Workshop
Current and Future Research on High LET Radiations

W01–1 Chromosomal Aberrations Induced by Cosmic Radiation in Human Lymphocytes.
Guenter OBE1, R FACIUS2, G DE ANGELIS3, 1Dept. Genet. Univ. Essen, Germany 2DLR, Germany 3LEB, Instituto Superiore di Sanità, Italy

Cosmonauts exposed to space radiation in low earth orbits (LEO), exhibit elevated frequencies of dicentric chromosomes (Dic) in their peripheral lymphocytes compatible with those expected from doses of low and high LET radiation in LEO. Extrapolating these findings to Mars astronauts allowed us to calculate the expected frequencies of Dic to be up to 40 times higher than terrestrial control levels. Calculated time profiles of frequencies of Dic in lymphocytes of a pilot, a steward and a stewardess whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career are presented. Our results demonstrate that experimental (epidemiological) studies concerning Dic in persons exposed to ionising radiation must take into consideration the temporal exposure profiles and the point in time at which blood samples should be drawn.

W01–2 Heavy-ion Induced Initial G2-chromosome aberrations and Repair Kinetics of Normal Human Fibroblasts
Tetsuya KAWATA1, Marco DURANTE4, Yoshiya FURUSAWA4, Kerry GEORGE2, Hisao ITO1, Honglu WU2, Francis CUCINOTTA2, 1Dept. Radiology, Chiba Univ. 2NASA, JSC, 3University Federico II 4National Institute of Radiological Sciences

We report initial G2 chromosome aberrations after heavy-ion irradiation and repair kinetics of chromatid breaks of normal human fibroblasts. Exponentially growing human fibroblast AG1522 were irradiated with &gamma-rays, carbon, silicon and iron ions. LET values ranged from 13 to 440 keV/µm. Chromosomes were prematurely condensed using calyculin-A, and stained with Giemsa. Chromatid-type and isochromatid-type breaks in G2 cells were scored. The dose responses for total breaks (chromatid-type plus isochromatid-type breaks) were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET dependent increase, peaking at 80 keV/µm and decreasing at higher-LET. The dose responses for isochromatid breaks were linear for high-LET radiations, but linear-quadratic for &gamma-rays and 13 keV/µm carbon. The RBE for the induction of isochromatid breaks increased rapidly between 13–80 keV/µm and decreased gradually until 440 keV/µm iron ions. Although the percentage of residual breaks was higher for high-LET radiations, there was no significant difference in repair kinetics between low- and high-LET radiations.
ABSTRACTS

W01–3 Fractionated irradiation with carbon ions induced resistance in mouse gut crypt cells
Koichi ANDO1, Manami MONOBE1, Akiko UZAWA1, Sachiko KOIKE1, Chisa OHIRA2, Kumie NOJIMA3, Yoshiya FURUSAWA1, Mizuho AOKI1, Nobuhiko TAKAI1, Takeshi FUKAWA1, 1Heavy-Ion Radiobiology Research Group, NIRS 2Frontier Research Center, NIRS 3International Space Radiation Laboratory, NIRS

Mouse crypt survivals after fractionated irradiation with 290 MeV/u carbon ions of 20 keV/µm carbon ions were investigated. The interval time between each fraction was 4 hr. After equal dose per fraction, crypt cells showed similar response to 20 keV/µm carbon ions and X rays. Do values increased from 1.4 Gy to more than 2.5 Gy when number of fractions increased from single dose to 6. Total isoeffect doses to produce 10 crypts were stable and unchanged when the preceding doses of 1 Gy-carbon ions were repeated less than 5 times, but increased when number of 1 Gy-per-fraction increased from 7 to 11. Isoeffect top-up doses indicated that 20 keV/µm induced resistance. Do values increased when number of 1 Gy-per-fraction increased from 7 to 11. X rays did not show such Do increase after multiple doses of 1 Gy-per-fraction. It is concluded that an intermediate LET of 20 keV/µm carbon ions induces radioresistance by modifying radiosensitivity of crypt cells.

W01–4 Reversed dose-rate effect of high LET radiation in mutation induction
Hiroshi TAUCHI1, Takahiro SHIRAISHI2, Kiyomi EGUCHI-KASAI1, Yoshiya FURUSAWA3, Koichi ANDO3, Shinya MATSUURA2, Kenshi KOMATSU2, Yusuke ICHIMASA1, 1Dept. Environ. Sciences, Ibaraki Univ. 2Dept. Radiat. Biol., Hiroshima Univ. 3NIRS

Reversed dose-rate effect in mutagenesis has been thought to be a specific phenomenon in fission neutrons. Our previous study revealed that the G2/M cells were uniquely sensitive to mutation induction by neutrons but not to gamma-rays, and that a radiation-induced G2 block might be a major determinant of the phenomenon. A subsequent study using carbon beams with different LETs showed that higher LET beam always produced the highest mutation frequency at the G2/M stage. The result suggests that the reversed dose-rate effect might be seen in any high LET radiation regardless of the particles composing radiations. Because the conventional mutation assay needs a total dose of several Gray to see any significant effects, it is difficult to apply accelerators as a radiation source at low dose-rate due to their limited exposure duration. To solve the problem, a hypersensitive mutation system was developed using hamster/human X-hybrid cells. The effectiveness of the new system to study the reversed dose-rate effect will be discussed.

W01–5 Cellular Responses after Heavy-ion Exposure
Fumio YATAGAI1,2, Sachiko GOTO1,4, Shigeko MORIMOTO1, Takesi KATO1, Fumio HANAOKA2, Yasushige YANO1,1,2RI Tech. Div. RIKEN 2Cellular Physiol. RIKEN 3Cyclotron Center. RIKEN 4Radiation life science. Pharm. Nagasaki Univ.

To better understand cellular responses in human lymphoblastoid cell TK6 after exposure to C-ion (22 keV/µm) and Fe-ion (1000 keV/µm), both protein induction and cell-cycle progression have been extensively analyzed by the recently developed techniques. Exposure to Fe-ion demonstrated a delay in cell-cycle progression compared to X-ray irradiation. This delay was found to be due to the stall in S-phase by the analysis using pre-labeled BrdU methodology. Since the DNA lesions produced by high-LET radiation were considered to include DNA double-strand break, foci formation of RAD51 protein playing a key role in DNA homologous recombination was determined by cell staining technique. Rad51-foci observed after Fe-ion was localized in cell in contrast to uniform distribution after X-ray irradiation. These results suggest that the heavy-ion specific damage is difficult to be repaired by DNA homologous recombination.