Synergistic Combination of Hyperoxygenation and Radiotherapy by Repeated Assessments of Tumor pO2 with EPR Oximetry

Huagang HOU1,2, Ruhong DONG1,2, Jean P. LARIVIERE1,2, Sriram P. MUPPARAJU1,2, Harold M. SWARTZ1,2 and Nadeem KHAN1,2*

Carbogen/EPR oximetry/Irradiation/Tumor oxygenation.

The effect of hyperoxygenation with carbogen (95% O2 + 5% CO2) inhalation on RIF-1 tumor pO2 and its consequence on growth inhibition with fractionated radiotherapy is reported. The temporal changes in the tumor pO2 were assessed by in vivo Electron Paramagnetic Resonance (EPR) oximetry in mice breathing 30% O2 or carbogen and the tumors were irradiated with 4 Gy/day for 5 consecutive days; a protocol that emulates the clinical application of carbogen. The RIF-1 tumors were hypoxic with a tissue pO2 of 5–9 mmHg. Carbogen (CB) breathing significantly increased tumor pO2, with a maximum increase at 22.9–31.2 min on days 1–5, however, the magnitude of increase in pO2 declined on day 5. Radiotherapy during carbogen inhalation (CB/RT) resulted in a significant tumor growth inhibition from day 3 to day 6 as compared to 30%O2/RT and carbogen (CB/Sham RT) groups. The results provide unambiguous quantitative information on the effect of carbogen inhalation on tumor pO2 over the course of 5 days. Tumor growth inhibition in the CB/RT group confirms that the tumor oxygenation with carbogen was radiobiologically significant. Repeated tumor pO2 measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcomes by scheduling doses at times of improved tumor oxygenation.

INTRODUCTION

Tumor hypoxia leads to therapeutic resistance1–3) and also promotes aggressive tumor behavior and metastases.4,5) Therefore, a significant therapeutic benefit can be achieved by improving tumor oxygenation. Several methods have been developed to increase tumor oxygenation such as by using gases with high oxygen content at normobaric or hyperbaric pressures,6,7) carbogen (95% O2 + 5% CO2) breathing, carbogen combined with nicotinamide,8–10) administration of hypoxic-cell sensitizers,11,12) and erythropoietin to improve hemoglobin level.13,14) Although these methods have led to mixed results, it is generally agreed that radiotherapeutic outcome should improve, if an effective strategy is established to reduce tumor hypoxia.

Carbogen inhalation seems to be the most effective method to enhance the radiation response of experimental tumors.12,15,16) The clinical ARCON therapy (accelerated radiotherapy with carbogen and nicotinamide) utilizing carbogen with nicotinamide has also led to promising results,9) however, the mechanism of hyperoxic hypercapnic gas such as carbogen remains unclear.17) Appropriate oximetry techniques that can provide repeated assessments of tumor pO2 are necessary to optimize hypoxia modifying methods and efficaciously combine with radiotherapy.

In vivo Electron Paramagnetic Resonance (EPR) oximetry has the ability to provide repeated measurements of tumor pO2 to test and optimize methods designed to increase tumor oxygenation and demonstrate therapeutic optimization.18–22) We report the effect of carbogen inhalation on the tissue pO2 of subcutaneous RIF-1 tumors. The maximum increase in the tumor pO2 and the time to reach the maximum pO2 during carbogen inhalation were determined by EPR oximetry. This crucial information was used to investigate therapeutic outcome by irradiating the tumors with 4 Gy/day for 5 days at the time of a maximum increase in the tumor pO2.

MATERIALS AND METHODS

Study design

The effect of carbogen (CB) inhalation on RIF-1 tumor pO2 was measured by EPR oximetry for 5 consecutive days.
and the changes in the tumor pO$_2$, maximum pO$_2$ (pO$_2$ max), and the time to reach maximum pO$_2$ (T max) were assessed (CB alone group, N = 14). The tumor pO$_2$ was assessed prior to and during carbogen inhalation and the tumors were irradiated with 4 Gy at T max and these experiments were repeated for 5 consecutive days (CB/RT treatment group, N = 16). In group 30% O$_2$/RT, the tumors were irradiated with 4 Gy in mice breathing 30% oxygen (30% O$_2$/RT treatment group, N = 9). In group CB/sham RT, the tumors were treated with sham irradiation (0 Gy) in mice breathing carbogen (CB/sham irradiation group, N = 6). The inspired gas of 30% O$_2$ (balanced N$_2$) provides blood pO$_2$ values in the normal range and therefore this gas mixture is routinely used in our laboratory.\(^{18,19,23-25}\)

General methods

Tumor models

The radiation-induced fibrosarcoma (RIF-1) cells were a gift from Dr. J. B. Mitchell’s laboratory at the National Cancer Institute. This is a well established subcutaneous tumor model used extensively in our lab.\(^{18,24}\) The cells were cultured in RPMI 1640 medium supplemented with 10% FBS, glutamine, and antibiotics. The procedure for tumor inoculation has been reported previously.\(^{26,27}\) Briefly, 18–20 g female C3H/HEJ mice (4–5 weeks age, Charles River Lab, MA) were anesthetized by 1.5% isoflurane with 30% O$_2$, and a suspension of 2 × 105 cells in 60–80 μl was injected subcutaneously into the left posterior flank. The tumors were allowed to grow for 12–14 days and oxygen sensitive lithium phthalocyanine (LiPc, oximetry probe) crystals were implanted into the tumors as described below. The tumor volumes were estimated using the formula: $π/6 × length × width^2$ for six days.

Oximetry probe and EPR (Electron Paramagnetic Resonance) oximetry

LiPc crystals were synthesized in our laboratory; its physicochemical properties and use for tissue pO$_2$ measurement have been described previously.\(^{26,27}\) LiPc has a single sharp EPR line whose width is highly sensitive to pO$_2$. The EPR spectra reflect the average partial pressure of oxygen on the surface of the crystals. The high density of unpaired spins combined with a narrow intrinsic line width of LiPc allows the measurements of tissue pO$_2$ using a few crystals (30–50 μg) with a total diameter of ~200 μm. For LiPc implantations, the mice were anesthetized (1.5% isoflurane, 30% O$_2$), and two aggregates of LiPc crystals (30–50 μg each) were implanted into each tumor using 25 gauge needles and wire styluses. In order to simultaneously assess pO$_2$ at two locations in the tumor, we have used two LiPc aggregates with appropriate magnetic field gradients to resolve the EPR signals. The magnitude of the gradient required to separate the spectra, while minimizing additional broadening of the EPR lines, depends on the actual line width, size of the implants and the distance between them. In these experiments, the distance between LiPc aggregates was 4 mm to minimize magnetic field gradient and its effect on the EPR line widths. The procedure for multi-site EPR oximetry is described by Smirnov et al.\(^{28}\) and this approach has been used to study pO$_2$ at multiple locations in the tumors.\(^ {18,19,23-25}\) The tissue pO$_2$ measured from the two LiPc implants in each tumor were pooled to determine average tumor pO$_2$ on each day.\(^ {18,19,24}\) The EPR line widths were converted to pO$_2$ using a calibration determined for the LiPc crystals used in this study. The pO$_2$ max and T max from each implant were determined, and then averaged to obtain individual mean for each group.

Procedure for carbogen inhalation and irradiation

The mice were anesthetized (1.5% isoflurane, 30% O$_2$) 24 hr after LiPc implantation and the baseline pO$_2$ (day 1) was measured for 20 min in CB group. The breathing gas was then switched to carbogen and oximetry measurements were continued for 60 min to determine the effect of carbogen inhalation on the tumor pO$_2$. The pO$_2$ max and T max were determined and used to design radiotherapy (RT) groups. In the CB/RT group, first a baseline pO$_2$ was measured in mice breathing 30% O$_2$ and then the mice were allowed to breathe carbog en. The tumor pO$_2$ was measured for 15 min and then the mice were moved to the irradiation bed of a Varian Linear Accelerator (Clinac 2100C, 6 Mev, 6 cm × 6 cm applicator). In this group, the mice continued to breathe carbogen during irradiation with 4 Gy. The beam was focused on the tumor and appropriate lead shields were used to limit irradiation of the normal tissue. The approximate time between the end of the EPR measurements and beginning of the irradiation was 6–8 min. The total time to irradiate each tumor with 4 Gy took approximately 1.8 min on each day. In 30% O$_2$/RT group, the tumor pO$_2$ measurements were continued for 15 min in mice breathing 30% O$_2$ after baseline measurements and the tumors were irradiated using the procedure described for the CB/RT group. In CB/sham RT group, after baseline and 15 min of carbogen breathing, the tumors received sham irradiation (0 Gy), and then the mice were moved back to the EPR spectrometer for pO$_2$ measurements for at least 10 min. These experiments were repeated for 5 consecutive days.

The tumor pO$_2$ measured on day 1 prior to any treatment is termed as baseline pO$_2$, while the initial pO$_2$ measured on days 2–5 in the first 20 min is termed as pre-treatment pO$_2$. Similar terms are used for tumor volume measurement in these experiments.

Physiological control and histological analysis

During tumor pO$_2$ measurements, the body temperature of the animals was monitored using a rectal probe and maintained at 37 ± 0.5°C by keeping the body warm with a thermostatically controlled heated pad and a flow of warm air. The animals were kept warm by an electric heating pad during the transportation to and from the irradiator.

After the last tumor volume measurements on day 6, the animals were euthanized, tumors removed, fixed, and
sectioned. Microscopic examination (H & E staining) of the tissue around the implanted LiPc deposits was performed to confirm its location in the tumor.

Statistical analysis

A paired t-test was used to determine the statistical significance of the changes in \(pO_2 \) and tumor volume within the group and an unpaired t-test was used to determine the significance between groups. The paired comparison reduces the effects of animal to animal heterogeneity and eliminates differences of the baseline \(pO_2 \). The Chi-Square test was used to compare the distribution of percentage (%) of tumors with an increase in \(pO_2 \) of more than 50% from the baseline during carbogen inhalation when compared with day 1. The tests were two-sided, and a change with \(p < 0.05 \) was considered significant. All data are expressed as mean ± SEM; \(N \) is the number of animals in each group.

RESULTS

Effect of carbogen inhalation on tumor \(pO_2 \)

No significant difference in the baseline and pre-treatment tumor \(pO_2 \) was observed, in the CB group, Fig. 1 and Table 1. There were also no apparent effects of the tumor growth on tumor \(pO_2 \) over days. The increase in the mean tumor \(pO_2 \) during carbogen inhalation at 1–15, 16–30, 31–45, 46–60 min on day 1 - day 5 were significantly higher than the baseline and pre-treatment \(pO_2 \) (\(p < 0.05 \) or \(p < 0.01 \), Fig. 1. These results indicate that the carbogen inhalation provided a significant and consistent increase in tumor \(pO_2 \), with \(T_{max} \) at 22.9 ± 3.6 min to 31.2 ± 4.1 min from day 1 to day 5, Table 1. The tumors were irradiated during \(T_{max} \) to determine the effect of carbogen or 30% \(O_2 \) inhalation on the therapeutic efficacy in the CB/RT, 30%\(O_2/RT \) and CB/Sham RT groups.

The percentage of tumors with an increase in \(pO_2 \) of more than 50% from the baseline within 15 min and 30 min of carbogen inhalation on each day are shown in Fig. 2. The results indicate a significant decrease in the response of the tumors to carbogen on day 5 as compared to day 1.

Table 1. Baseline/pretreatment \(pO_2 \), maximum \(pO_2 \) and time to reach to maximum \(pO_2 \) in CB group on 5 consecutive days

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>(pO_2) base/pretreatment (mmHg)</th>
<th>(pO_2) max (mmHg)</th>
<th>(T_{max}) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.9 ± 0.9</td>
<td>22.1 ± 3.6</td>
<td>22.9 ± 3.6</td>
</tr>
<tr>
<td>2</td>
<td>8.5 ± 1.1</td>
<td>25.7 ± 5.5</td>
<td>27.1 ± 2.4</td>
</tr>
<tr>
<td>3</td>
<td>8.9 ± 1.1</td>
<td>17.2 ± 2.2</td>
<td>28.9 ± 4.4</td>
</tr>
<tr>
<td>4</td>
<td>9.1 ± 1.1</td>
<td>20.1 ± 3.4</td>
<td>29.5 ± 3.7</td>
</tr>
<tr>
<td>5</td>
<td>8.8 ± 1.0</td>
<td>16.6 ± 1.4</td>
<td>31.2 ± 4.1</td>
</tr>
</tbody>
</table>

Abbreviations: \(pO_2 \) base/pretreatment: baseline \(pO_2 \)/pretreatment \(pO_2 \); \(pO_2 \) max: maximum \(pO_2 \); \(T_{max} \): time to reach maximum \(pO_2 \).

Fig. 1. Average change in the tumor \(pO_2 \) during baseline (○: baseline \(pO_2 \) averaged from 20 min measurements) and response to 60 min of carbogen inhalation (▲: 1–15 min; ◆: 16–30 min; ■: 31–45 min; ●: 46–60 min). *\(p < 0.05 \), **\(p < 0.01 \) compared with baseline and pretreatment \(pO_2 \) (paired t-test).

Fig. 2. The percentage change in tumors with \(pO_2 \) higher than 50% of the baseline (white column) and less than 50% of the baseline (black column) within 15 min (a) and 30 min (b) of carbogen inhalation in CB group on each day. *\(p < 0.05 \), compared with day 1 (Chi-Square test).
Tissue \(pO_2 \) and growth of tumors in mice breathing 30% \(O_2 \) or carbogen with/without RT

The temporal changes in the tumor \(pO_2 \) observed in the CB/RT, 30% \(O_2/RT \) and CB/sham RT groups are summarized in Fig. 3 (a–c). No significant change in the baseline and pretreatment tumor \(pO_2 \) was observed in the CB/RT and CB/sham RT groups during 5 days of experiments (Fig. 3 d & f). However, the pre-treatment tumor \(pO_2 \) of 30% \(O_2/RT \) group increased significantly on day 5 as compared to day 1 (Fig. 3 e). A significant increase in the tumor \(pO_2 \) in CB/RT and CB/sham RT groups was observed at 15 min post carbogen inhalation on days 1–5 and days 1–4, respectively, as compared to baseline \(pO_2 \) (Fig. 3 d & f). No such changes in the tumor \(pO_2 \) were observed in 30% \(O_2/RT \) group over days (compared to baseline and pretreatment \(pO_2 \), Fig. 3e).

In the CB/RT and CB/sham RT groups, the percentage (%) of tumors with an increase in \(pO_2 \) of more than 50% from the baseline within 15 min of carbogen inhalation sig-

Fig. 3. The time course of mean RIF-1 tumor \(pO_2 \) during baseline and pretreatment \(pO_2 \) (first 20 min) and during (a) CB/RT, (b) 30%\(O_2/RT \) and (c) CB/sham RT on day 1 to day 5 (◇: Day 1; ○: Day 2; ●: day 3; ○: day 4; ■: day 5). The arrows indicate the time when the inhaled gas was switched from 30% \(O_2 \) to carbogen. Averaged baseline and pretreatment (d–f, white column) and the changes in \(pO_2 \) in CB/RT (d, black column: averaged for 15 min CB), 30%\(O_2/RT \) (e, grey column: averaged for 15 min 30%\(O_2 \)) and CB/sham RT (f, dense downward diagonal: averaged for 15 min CB and wide upward diagonal: averaged for 10 min CB after irradiation). *p < 0.05; **p < 0.01, compared with baseline and pretreatment \(pO_2 \) on each day (paired t-test), †p < 0.05, compared with baseline \(pO_2 \) on day 1 (unpaired t-test).

Fig. 4. The percentage change in tumors with \(pO_2 \) higher than 50% of the baseline (white column) within 15 min of carbogen inhalation in CB/RT group (a); 30%\(O_2 \) in 30%\(O_2/RT \) group (b); and carbogen inhalation in CB/sham RT group (c), on each day. *p < 0.05, compared with day 1 (Chi-Square test).
nificantly decreased on day 5 as compared with day 1 (Fig. 4 a & c), while no such changes were observed in 30% O2/RT group, (Fig. 4b).

No significant difference in the baseline tumor volume was observed between groups, Table 2. However, irradiation resulted in a significant decrease in the tumor growth in CB/RT and 30% O2/RT groups as compared to CB and CB/sham RT groups. Furthermore, a significant decrease in the tumor growth was observed in the CB/RT as compared to 30% O2/RT group on days 5 and 6 (Fig. 5).

Table 2. Absolute baseline/pretreatment tumor volume (mm³, mean ± SEM) in CB/RT, 30%O2/RT and CB/sham RT groups on 6 consecutive days

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Groups</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CB/RT</td>
<td>30%O2/RT</td>
<td>CB/sham RT</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>163.2 ± 16.4</td>
<td>159.6 ± 22.9</td>
<td>163.5 ± 8.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>204.2 ± 19.3</td>
<td>201.7 ± 27.2</td>
<td>222.8 ± 19.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>247.2 ± 21.2</td>
<td>254.5 ± 30.2</td>
<td>322.4 ± 34.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>281.9 ± 23.8</td>
<td>319.2 ± 38.3</td>
<td>414.0 ± 44.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>303.3 ± 24.4</td>
<td>372.7 ± 47.2</td>
<td>517.7 ± 41.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>323.8 ± 25.9</td>
<td>428.2 ± 49.9</td>
<td>647.2 ± 46.7</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

It is well known that hypoxic cells, as often occur in tumors, are radioresistant and require nearly three times as much radiation to achieve an equivalent cell kill than oxygenated cells. Mean tumor pO2 of less than 10 mmHg have been shown to correlate with treatment failure. Consequently, several approaches to reduce tumor hypoxia have been developed but only a modest success could be achieved, perhaps due to lack of appropriate techniques that can be used to follow the changes in tumor pO2 during such treatments. With the development of EPR oximetry, it is now possible to repeatedly assess tumor pO2 to optimize the timing of radiotherapy and efficaciously combine it with other therapeutic modalities. EPR oximetry requires a onetime implantation of the oximetry probe using 23–25 gauge needles in a tissue of interest but rest of the measurement procedure is entirely non-invasive and provides repeated assessments of localized changes in the tissue pO2 during treatments. Such measurements are not feasible with techniques such as polarographic electrodes or Oxylite as the measurement procedure is invasive and cannot be repeated in the same tumors at different time points (or days).

These results are from our ongoing studies to characterize the changes in tumor pO2 induced by carbogen, with the aim to enhance radiotherapeutic outcomes by scheduling radiation at times of increases in tumor pO2. The RIF-1 tumors were hypoxic and the baseline/pretreatment pO2 were stable during 5 days of repeated measurements in CB, CB/RT and CB/sham RT groups. A significant increase in the tumor pO2 was observed within 15 min of carbogen inhalation, with the time to reach the maximum tumor pO2 at around 22–32 min. A similar increase in the tumor pO2 was observed in the CB/sham group, which remained at an oxygenated level after sham irradiation, Fig. 4. These results confirm that in the CB/RT group, the tumors were irradiated when a significant increase in tumor pO2 occurred during carbogen breathing.

The dynamic response of tumor pO2 during carbogen inhalation has varied among studies. Bussink reported a rapid increase in the tumor pO2 using Oxylite, with the mean time to reach maximum pO2 at approximately 3.9 (0.8–14) min and 3.6 (0.7–16) min in E102 and E106 glioblastoma xenografts, respectively. Gu et al. reported a significant increase in subcutaneous mammary adenocarcinoma tumors pO2 within 8 min of carbogen breathing which gradually increased over the next 12 min. Using polarographic electrodes, Thews et al. observed a slow increase in the pO2 of
subcutaneous rat DS-sarcomas over 15 min during carbogen challenge. Using EPR oximetry, we have reported a significant increase in the intracerebral F98 tumor and contralateral brain pO2 within 15 min of carbogen inhalation. These results indicate that the time to achieve a significant increase in tumor pO2 with carbogen seems to depend on the tumor type, tumor location, and possibly tumor size.

Approximately half of the tumors had an increase in pO2 of greater than 50% from the baseline within 15 min of carbogen inhalation on day 1 to day 4 (Fig. 2 and 4) but pO2 significantly declined on day 5 as compared to day 1. This is likely due to a combination of several factors, such as an increase in interstitial pressure, compromised tumor vascularity with increase in tumor size and increase in necrotic areas in tumor over days.

Carbogen breathing (CB) during irradiation resulted in a significant increase in tumor pO2 and significant suppression of tumor growth compared to the 30%O2/RT, CB and CB/sham groups on day 3 to day 6. These results are consistent with the previous study employing carbogen inhalation with radiotherapy of intracerebral tumors. Our results suggest that the observed changes in the tumor pO2 could be used as a marker to optimize radiotherapy. The pretreatment tumor pO2 increased significantly on day 5 as compared to day 1 (Fig. 3 e) in the 30%O2/RT group. These results are in agreement with Znati et al. who reported an increase in tumor oxygenation when the total dose of more than 10 Gy were used and our previous reports in which a significant increase in pretreatment tumor pO2 was observed on day 4 and day 5 after fractionated radiation. This is likely due to a change in the tumor microenvironment during fractionated irradiations. A decrease in oxygen consumption due to loss of viable malignant cells during fractionated irradiation could potentially lead to an increase in tumor pO2. Additionally, an increase in tumor blood flow with decrease in interstitial pressure due to tumor shrinkage can also lead to tumor oxygenation during fractionated irradiation over days.

In conclusion, these results provide unambiguous quantitative information on the effectiveness of carbogen in enhancing tumor oxygenation over the course of 5 days to a level that significantly increased tumor response to radiotherapy. Since the time to achieve a significant increase in tumor pO2 is likely to vary with the tumor type, size, and location, EPR oximetry could be potentially used to repeatedly monitor tumor pO2 during hypoxia modifying interventions and enhance efficacy by scheduling radiations at times of increases in tumor pO2. In vivo EPR oximetry is currently being tested to measure tissue pO2 in the foot of healthy volunteers with the goal to diagnose and optimize the treatment of peripheral vascular disease in diabetic patients. EPR oximetry is also being tested in patients with superficial tumors undergoing chemoradiation with the aim to optimize outcome by scheduling treatments at times of optimal tumor oxygenation.

ACKNOWLEDGEMENTS

This work was supported by NIH grant CA120919 to NK and P01EB2180 to HMS. We thank David Gladstone, and Harriet St. Laurent of the Radiation Oncology, DHMC, for assistance in the use of the radiation facility. Preliminary results were presented at the 55th Annual Meeting of the Radiation Research Society, Savannah, GA, Oct. 3–7, 2009.

REFERENCES

1362.

