-

cally form and shed on the west side. This is referred to

as problem 2.

VL-DR focused on the steady problem (problem 1)

and took a purely geostrophic basic state downstream

(i.e., steady, no y), which does not actually exist in either

of these two problems (1 and 2). They correctly say that,

under these conditions, there is an ‘‘additional con-

straint’’ to problem 1. This has been incorrectly applied

by some readers to problem 2. Recall that problem 2 is

an unsteady problem, so steady considerations do not

apply. It will be apparent from sections 2 and 3 that we

agree that there might be some kind of a control (dif-

ferent, however, from the uniform flow condition de-

rived by VL-DR) to problem 1. By ‘‘control,’’ we mean a

condition under which the flow (which is varying in x)

will support a stationary wave (i.e., the steady advective

flow cancels the wave propagation tendency). Because

this problem is dismissed as unphysical anyway, we are

not sure what is the sense in looking for it. We shall also

see that problem 2 cannot possibly have such a constraint

because it is unsteady. That is to say, we argue that the

VL-DR basic state does not exist in either problem 1 or 2

of Nof and Pichevin and therefore their expansion and

conclusions are irrelevant to both cases.

2. VL-DR argument and its relationship
to Nof and Pichevin

In their appendix, immediately below (A6), VL-DR

correctly argue that, when the flow is zonal, steady, and

purely geostrophic at any downstream cross section,

the flow cannot develop meanders and it cannot be at-

tached to either meanders or a retroflection upstream

or downstream unless u2 5 g9h. [Note that the VL-DR

Taylor series analysis is analogous to that used in

Killworth (1983); see Pratt and Whitehead (2008) for

a discussion of the criticality condition, u2 5 g9h.] When

the flow and/or its boundaries (a front on the southern

side in our case) do vary with both x and t, then neither

y 5 0 nor ›/›t 5 0 and this criticality condition need not

be satisfied.

In Nof and Pichevin, the steady downstream flow is

merely assumed to be geostrophic across CD (Figs. 1–3),

in agreement with the common assumption made in any

slowly varying boundary current (in both x and t). No-

where has it been assumed, explicitly or implicitly, that

›/›x [ 0 or y [ 0 anywhere. It is expected that neither

of the two will be identically zero anywhere (except the

wall in the outflow problem) because the retroflection

eddy is much larger than the downstream current width,

but it is not infinitely long. Specifically, it is expected that

the downstream current will vary on the same larger scale

as the eddy.

As far as Nof and Pichevin unsteady problem (prob-

lem 2) is concerned, even when the downstream current

contains meanders with an amplitude reaching 1/3 of

their length, the geostrophic approximation across CD

is still valid on the order of ;(1/3)2 ; 10% (as our nu-

merical runs confirm; see Fig. 7a in Pichevin et al. 1999).

Just to be absolutely sure, we also checked whether any

of our numerical solutions happen to satisfy the condi-

tion u2 5 g9h or something similar to it, which implies

decreasing velocities toward the front (h / 0). We

noted that, on the contrary, in all of our dozens of ex-

periments the streamlines appear to be uniformly spaced,

implying that the velocity increases (rather than de-

creases) toward the front.

3. The mathematical aspect of VL-DR Taylor
expansion

From a mathematical viewpoint, the essence of the

argument regarding the variability in x presented in

section 2 is that there exists a small parameter, y/u, which

we will call «. (Note that we are speaking here about both

problems 1 and 2 and that « here is not the same as that

used in Nof and Pichevin, bRD/f .) Equation (2) has to

hold only to order «0, the terms that constitute the ‘‘mean

state.’’ From this point onward, the problem is clear: One

can expand the terms in the mean state to any of their

Taylor series order and they will not yield the same ef-

fects as those of the order « terms. Namely, Nof and

Pichevin are relying on the next-order terms (and not

FIG. 3. The retroflection paradox and its resolution (in the

Southern Hemisphere) according to Nof and Pichevin (adapted

from Pichevin et al. 1999). To simplify the analysis, Nof and Pichevin

considered the cases where there is no coastline tilt (i.e., g / 0).

To compensate for the westward momentum flux (or flow force)

created by the approaching and retroflected slowly varying

boundary currents, westward-propagating anticyclonic rings are

generated periodically. In this scenario, the eddies exert an east-

ward momentum flux analogous to the backward push associated

with a firing gun. The wiggly arrow denotes migration.
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on the mean state variables), whereas VL-DR analyze

only the mean state variables.

This situation can perhaps be best understood if we

examine the example of a long-wave instability (e.g.,

Killworth et al. 1984): As long as k 5 0 (where k is the

zonal wavenumber that is assumed to be a small pa-

rameter), the flow is stable and any analysis based on the

functions of this state will not produce anything new. Only

when one brings in the next-order terms (in k) the in-

stability occurs and some new unstable features of the flow

field emerge. Similarly, in the steady Nof and Pichevin

case, as long as one remains in an exact (imaginable)

downstream geostrophic regime (i.e., steady, no v), then

the VL-DR arguments hold. However, even the slightest

deviation from this state will bring in the paradox that

Nof and Pichevin are alluding to. This easily explains

the u2 5 g9h issue, which Nof and Pichevin, of course,

do not get but VL-DR get in their analysis of the mean

state.

4. Discussion

In the beginning of their article, VL-DR discuss the

mechanism leading to retroflection, noting that Nof and

Pichevin attribute it to a momentum imbalance of the

kind explained above. VL-DR later state that ‘‘although

the idea of [Nof and Pichevin (1996)] is appealing, it

seems to be contradicted by other studies.’’ VL-DR then

list Dijkstra and De Ruijter (2001) and Ou and De

Ruijter (1986) as evidence for the contradiction of Nof

and Pichevin with previous articles but never spelled out

clearly what the contradiction between these steady

problems and the Nof and Pichevin unsteady solution

really is.

Ou and De Ruijter (1986) considered different phys-

ical systems (i.e., different boundary conditions) than we

did, so it is not surprising that the results are not the

same (see also Pichevin et al. 2009). We have countless

counterexamples (to VL-DR statements) where the nu-

merics support our analytics. One example is displayed

in Fig. 8 of Pichevin et al. (1999), and a second is shown

in Fig. 8 of Zharkov et al. (2010). In the second example,

the red solid and dashed lines (theory) and red diamonds

(numerics) correspond to the Nof and Pichevin case

(g 5 0), and those in black color are closely related to

VL-DR (g 5 908). VL-DR also considered the case of a

free meandering steady outflow where ›y/›x is the same

order as ›u/›y (holds at the outflow section; see Fig A1.

of VL-DR), a situation never considered by Nof and

Pichevin.

Finally, we respectfully disagree with the VL-DR

statement that ‘‘the apparent contradiction between pre-

vious work on separating currents, and the more recent

work by Nof and Pichevin is solved.’’ We think that

VL-DR presented interesting arguments but have not

resolved any clearly identifiable problem or contra-

diction. The basic state around which they expanded

their Taylor series simply does not exist in the steady

Nof and Pichevin case, so their expansion is irrelevant

to Nof and Pichevin and there are no additional con-

straints.
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APPENDIX

Symbols and Abbreviations

u, y Zonal and meridional speeds in the x and

y directions

h Upper-layer thickness

g9 gDr/r, reduced gravity

f Coriolis parameter

L(x, t) Downstream current width

Q Outflow or incoming current volume flux

q Outgoing current volume flux

R
D

5(2g9Q)1/4/f 3/4, Rossby radius

« Small parameter, y/u

b Variation of the Coriolis parameter with

latitude
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