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Nonparametric quantile mapping using the response

surface method – bias correction of daily precipitation

Taeho Bong, Young-Hwan Son, Seung-Hwan Yoo and Sye-Woon Hwang
ABSTRACT
Currently, regional climate models are widely used to provide projections of how climate may change

locally. However, they sometimes have a spatial resolution that is too coarse to provide an

appropriate resolution for the local scale. In this paper, a new nonparametric quantile mapping

method based on the response surface method was proposed to perform an efficient and robust bias

correction. The proposed method was applied to correct the bias of the simulated precipitation for

the period of 1976–2005, and the performance and uncertainty were subsequently assessed. As a

result, the proposed method was effectively able to reduce the biases of the entire distribution

range, and to predict new extreme precipitation. The future precipitation based on representative

concentration pathways of RCP 4.5 and 8.5 were bias corrected using the proposed method, and the

impacts of the climate scenarios were compared. It was found that the average annual precipitations

increased compared to the past for both scenarios, and they tended to increase over time in the

three studied areas. The uncertainty of future precipitation was slightly higher than in the past

observation period.
doi: 10.2166/wcc.2017.127

://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
Taeho Bong
Department of Civil and Construction Engineering,
Oregon State University,
Corvallis,
USA

Young-Hwan Son (corresponding author)
Department of Rural Systems Engineering, and
Research Institute for Agriculture & Life
Sciences,

Seoul National University,
Seoul,
Republic of Korea
E-mail: syh86@snu.ac.kr

Seung-Hwan Yoo
Department of Rural and Bio-Systems Engineering,
College of Agriculture and Life Sciences,

Chonnam National University,
Gwangju,
Republic of Korea

Sye-Woon Hwang
Department of Agricultural Engineering, Institute of
Agriculture and Life Science,

Gyeongsang National University,
Jinju,
Republic of Korea
Keywords | bias correction, moving least squares, precipitation, quantile mapping, response surface

method

INTRODUCTION
Global climate models (GCMs) have a spatial resolution

(typical grid cells are 100–300 km) that is too coarse to pro-

vide an appropriate resolution of the local scale, and

hydrology processes typically occur on finer scales than

those provided by the output of the GCMs. Thus, there is

a general mismatch between the spatial resolution of the

output from GCMs and the local scale of interest in an

area. In particular, precipitation is one of the most difficult

atmospheric variables to downscale, primarily because of

its high spatial and temporal variability and its nonlinear

nature (Kallache et al. ). To overcome these problems,

downscaling techniques are used to link the coarse resol-

ution GCM outputs to the catchment-scale climatic

variables. Downscaling methods are classified into two

main approaches: dynamical and statistical downscaling
(Mearns et al. ). Dynamical downscaling uses regional

climate models (RCMs) that transform the outputs from

GCMs into outputs with finer spatial and temporal resol-

utions. However, dynamical downscaling requires high

computational costs owing to the complex physics-based

structure of the RCMs, and RCMs are also known to exhibit

systematic biases (Benestad ; Ahmed et al. ). Hence,

bias correction is required to obtain reliable results for local

scale climates before being used for climate impact assess-

ment (Christensen et al. ; Maraun et al. ).

Many studies have been performed related to the bias

correction technique for precipitation (Cannon ; Raje

& Mujumdar ; Goyal et al. ; Hu et al. ; Nasseri

et al. ; Tareghian & Rasmussen ). Maraun et al.

() classified those methods into three categories:
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(1) perfect prognosis, (2) model output statistics (MOS), and

(3) weather generators. Regression methods (known as per-

fect prognosis) are easy to implement and require relatively

lower costs of pre-processing (Chen et al. ). Thus, most

of the statistical downscaling approaches employ regression

methods to estimate the empirical relationships between

large-scale and local-scale climate circulation. However,

these methods are ill-suited for predicting extreme values

of the climate variables.

An alternative approach is to use techniques, such as

quantile regression, to estimate the particular quantile that

corresponds to the extreme values. Chen et al. () com-

pared the performance of six bias correction methods and

summarized their advantages and disadvantages. They

noted that distribution-based methods are consistently

better than mean-based methods, and that all six bias correc-

tion methods exhibit an inability to specifically correct the

temporal structure of daily precipitation occurrence.

Themeßl et al. () also compared several statistical down-

scaling approaches, and quantile mapping was determined

to be the most efficient in removing the biases of

precipitation.

In many studies and practices, quantile mapping is com-

monly used to correct the systematic biases in precipitation

outputs from climate models and it is considered an effective

method for removing GCM or RCM biases with relatively

low computational cost (Maurer & Pierce ). The quan-

tile mapping bias correction algorithms have been also

reviewed in the context of hydrological impacts studies on

streamflow, and have been found to outperform simpler

bias correction methods that correct only the mean or

mean and variance of precipitation series in the statistical

bias correction (Teutschbein & Seibert ; Chen et al.

). Additionally, frequency analysis using bias-corrected

future climate data would enhance the management of

water resources applications as well as the effective utiliz-

ation of water resources (Biniyam & Kemal ).

The limitation of quantile mapping based bias-correc-

tion is that temporal errors of major circulation systems

cannot be corrected because bias is defined as the time-inde-

pendent component of the error (Chen et al. ; Haerter

et al. ). Quantile mapping does not alter the temporal

sequence of the simulated output. For this reason, weather

generators are frequently applied to produce time series
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for impact studies. However, hydrological processes

depend on the entire distribution function of precipitation

intensity and temperature, and it is well known that pre-pro-

cessing is necessary to remove biases present in the

simulated climate outputs (Haerter et al. ). From this per-

spective, quantile mapping is widely accepted for the

correction of climate data that are to serve as input data

for impact models considering temporally integrated stat-

istics, such as hydrological (e.g. floods and drought) or

crop models. Rajczak et al. () compared the capabilities

of the quantile mapping and weather generator method for

RCM precipitation data at weather stations across Switzer-

land. They found that the application of quantile mapping

provides an obvious added value for the representation of

transition probabilities and multiday precipitation character-

istics in climate model data at the local scale, although

temporal characteristics are not explicitly corrected by the

quantile mapping. However, it should be noted that the per-

formance of the bias-corrected historical simulation results

in reproducing observational temporal characteristics is

needed to be checked beforehand. Another limitation is

that it is not possible to reflect changes in the statistical

characteristics of the biases between the observed and simu-

lated data. The basic assumption for quantile mapping is

that the biases are stationary in the future. However, if the

time series used to train the statistical model is long

enough, many different situations, including the altered cli-

mate, may be included (Zorita & von Storch ).

Therefore, quantile mapping techniques are still widely

used, and various techniques have been studied to solve

the quantile mapping task. Gudmundsson et al. () con-

sidered three types of quantile mapping methods, and

quantile mapping by nonparametric transformations was

recommended for most applications of statistical bias cor-

rection. Lafon et al. () also compared the performance

of four statistical downscaling techniques (linear, nonlinear,

γ-based quantile mapping, and empirical quantile mapping),

and the most comprehensive correction was achieved using

the empirical quantile mapping methods. They noted that

the accuracy of this method is controlled by the number of

quantile divisions; however, using too many quantiles

might result in overfitting the model to the data. When the

observed climate data are sufficiently large, the cumulative

distribution shows a smooth curve, and the value between



Figure 1 | Schematics of the quantile mapping approach.
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the percentiles can be estimated effectively by linear inter-

polation with small quantile intervals. However, if climate

data is insufficient, the empirical quantile mapping can be

sensitive to the number of data, and data for the extreme pre-

cipitation are relatively scarce. Therefore, high cumulative

probability changes are sensitive to some observed precipi-

tations. Another major drawback of quantile mapping is

that the greatest observed value can never be exceeded in

the regional climate scenario, which could be problematic

for extremely high precipitation. Thus, it is important to

overcome this drawback because the amount of daily pre-

cipitation and extreme precipitation has been increasing

(Westra et al. ; Asadieh & Krakauer ). To overcome

this drawback of quantile mapping, Boé et al. () used a

simple extrapolation, which is a constant correction. How-

ever, the correction constant is quite variable for high

precipitation and does not take into account the trend of

extreme precipitation.

In this study, a new empirical quantile mapping tech-

nique using the response surface combined with the

moving least squares method (QM-RSMLS) was proposed

to overcome the drawbacks of the conventional empirical

quantile mapping. The conventional response surface

method (RSM) is modified by changing the response surface

function (RSF) using the transcendental function to consider

the non-linearity between percentiles and to prevent overfit-

ting, and the percentiles for the unobserved precipitation

were estimated by considering the trend of certain prob-

ability intervals. Therefore, it is possible to reproduce the

empirical cumulative distribution function (CDF) of precipi-

tation having a relatively robust and smooth curve, because

the proposed method is not sensitive to specific precipi-

tation as it reflects the trend of distribution, and the new

extreme precipitation can be extrapolated. The proposed

method was applied to correct the bias of the simulated his-

torical precipitation for the period 1976–2005. The

performance of the QM-RSMLS was assessed by the mean

absolute error (MAE) and by cross validation for the precipi-

tation on the past observation period. For future

precipitation, two representative concentration pathways

(RCPs)-based precipitation data (RCP 4.5 and 8.5), estab-

lished by the Korean Meteorological Administration

(KMA), were bias corrected for the period 2011–2900. The

impacts of climate change on precipitation for the RCP 4.5
://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
and 8.5 climate scenarios were compared, and the uncer-

tainties of precipitation were assessed.
METHODOLOGY

Quantile mapping method

The quantile mapping method, which is a generalized

approach for the MOS proposed by Panofsky & Brier

(), was first used to remove the systematic bias in

GCM simulations (Wood et al. ). In this method, the

CDF of GCM outputs for the past were mapped onto the

CDF of the past observations. Therefore, all of the statistical

moments of the simulated outputs can be matched with

those of the observations. The empirical CDFs of the

observed and simulated data are used to remove the

biases, and the transformation form is defined as:

PO ¼ F�1
O (FS(PS)) (1)

where PO is the observed value, PS is the simulated value,

and F�1
O and FS are the inverse CDF of PO and the CDF of

PS, respectively. Figure 1 shows a schematic of the quantile

mapping approach.

Various methods for performing quantile mapping were

presented by Gudmundsson et al. (). In their study, the

quantile mapping methods were classified into three groups.

The first method is the distribution derived transformation
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based on the theoretical distribution, with the generalized

extreme value (GEV) or the general Pareto distribution

(GPD) commonly used for modeling extremes because either

approach provides a sophisticated basis for analyzing the

upper tails of the distribution. The gamma distribution, in con-

trast, provides a good fit to the entire data sample, but not

necessarily to the upper tail (Benestad ). The second

method is the parametric transformation, which uses the

regression equation directly. The quantile-quantile relation

was modeled using various regression equations (such as

linear, nonlinear, power-law, or exponential). The last method

is the nonparametric transformation. The general method of a

nonparametric transformation is performed using a correction

table of the two CDFs (simulated and observed data), and a

linear interpolation is applied between the two percentiles.

Proposed QM-RSMLS

To formulate the empirical CDFs, the RSM which was first

developed by Box & Draper () was used. The RSM is

a method used to formulate the relationship between the

input and output of a physical experiment using a simple

mathematical expression. Currently, the RSM has become

one of the better known meta-modeling techniques. When

considering only one variable, the simplest model that can

be used in RSM is based on the first-degree model:

Y ¼ a0 þ a1xþ ε (2)

where Y and x represent the output and variable, respect-

ively. a0 is the constant term, a1 represents the coefficients

of the linear parameter, and ε is the residual. The second-

degree model is expressed as follows:

Y ¼ a0 þ a1xþ a2x2 þ ε (3)

where a2 represents the coefficients of the secondary poly-

nomial. Equations (2) and (3) can be written in a simpler

form as:

Y ¼ aXþ ε (4)

where aX is called the response surface and the coefficients

(a) are generally estimated using the least squares method to
om http://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
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minimize the errors of the entire set of data points. Applying

the least squares method, the analytical solution can be

expressed as:

a ¼ (XTX)�1XTY (5)

In the conventional RSM, polynomials are used to gen-

erate a RSF. To consider the non-linearity between the

percentiles and obtain a more accurate prediction, second

or higher degree polynomial models should be used. How-

ever, the CDF (ascending cumulative plot) is an increasing

function, and when using a second or higher degree poly-

nomial to minimize only the prediction error for sampling

points (observed values), overfitting can occur in scarce

data regions. To overcome this problem, the conventional

RSF has been replaced by a natural logarithmic function

because the relationship between the precipitation and stan-

dard Gaussian variate is similar to a logarithmic function,

and the logarithmic function is also an increasing function:

Y ¼ a0 þ a1 ln (x)þ ε (6)

In Equation (6), the input is the precipitation and the

output is the standard Gaussian variate corresponding to

that precipitation. If the standard Gaussian variate is the

input and the precipitation is the output, then the exponential

function that is the inverse of the natural logarithmic function

should be used as the RSF. However, the coefficients of the

exponential function cannot be directly estimated using the

least squares method. Therefore, the RSF is generated using

Equation (6), and the precipitation is calculated using the

inverse function of Equation (6) as follows:

x ¼ e(Y�a0)=a1 þ ε (7)

As mentioned above, the coefficients of the RSF can be

easily calculated using the least squares method. However,

there are approximation errors inherent in the RSM. In par-

ticular, when the relationship between the input and output

is highly nonlinear, the approximation errors increase. There-

fore, many studies have been conducted to reduce the

approximation errors, and the moving least squares (MLS)

is one of the improved approximation methods. The MLS

method was introduced by Shepard () in the lowest



Figure 2 | Correction constant according to the cumulative probability.
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order case and was generalized to a higher degree by Lancas-

ter & Salkauskas (). The MLS method uses a weight

function to estimate the coefficients of the RSF, with the

weight function depending on the distance between the

approximation point and a point in an influence domain. In

this study, the quartic-spline function was used as the

weight function:

w(x� xi) ¼ w r ¼ x� xik k
dm

� �

¼ 1� 6r2 þ 8r3 � 3r4 for r � 1

0 for r < 1

( )
(8)

where x is the approximation point, xi is the observed point,

and dm is the distance of influence. The size of the response

surface is determined by dm. If dm is the nth smallest distance

value, then the n� 1 sample points closest to the approxi-

mation point are selected and used to generate the local

RSF. The matrix of the weight function is a diagonal matrix

and is expressed as:

W½ � ¼ diag[w(x� x1), w(x� x2), � � � , w(x� xn)] (9)

The coefficients of the local RSF can be estimated by

minimizing the weighted residuals as follows:

β ¼ (XTWX)�1XTWY (10)

In the process of quantile mapping, some percentiles

of precipitation may exceed the range of the probability

of the observed precipitation. In this case, precipitation

was corrected to the maximum value of the observations.

Therefore, the bias-corrected values cannot exceed the

maximum observed precipitation. Boé et al. () used

a simple extrapolation, which is a constant correction.

The ratio of simulated and bias-corrected precipitation

for the last quantile was used as a correction constant.

However, this correction constant depends on the non-

linearity of the relationship between the simulated and

bias-corrected precipitation, and its variability is greater

for the range of high precipitation (quantile), as shown

in Figure 2.

Therefore, this method will be poorly extrapolated for

extreme precipitation. In this study, the tails of the simulated
://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
and observed cumulative distributions were predicted con-

sidering the non-linear trend of distribution. Extrapolation

may lead to an incorrect estimation that is further away

from the observed range. Therefore, the maximum value

was limited, so the increasing rate of bias-corrected precipi-

tation could not exceed that of the simulated precipitation

from the last quantile. Figure 3 shows an example of extra-

polation to a new extreme precipitation.

In general, the data for extreme precipitation is very

scarce, and the difference between their values is relatively

large. Therefore, linear extrapolation using only two points

may provide a poor estimation because its trend is largely

influenced by the difference between the two largest

values, as indicated by a comparison of Figure 3(a) and 3(b).

In addition, the cumulative probability of precipitation

over a certain size was sometimes greater than one. On

the other hand, the proposed method uses several precipi-

tation values to consider the trend of the cumulative

probability distribution, and a smooth CDF curve can be

generated. Therefore, more robust extrapolation is possible,

and the cumulative probability of precipitation never

exceeds one.
Implementation of the QM-RSMLS

In the procedure of the proposed method, a frequency analy-

sis is first performed to eliminate errors owing to duplicate

values, and then the empirical CDF is generated (Figure 4).

Figure 5 shows a schematic depiction of the QM-

RSMLS implementation.



Figure 4 | Generation of the empirical CDF of precipitation.

Figure 3 | Extrapolation to extreme precipitation.
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There are two transformations for which RSF is

required. First, the RSFSim.-SGV is generated for the simu-

lated precipitation, where RSFA-B represents the response

surface function and the subscript A-B indicates the
Figure 5 | Schematic depiction of the QM-RSMLS.
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transformation from A to B. The subscripts Sim., Obs.,

and SGV represent the simulated precipitation, observed

precipitation, and standard Gaussian variate, respect-

ively. F(�) and Φ�1 are the empirical CDF and the

inverse of the cumulative standardized Gaussian distri-

bution, respectively. In RSFSim.-SGV, the input is the

simulated precipitation and the output is the standard

Gaussian variate corresponding to that precipitation.

The reason for using a standard Gaussian variate instead

of the percentile is the low non-linearity between precipi-

tation and the standard Gaussian variate. Additionally, it

is possible to reasonably fit the tails of the cumulative,

because the standard Gaussian variate was converted

into a probability with a value that was always less

than one.
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Second, the RSFSGV-Obs. is generated for the observed

values of precipitation. However, as previously mentioned,

the coefficients of the exponential function cannot be

directly estimated using the MLS. Therefore, the

RSFObs.-SGV is generated for the observed values of precipi-

tation, and then, RSFSGV-Obs. is obtained using Equation (7).

The dm was set to be the 11th smallest distance value, so

10 points were automatically selected closest to the approxi-

mation point to create the RSF. The coefficients of each RSF

and the weighted function according to the approximation

precipitation are estimated by the MLS. Finally, the bias-cor-

rected precipitations that exceed the maximum observed

precipitation were fixed as the maximum observed

precipitation.
STUDY AREA AND DATA

Study area

In this study, the 67 weather stations of South Korea were

divided into three groups based on the average annual pre-

cipitation (period 1976–2005), and three representative

areas were selected from each group considering the station

locations. The selected study areas are Daegu, Suwon, and

Namhae, with average annual precipitations of 1058.4,

1268.3, and 1817.1 mm, respectively. Figure 6 shows the
Figure 6 | Locations of the weather stations.

://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
location of the study area, and the points indicate the

locations of the weather stations.
Daily precipitation data

The daily precipitation data from three weather stations

were used in our study. The observation period was the

past 30 years (1976–2005). For RCM data the HadGEM3-

RA model, which is a regional atmospheric model based

on the atmospheric component of the latest Earth System

Model developed by the Met Office Hadley Centre

(HadGEM2-AO), was adopted. The KMA has utilized the

HadGEM3-RA for dynamical downscaling, and established

RCP-based precipitation data with 12.5 km resolution in

Korea. The schematic for generating a climate change scen-

ario is shown in Figure 7.

The historical period was the same as the observation

period (1976–2005), and the future simulated precipitation

data of the two RCP scenarios (RCP 4.5 and 8.5) during

the period from 2011 to 2100 were used for future assess-

ment after bias correction of daily precipitation.
RESULTS AND DISCUSSION

QM-RSMLS assessment

Most RCMs tend to overestimate the occurrence of wet days

(Murphy ; Maraun et al. ). This overestimation is

called the drizzle effect, and a simple method to correct

the drizzle effect is to set all the simulated precipitation

values below a certain threshold to zero. Fowler et al.

() and Maraun () used a wet day threshold of

1 mm/day to correct the drizzle effect. In this study, the

simulated and observed precipitation data were sorted in

descending order, and the simulated precipitation was set

to zero, with ranks of less than or equal to the number of

dry days in observed precipitation (Hay & Clark ).

The threshold precipitations were calculated as 1.2, 1.4,

and 1.2 mm/day in Daegu, Suwon, and Namhae, respect-

ively. As a result, the number of dry days for both the

simulated and observed precipitation data were the same,

and the empirical CDFs were only estimated from the wet



Figure 7 | Generation process of a climate change scenario.

Table 1 | Observed and bias-corrected precipitation over the past 30 years (1976–2005)

Weather station

Daily
averagea

(mm/day)

Annual
average
(mm/year)

Standard
deviation

COV
(%)

Daegu

Observed 11.3 1058.4 264.8 25.0

Raw RCM 13.0 1227.2 243.3 19.8

Bias-corrected 11.2 1058.2 258.7 24.4

Suwon

Observed 12.0 1268.3 252.8 19.9

Raw RCM 12.1 1285.4 227.6 17.7

Bias-corrected 12.0 1267.8 266.5 21.0

Namhae
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days (the lower limit was 0.1 mm/day). Figure 8 shows the

empirical CDFs of the precipitation for the three areas.

The empirical CDFs of Daegu and Suwon were almost

identical, whereas Namhae exhibited a different distribution

compared with the other two points and had a higher prob-

ability of daily precipitation than the other two areas. To

remove the bias, the QM-RSMLS was conducted for the his-

torical RCM precipitation data. The average annual

precipitation, statistical properties of the observed precipi-

tation, raw RCM, and corrected RCM are summarized in

Table 1.

After bias correction over the past 30 years of precipi-

tation, the average daily precipitations of RCM of Daegu
Figure 8 | Empirical CDFs of the observed precipitation (1976–2005).

Observed 19.6 1817.1 480.7 26.5

Raw RCM 12.4 1154.0 236.0 20.5

Bias-corrected 19.6 1818.4 462.4 25.4

aFor the wet days only.
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and Suwon were decreased by 15.3 and 0.8%, respectively,

and Namhae was increased by 54.4%. The bias-corrected

precipitations were approximately equal to the observed

average daily precipitation. In addition, the standard devi-

ation was also corrected, and the variability of the RCM

precipitation was similar to the observed precipitation.

Figure 9 shows the Q-Q plots of the raw and corrected

RCM data against the observed precipitation.

The raw RCM data showed a large difference compared

to the observations, and the greatest error was exhibited for

high precipitation. After bias correction, the three corrected
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RCM data sets were in good agreement with the observed

precipitation. For comparison, a variety of quantile mapping

methods were conducted, and their performances were

compared. To assess the performance of the quantile map-

ping methods, Gudmundsson et al. () described a

variety of scores that were previously used, and they

suggested using a set of scores based on the MAE for the

overall performance, while keeping track of the many rel-

evant properties of the distribution. In this study, the same

scores were used to evaluate the performance of the QM-

RSMLS. MAEi represents the MAE of the specific prob-

ability interval, and the subscript indicates the upper

bounds of the 0.1 wide probability intervals. Figure 10

shows the total MAE and MAEi of the quantile mapping

methods.

The QM-RSMLS clearly showed the best performance

among the quantile mapping methods, with total MAEs
Figure 9 | Q-Q Plots of the simulated and the bias-corrected precipitation.

Figure 10 | Total MAE and the MAE for the specific probability interval.

://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
for Daegu, Suwon, and Namhae of 0.04, 0.04, and

0.06 mm, respectively. In particular, the QM-RSMLS can

reduce the biases from the RCM precipitation in the entire

range of the distribution. For high precipitation, MAE1.0

exhibited a relatively large error compared to other prob-

ability intervals because the empirical distribution of high

precipitation is not a smooth curve. However, each of the

three areas had a very small error of less than 0.4 mm, and

the proposed method exhibited good performance com-

pared with other quantile mapping methods. Therefore,

the proposed method is better suited to predict extreme pre-

cipitation. When using the GEV distribution, the total MAE

values were small in the three areas, but a very large MAE

was found for high precipitation of more than 90%.

The uncertainty of annual precipitation over the past

30 years (1976–2005) was assessed using a box plot

(Figure 11).



Figure 11 | Variability of annual precipitation over the past 30 years (Obs.: Observed

precipitation, Sim.: Simulated precipitation, QM: Bias-corrected

precipitation).

Figure 12 | Total error in the cross validation.
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The top and bottom of the box indicate the top 75% (3rd

quartile) and the bottom 25% (1st quartile) of the data,

respectively. The horizontal line inside the box is the

median, and the dot is the average annual precipitation.

The vertical lines extending from the box reach out to the

minimum and maximum values.

The precipitation showed a large uncertainty owing to

high temporal variability, and the difference between the

maximum and minimum values was highly significant. In

particular, the uncertainty of Namhae is much greater

than that of the other areas because Namhae has a relatively

high daily precipitation and a wide range of precipitation is

observed compared to other areas. Comparing the uncer-

tainty according to the precipitation data shows that the

simulated precipitation uncertainty is different from the

observed precipitation uncertainty. However, it became

similar to the observed precipitation uncertainty after bias

correction by the proposed method.

Cross validation

To assess the performance of the downscaling models for

the independent period, K-fold cross validation, which is

one way to improve over the holdout method, was con-

ducted. The data set was divided into six subsets: one of

the six subsets was used as the testing set (5 years), and

the other five subsets were put together to form a training

set (25 years). The cross validation process was repeated

six times for each area, and the error in the cross validation

was estimated via MAE for the entire range of the
om http://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
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distribution. The total error was obtained as the average

MAE for each case as follows:

Total error ¼ 1
K

XK
i¼1

MAEi (11)

Figure 12 shows the total error in the cross validation for

each area.
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In Daegu and Suwon, the proposed method shows the

smallest error, and the errors were reduced to 45.7 and

52.6% compared to the raw RCM data, respectively. In

Namhae, the GEV shows the smallest error, and the pro-

posed method has the second smallest error (the error was

reduced by 51.4%). Comparing the average error of cross

validation, Namhae exhibited a relatively large error. The

reason for this is the difference in the probabilistic distri-

bution of the precipitation data for the training and

validation periods. The quantile mapping implicitly assumes

the stationarity of climate data in their transfer functions.
Figure 13 | Precipitation difference between the precipitation probabilistic distributions

of training period and validation period.

Table 2 | The statistical properties of bias-corrected future precipitations (2011–2100)

Scenario

Daegu

Raw RCM Corrected RCM

RCP 4.5

Averagea (mm/day) 13.7 12.0

Standard deviation 19.0 21.0

COV (%) 138.4 174.8

Annual average (mm/year) 1276.7 1119.9

RCP 8.5

Averagea (mm/day) 14.0 12.3

Standard deviation 20.7 22.5

COV (%) 147.9 182.8

Annual average (mm/year) 1294.2 1138.2

aFor the wet days only.

://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
Therefore, the validation error can be varied depending on

the stationarity of climate data. Figure 13 represents the

average difference between the distributions of the precipi-

tation data for the training and validation periods.

The change in the probabilistic distribution of RCM data

did not significantly differ depending on the area, but that of

the observed precipitation data was the largest in Namhae.

Accordingly, it can be deduced that Namhae has a large

error in cross validation.
Bias correction of the future precipitation

Future RCM precipitation data from 2011 to 2100 were bias

corrected using quantile mapping for the relationship

between the historical RCM data and the observed data

over the past 30 years. The drizzle effect was preferentially

corrected using the threshold of each area, and then QM-

RSMLS was performed to remove the bias. After performing

the drizzle effect correction, the statistical properties of the

raw and bias-corrected RCM are summarized in Table 2.

From the results, the average annual precipitations were

expected to increase in the future, and the average annual

precipitation for the RCP 8.5 scenario exhibited a larger

value than that of the RCP 4.5 scenario. For the RCP 4.5 scen-

ario, the average annual precipitation in the future period

(2011–2100) increased by 4.6, 4.2, and 19.5% in Daegu,

Suwon, and Namhae, respectively, compared to the past
Suwon Namhae

Raw RCM Corrected RCM Raw RCM Corrected RCM

12.6 12.7 14.1 23.6

19.6 27.7 20.6 55.2

156.1 218.1 146.8 233.6

1329.3 1342.0 1362.9 2291.2

12.9 13.1 14.2 24.2

22.2 31.4 21.7 62.1

172.6 240.1 152.4 256.8

1378.8 1405.4 1403.9 2382.8
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period (1976–2005). For the RCP 8.5 scenario, the average

annual precipitation increased by 6.4, 8.8, and 23.3% in

Daegu, Suwon, and Namhae, respectively (Figure 14).

When comparing the three areas, Namhae showed the

largest bias and average annual precipitation. The coeffi-

cient of variation, which is the ratio of the standard

deviation to the mean, of the daily precipitation was the lar-

gest in Suwon. The new extreme precipitation was estimated

using QM-RSMLS, constant correction, and linear extrapol-

ation (Figure 15).

The extreme precipitation was significantly increased

compared to the past, and Namhae exhibited the highest

probable maximum precipitation. When using a constant

correction, the probable maximum precipitation showed

the highest values for all areas, and the linear interpolation
Figure 14 | Comparison of the average annual precipitation during the historical and two

climate scenarios.

Figure 15 | Estimation of maximum precipitation in the future period.

om http://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
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exhibited the lowest extreme precipitation, although the

future simulated precipitation increased significantly. On

the other hand, the proposed method was able to estimate

the extreme precipitation over a more reasonable range,

considering the trend in the probabilistic distribution of

extreme precipitation.

To analyze the trend of precipitation over time, a

moving average was used to smooth out the short-term fluc-

tuations and highlight the longer-term trends. The size of the

subset was set to 20 years, and the subset was moved for-

ward one year. Figure 16 shows the moving average of

annual precipitation and its trend line.

The average annual precipitation was found to increase

with time for all three areas. In Daegu and Namhae, the

increasing trend of average annual precipitation for the

RCP 8.5 scenario was higher than that for the RCP 4.5 scen-

ario. However, the increasing trend of average annual

precipitation for the RCP 4.5 scenario was higher than that

for the RCP 8.5 scenario in Suwon, although the average

annual precipitation for the future period for the RCP 8.5

scenario was higher. The uncertainties of bias-corrected pre-

cipitation for future climate scenarios are shown in Figure 17.

To assess the uncertainty of future precipitation, the

annual precipitation variability was analyzed for the entire

future period (2011–2100) and for each 30-year period.

The uncertainty of future precipitation was slightly higher

than in the past observation period. Comparing the results

of the scenarios, the average annual precipitation of RCP

8.5 was larger, and the uncertainty was also slightly larger.



Figure 16 | Trends of the average annual precipitation in the future scenarios.

Figure 17 | Variability of future average annual precipitation.
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However, there was no significant difference. Comparing

the uncertainty of the areas, Namhae shows the largest

uncertainty for the past observation period.
://iwaponline.com/jwcc/article-pdf/9/3/525/484920/jwc0090525.pdf
CONCLUSIONS

In this study, the QM-RSMLS method, which is a nonpara-

metric quantile mapping method, was proposed. Compared

to the conventional nonparametric quantile mapping

methods, the QM-RSMLS is a nonlinear transformation,

and quantile division or a correction table is not required.

The empirical CDFs are generated by the RSF, which is

automatically changed according to the approximation
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precipitation; this approach guarantees a certain number of

setting sample points. The RSF was modified using a trans-

cendental function instead of polynomials. Therefore, the

non-linearity between the percentiles can be considered,

and overfitting of the model does not occur. In addition,

the proposed method can estimate the new extreme precipi-

tation via extrapolation while considering the trend of the

extreme precipitation distribution. These advantages of the

proposed method may also be effectively applied to generate

the CDF of precipitation in areas with insufficient climate

data, such as in developing countries or new weather

stations.

The proposed approach was applied to the RCP-based

RCM precipitation of three weather stations with different

average annual precipitations in Korea. The resulting Q-Q

plots revealed a good estimation of the entire range of the

daily precipitation distribution. Compared to other quantile

mapping methods, the proposed method exhibited the best

performance. The total MAEs of the three areas were

small, approximately 0.05 mm/day, and the MAE in each

probability interval also exhibited small values. In particu-

lar, for high precipitation, the proposed method exhibited

good performance compared to other quantile mapping

methods. Therefore, the QM-RSMLS can effectively

reduce the biases of the entire range and is also suited for

predicting extreme precipitation events. K-fold cross vali-

dation was also conducted to assess the performance of

the downscaling models for the independent period. The

proposed method exhibited a relatively small error, and

this error depends on the stationarity of data. For future

RCM precipitation of the two scenarios, the average

annual precipitations were increased compared to the past,

with the average annual precipitation for the RCP 8.5 exhi-

biting a larger value than that of the RCP 4.5. A moving

average was used to analyze the trends of change in average

annual precipitation, and it was found to increase with time

in all three areas. Notably, Namhae showed the greatest

increasing trend of average annual precipitation.
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