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ABSTRACT

The study evaluates the performance of bias correction techniques by dividing the observed climate data period into calibration and vali-

dation sets. For this purpose, the daily data of temperature, rainfall, and solar radiation from 2010–2095 for lower Shivaliks of Punjab

(Ballowal Saunkhri) were downloaded from Marksim weather generators using outputs of CSIRO-Mk3-6-0 climate model under four RCP scen-

arios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). The bias correction of model data (temperature, rainfall, and solar radiation) was done by

developing correction functions (using a model and observed data from 2010 to 2015) from different bias correction methods (difference

method, Leander and Buishand method, modified difference method, linear scaling, variance scaling, and quantile mapping). The corrected

model data for the year 2016–2020 were validated against the observed data. The difference method was found to be best for bias correction

due to low error and high efficiency. The corrected future model data (2021–2095) analysis on an annual and seasonal basis predicted a rise in

maximum temperature and minimum temperature by 1.3–2.8 °C and 0.5–3.0 °C, respectively, under different scenarios. The study predicted

more increase in rainfall and solar radiation under RCP 8.5 followed by RCP 6.0, RCP 4.5, and RCP 2.6 scenarios.
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HIGHLIGHTS

• The study analyzed the implications of bias correction methods on the projection of climate change.

• The difference method of bias correction was better as compared to other methods in terms of different statistical tests.

• Validation results using the difference method showed a reduction in differences between observed and model data after correction.

• Increase in temperature is observed as compared to the historical period by the end of the 21st century.
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GRAPHICAL ABSTRACT

INTRODUCTION

The world’s agriculture is highly affected by rapid population growth, land use changes due to urbanization, diminishing good
quality water resources, and weather extremes occurring due to changing climatic conditions resulting from global warming

(Asma et al. 2020). The understanding of the agricultural impacts of climate change may play a pivotal role in developing
adaptation and mitigation strategies for tackling the adverse effects of such changes. The historical data analysis for the
lower Shivaliks of Punjab, India has shown a significantly increasing trend in temperature (Kaur et al. 2021a). A range of
emission scenarios with climate change projections has been a key tool in assessing the impact of future climate change

and exploring management strategies to adapt to climate change. Many future climate change impact assessments have
been carried out using crop models and hydrological models for specific locations and agricultural regions on a global
scale (Rosenweig & Parry 1994).

The futuristic climatic data are available through General Circulation Models (GCMs), at very coarse scales generally more
than 200 km in resolution (Feddersen & Andersen 2005). The GCM-generated data are further downscaled using Regional
Climate Model (RCM) for the generation of fine-scale data resolutions of a particular area. The RCM data are more reliable

compared to GCM data, however, RCM data still require bias correction (BC) when predicted data are compared to observed
data for a particular period (Buonomo et al. 2007; Fowler & Blenkinsop 2007). However, it becomes of utmost importance to
carry out the BC of the GCM projected data prior to the impact studies, for the correction of the discrepancies between a

model’s climate and observed historical climate data (Amsal et al. 2019; James et al. 2019; Hawkins et al. 2020; Jaiswal
et al. 2021) for fair and reliable prediction and decision-making. There are several BC methods such as the difference
method (DM), linear scaling (LS) or statistical methods (Leander & Buishand 2007), quantile mapping (QM) (Boe et al.
2007), and probability density functions (Piani et al. 2010) to correct the biases in GCM–RCM outputs for various impact

studies (Charles et al. 2019; Enayati et al. 2021). There is no single BC method that performs best for all regions (Fang
et al. 2015); each of these methods has its own merits and demerits, mainly due to spatiotemporal differences in surface
and rainfall properties. Various case studies are available depicting the performance of different BC methods (Table 1).

Hence, the selection of methods to remove the systematic errors of climate model outputs needs to be based on a comparison
of multiple BC methods. Keeping this in view, the present study was undertaken to develop BC functions through statistical
comparison of different correction methods, for seasonal projections of temperature and rainfall under different scenarios.

Journal of Water and Climate Change Vol 14 No 8, 2607

Downloaded from http://iwaponline.com/jwcc/article-pdf/14/8/2606/1277046/jwc0142606.pdf
by guest
on 15 February 2025



MATERIALS AND METHODS

Study area

The study was carried out for the Regional Research Station, Ballowal Saunkhri located in the lower Shivaliks sub-mountain
zone of Punjab, India which is commonly known as the Kandi region. Ballowal Saunkhri has been situated at 30°070N, 76°230E
and lies 355 m above mean sea level. The area represents a semi-arid climate with very hot and dry summers from April to

June, hot and humid conditions from July to September, cold winters from November to January, and a mild climate during
February and March.

Data sets

There are a series of models for which scenario-wise data are available. An earlier study by Punjab Agricultural University,
Ludhiana has reported that CSIRO-Mk3-6-0 was best for the area adjacent to the current location as compared to other
models (Kaur et al. 2021b). The daily data for the meteorological parameters like maximum and minimum temperature, rain-
fall, and solar radiation were downloaded fromMarksimWeather Generator using the output of the CSIRO-MK3-6-0 model for

the Ballowal Saunkhri location. The model-predicted data are available from 2010 to 2095 separately for four climate change
scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). The historical daily weather data (temperature, rainfall, and solar radi-
ation) recorded at the Agrometeorological Observatory of Regional Research Station, Ballowal Saunkhri during 2010–2020

was used for BC. The correction functions were estimated by using baseline and observed data from 2010 to 2015, whereas
data from 2016 to 2020 were used for validation of corrected model data.

METHODOLOGY

BC methods

BC methods are post-processing tools for numerical modeling that aim to improve the model agreement with the obser-
vations. Based on their performance in removing bias from RCMs, there are a number of BC methods that are ranked

Table 1 | Different case studies adopting different BC methods for different regions of India

Name of the case study BC technique employed
Best bias-corrected
technique Authors of the paper

BC methods in downscaling meteorological variables in
Ludhiana, Punjab

Modified difference method
Linear scaling

Linear scaling Mehraj U. Din Dar
Rajan Aggarwal
Samanpreet Kaur

Application of bivaraite BC approach to yield long-term
attributes of Indian precipitation and temperature

Bivariate Asynchronous BC
Asynchronous canonical

correlation analysis

Bivariate
Asynchronous
BC

Chanchal Gupta
Rajarshi Das Bhowmik

An improved BC method of daily rainfall data using a
sliding window technique for climate change impact
assessment

Distribution mapping
Modified power

transformation

Distribution
mapping

P. S. Smitha
B. Narashiman
K. P. Sudheer

Comparison of BC techniques for GPCC rainfall data in
semi-arid climate

Linear scaling
Quantile mapping

Quantile mapping Ashoka K. Mishra
Abdul A. Khan

On the BC of general circulation model output for Indian
summer monsoon

Quantile mapping method
Principal Component

Regression

Quantile mapping
method

Nachiketa Acharaya
Surajit Chattophdaya
L. N. Sahoo

Evaluation of statistical BC methods for numerical
weather prediction model forecasts of maximum and
minimum temperatures

Difference method
Variance scaling
Quantile mapping

Quantile mapping V. R. Durai
Rashmi Bharadwaj
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according to their tendency to adjust mean, variance, coefficient of variation, and standard deviation climate variables

(Smitha et al. 2018; Ezechiel et al. 2019). The errors in the observed and predicted data on maximum temperature, minimum
temperatures, rainfall, and solar radiation were minimized by using different methods of BC. Six BC methods, viz. DM, Lean-
der and Buishand method (LB), modified difference method (MD), LS, variance scaling (VS), and QMmethods were used. In

the difference method of bias removal, the differences between model data (Xmodel) and observed (Xobs) data of the meteor-
ological parameters (maximum temperature, minimum temperature, and rainfall) for each Julian day (365) averaged from 6
years data (2010–2015) are used as ‘Correction factor’. Then these correction factors are subtracted from model uncorrected
(Xmodeluncorr) data for another time period so that model corrected X(modelcorr) data for that period comes closer to observed

data. The LB method of bias removal was given by Leander & Buishand (2007) for the temperature wherein the mean and
standard deviation were added. This method is not appropriate for bias removal in precipitation since it can compute the
negative values of precipitation. Modified LB was given by Leander & Buishand (2007) and it is quite similar to the difference

method but used for rainfall. The LS method is the most straightforward BC technique employed in several studies. It adjusts
the RCM mean value in perfect agreement with the observation data (temperature and rainfall). The VARI method was devel-
oped to correct both the mean and variance of normally distributed variables such as temperature. The QM method

constructs the cumulative distribution function (CDF) of the model and observed data (temperature and rainfall) using a
transform function, which in turn translates the raw model outputs into corrected output. All BC methods were applied to
daily values for all methods. Therefore, strong BC methods are to be identified before using bias-corrected methods to be

applied to climate models’ output for future climate change impact assessment. For bias removal, the correction functions
for each weather parameter under all the scenarios were developed using observed and model data from 2010 to 2015
(Tables 2–4). These correction factors were further used to correct and validate the model data for 2016–2020, i.e. the BC
effect was assessed by correcting projected data and comparing results with the historical observed data under all the climate

scenarios (Figure 1(a) and 1(b)).

Statistical comparison of methods used for bias removal

During the performance evaluation, different statistical parameters including coefficient of residual mass (CRM), normalized
root mean square error (NRMSE), mean absolute error (MAE), mean bias error (MBE), mean absolute percentage error
(MAPE), Wilmot d-index, percent bias index (PBIAS), and Nash–Sutcliffe efficiency (NSE) were used to check the perform-

ance of BC methods (Figure 1(a) and 1(b)). The CRM shows the difference in observed and predicted data relative to the
observed data. Its zero, negative, and positive values indicate a perfect fit, over-, and under-prediction, respectively.
NRMSE provides a measure (%) of the relative difference between predicted versus observed data. The simulation is con-

sidered excellent, good, fair, and poor if NRMSE is ,10, 10–20, 20–30, and .30%, respectively (Jamieson et al. 1991).
The MAE is an absolute measure of bias that varies between 0 to þ∞. An MAE value close to 0 indicates an unbiased
prediction, i.e. a low MAE indicates a good fit between two variables. The MBE provides information of over- and under-

prediction by the model. Positive MBE indicates over-prediction, negative values indicate under-prediction, and a zero indi-
cates equal distribution between negative and positive values (Singh et al. 2013). The MAPE is the mean or average of the
absolute percentage errors of forecasts. Willmott (1981) proposed an index of agreement (d) as a standardized measure of
the degree of model prediction error which varies between 0 and 1. The PBIAS, on the other hand, calculates the relative

volume difference between modeled and observed volume. A negative value indicates under-prediction, whereas a positive
value indicates over-prediction. The NSE is calculated as one minus the ratio of the error variance of the modeled time-
series over the variance of the observed time-series.

RESULTS AND DISCUSSION

GCMs provide a credible picture of global climate change, yet most of the crucial phenomena are considerably misreported.
For instance, some of the key processes controlling climate systems are biased along with high uncertainties in the represen-

tation of changes in these phenomena. These biases then affect the representation of regional climate conditions. The biases
in the climate model simulations and observed data need to be corrected in order to predict possible changes in the future.
Although the spatial resolutions and skills of GCMs/RCMs have obviously increased in recent years, it is still not enough for

their direct application in impact studies at local or site scales. Under such a case, BC methods provide a solution, which
combines information from the local observations and simulations leading to smaller biases and higher-resolution predic-
tions/projections. The correction functions developed for the maximum temperature, minimum temperature, rainfall, and
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Table 2 | Correction functions for maximum temperature under different RCP scenarios

Months

Correction functions under different BC methods

Difference method Leander and Buishand Linear scaling Variance scaling Quantile scaling

RCP 2.6

January 0.60 Tcor¼ 17.92þ (0.65*(Tmod� 17.92)� 0.60) Tcor¼ Tmod� 0.60 Tcor¼ Tmod� 18.5*(0.65þ 17.9) Tcor¼ 4.10(0.51* Tmod)

February 0.85 Tcor¼ 22.76þ (0.32*(Tmod� 22.76)� 0.85) Tcor¼ Tmod� 0.85 Tcor¼ Tmod� 23.6*(0.32þ 22.8) Tcor¼ 4.48(0.49* Tmod)

March 0.38 Tcor¼ 28.47þ (0.79*(Tmod� 28.47)� 0.38) Tcor¼ Tmod� 0.38 Tcor¼ Tmod� 28.9*(0.79þ 28.5) Tcor¼ 6.38(0.52* Tmod)

April 0.92 Tcor¼ 34.51þ (0.58*(Tmod� 34.51)� 0.92) Tcor¼ Tmod� 0.92 Tcor¼ Tmod� 35.4*(0.58þ 34.5) Tcor¼ 4.00(0.51* Tmod)

May 2.81 Tcor¼ 39.44þ (0.77*(Tmod� 39.44)� 2.81) Tcor¼ Tmod� 2.81 Tcor¼ Tmod� 42.2*(0.77þ 39.4) Tcor¼ 6.94(0.51* Tmod)

June 2.76 Tcor¼ 38.17þ (0.61*(Tmod� 38.17)� 2.76) Tcor¼ Tmod� 2.76 Tcor¼ Tmod� 40.9*(0.61þ 38.2) Tcor¼ 5.37(0.51* Tmod)

July 0.94 Tcor¼ 34.05þ (0.36*(Tmod� 34.05)� 0.94) Tcor¼ Tmod� 0.94 Tcor¼ Tmod� 35.0*(0.36þ 34.0) Tcor¼ 4.24(0.50* Tmod)

August 1.38 Tcor¼ 33.46þ (0.26*(Tmod� 33.46)� 1.38) Tcor¼ Tmod� 1.38 Tcor¼ Tmod� 34.8*(0.26þ 33.5) Tcor¼ 4.17(0.51* Tmod)

September 1.84 Tcor¼ 33.37þ (0.36*(Tmod� 33.37)� 1.84) Tcor¼ Tmod� 1.84 Tcor¼ Tmod� 35.2*(0.36þ 33.4) Tcor¼ 5.07(0.49* Tmod)

October 2.35 Tcor¼ 32.05þ (0.75*(Tmod� 32.05)� 2.35) Tcor¼ Tmod� 2.35 Tcor¼ Tmod� 34.4*(0.75þ 32.0) Tcor¼ 5.26(0.50* Tmod)

November �1.22 Tcor¼ 27.80þ (0.30*(Tmod� 27.80)þ 1.22) Tcor¼ Tmod� 1.22 Tcor¼ Tmod� 26.6*(0.30þ 27.8) Tcor¼ 4.38(0.49* Tmod)

December 2.41 Tcor¼ 21.78þ (0.63*(Tmod� 21.78)� 2.41) Tcor¼ Tmod� 2.41 Tcor¼ Tmod� 24.2*(0.63þ 21.8) Tcor¼ 3.82(0.51* Tmod)

RCP 4.5

January 0.33 Tcor¼ 17.92þ (0.65*(Tmod� 17.92)� 0.33) Tcor¼ Tmod� 0.33 Tcor¼ Tmod� 18.2*(0.65þ 17.9) Tcor¼ 4.10(0.51* Tmod)

February 0.58 Tcor¼ 22.76þ (0.32*(Tmod� 22.76)� 0.58) Tcor¼ Tmod� 0.58 Tcor¼ Tmod� 23.3*(0.32þ 22.7) Tcor¼ 4.48(0.49* Tmod)

March 0.55 Tcor¼ 28.47þ (0.80*(Tmod� 28.47)� 0.55) Tcor¼ Tmod� 0.55 Tcor¼ Tmod� 29.0*(0.80þ 28.4) Tcor¼ 6.38(0.52* Tmod)

April 0.72 Tcor¼ 34.51þ (0.59*(Tmod� 34.51)� 0.72) Tcor¼ Tmod� 0.72 Tcor¼ Tmod� 35.2*(0.59þ 34.5) Tcor¼ 4.00(0.51* Tmod)

May 2.79 Tcor¼ 39.44þ (0.77*(Tmod� 39.44)� 2.80) Tcor¼ Tmod� 2.80 Tcor¼ Tmod� 42.2*(0.77þ 39.4) Tcor¼ 6.94(0.51* Tmod)

June 2.64 Tcor¼ 38.17þ (0.62*(Tmod� 38.17)� 2.64) Tcor¼ Tmod� 2.64 Tcor¼ Tmod� 40.8*(0.62þ 38.1) Tcor¼ 5.37(0.51* Tmod)

July 0.89 Tcor¼ 34.05þ (0.37*(Tmod� 34.05)� 0.89) Tcor¼ Tmod� 0.89 Tcor¼ Tmod� 34.9*(0.37þ 34.0) Tcor¼ 4.24(0.50* Tmod)

August 1.29 Tcor¼ 33.46þ (0.26*(Tmod� 33.46)� 1.29) Tcor¼ Tmod� 1.29 Tcor¼ Tmod� 34.7*(0.26þ 33.4) Tcor¼ 4.17(0.50* Tmod)

September 1.48 Tcor¼ 33.37þ (0.35*(Tmod� 33.37)� 1.48) Tcor¼ Tmod� 1.48 Tcor¼ Tmod� 34.8*(0.35þ 33.3) Tcor¼ 5.07(0.50* Tmod)

October 2.20 Tcor¼ 32.05þ (0.76*(Tmod� 32.05)� 2.20) Tcor¼ Tmod� 2.20 Tcor¼ Tmod� 34.2*(0.76þ 32.0) Tcor¼ 5.26(0.50* Tmod)

November �1.44 Tcor¼ 27.80þ (0.29*(Tmod� 27.80)þ 1.44) Tcor¼ Tmod þ1.44 Tcor¼ Tmod� 26.3*(0.29þ 27.8) Tcor¼ 4.38(0.49* Tmod)

December 2.24 Tcor¼ 21.78þ (0.12*(Tmod� 21.78)� 2.24) Tcor¼ Tmod� 2.24 Tcor¼ Tmod� 24.0*(0.62þ 21.7) Tcor¼ 3.82(0.51* Tmod)

RCP 6.0

January 0.30 Tcor¼ 17.9þ (0.64*(Tmod� 17.9)� 0.29) Tcor¼ Tmod� 0.29 Tcor¼ Tmod� 18.2*(0.64þ 17.9) Tcor¼ 4.10(0.51* Tmod)

February 0.54 Tcor¼ 22.8þ (0.32*(Tmod� 22.8)� 0.54) Tcor¼ Tmod� 0.54 Tcor¼ Tmod� 23.3*(0.32þ 22.7) Tcor¼ 4.48(0.49* Tmod)

March 0.78 Tcor¼ 28.3þ (0.89*(Tmod� 28.3)� 0.97) Tcor¼ Tmod� 0.97 Tcor¼ Tmod� 29.2*(0.89þ 28.2) Tcor¼ 5.81(0.52* Tmod)

April 1.37 Tcor¼ 34.3þ (0.63*(Tmod� 34.3)� 1.57) Tcor¼ Tmod� 1.57 Tcor¼ Tmod� 35.8*(0.63þ 34.3) Tcor¼ 3.98(0.50* Tmod)

(Continued.)
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Table 2 | Continued

Months

Correction functions under different BC methods

Difference method Leander and Buishand Linear scaling Variance scaling Quantile scaling

May 2.95 Tcor¼ 39.3þ (0.81*(Tmod� 39.3)� 3.07) Tcor¼ Tmod� 3.07 Tcor¼ Tmod� 42.3*(0.81þ 39.3) Tcor¼ 6.29(0.50* Tmod)

June 3.00 Tcor¼ 38.3þ (0.66*(Tmod� 38.3)� 2.83) Tcor¼ Tmod� 2.83 Tcor¼ Tmod� 41.1*(0.66þ 38.3) Tcor¼ 5.55(0.51* Tmod)

July 1.04 Tcor¼ 34.1þ (0.40*(Tmod� 34.1)� 0.95) Tcor¼ Tmod� 0.95 Tcor¼ Tmod� 35.0*(0.40þ 34.1) Tcor¼ 4.22(0.50* Tmod)

August 1.47 Tcor¼ 33.4þ (0.26*(Tmod� 33.4)� 1.50) Tcor¼ Tmod� 1.50 Tcor¼ Tmod� 34.9*(0.26þ 33.4) Tcor¼ 4.10(0.50* Tmod)

September 1.87 Tcor¼ 33.4þ (0.37*(Tmod� 33.4)� 1.85) Tcor¼ Tmod� 1.85 Tcor¼ Tmod� 35.2*(0.37þ 33.3) Tcor¼ 4.98(0.50* Tmod)

October 2.24 Tcor¼ 32.2þ (0.80*(Tmod� 32.2)� 2.12) Tcor¼ Tmod� 2.12 Tcor¼ Tmod� 34.2*(0.80þ 32.1) Tcor¼ 5.87(0.51* Tmod)

November �1.69 Tcor¼ 27.9þ (0.34*(Tmod� 27.9)þ 1.82) Tcor¼ Tmod þ1.82 Tcor¼ Tmod� 26.1*(0.34þ 27.9) Tcor¼ 4.49(0.50* Tmod)

December 2.25 Tcor¼ 22.0þ (0.61*(Tmod� 22.0)� 2.00) Tcor¼ Tmod� 2.00 Tcor¼ Tmod� 24.0*(0.61þ 22.0) Tcor¼ 3.97(0.50* Tmod)

RCP 8.5

January 0.37 Tcor¼ 17.92þ (0.64*(Tmod� 17.92)� 0.33) Tcor¼ Tmod� 0.33 Tcor¼ Tmod� 18.3*(0.64þ 17.9) Tcor¼ 4.10(0.51* Tmod)

February 0.68 Tcor¼ 22.76þ (0.32*(Tmod� 22.76)� 0.68) Tcor¼ Tmod� 0.68 Tcor¼ Tmod� 23.4*(0.32þ 22.8) Tcor¼ 4.48(0.49* Tmod)

March 1.08 Tcor¼ 28.19þ (0.93*(Tmod� 28.19)� 1.08) Tcor¼ Tmod� 1.08 Tcor¼ Tmod� 29.3*(0.93þ 28.2) Tcor¼ 6.00(0.51* Tmod)

April 1.42 Tcor¼ 34.30þ (0.63*(Tmod� 34.30)� 1.42) Tcor¼ Tmod� 1.42 Tcor¼ Tmod� 35.7*(0.63þ 34.3) Tcor¼ 3.98(0.50* Tmod)

May 2.94 Tcor¼ 39.32þ (0.81*(Tmod� 39.32)� 2.94) Tcor¼ Tmod� 2.94 Tcor¼ Tmod� 42.3*(0.81þ 39.3) Tcor¼ 6.30(0.50* Tmod)

June 2.67 Tcor¼ 38.34þ (0.65*(Tmod� 38.34)� 2.67) Tcor¼ Tmod� 2.67 Tcor¼ Tmod� 41.0*(0.65þ 38.3) Tcor¼ 5.55(0.51* Tmod)

July 0.86 Tcor¼ 34.14þ (0.39*(Tmod� 34.14)� 0.86) Tcor¼ Tmod� 0.86 Tcor¼ Tmod� 35.0*(0.39þ 34.1) Tcor¼ 4.22(0.50* Tmod)

August 1.49 Tcor¼ 33.43þ (0.27*(Tmod� 33.43)� 1.49) Tcor¼ Tmod� 1.49 Tcor¼ Tmod� 34.9*(0.27þ 33.4) Tcor¼ 4.10(0.50* Tmod)

September 1.91 Tcor¼ 33.39þ (0.37*(Tmod� 33.39)� 1.91) Tcor¼ Tmod� 1.91 Tcor¼ Tmod� 35.3*(0.37þ 33.4) Tcor¼ 4.97(0.50* Tmod)

October 2.17 Tcor¼ 32.17þ (0.75*(Tmod� 32.17)� 2.17) Tcor¼ Tmod� 2.17 Tcor¼ Tmod� 34.3*(0.75þ 32.2) Tcor¼ 5.87(0.50* Tmod)

November �1.82 Tcor¼ 27.93þ (0.33*(Tmod� 27.93)þ 1.82) Tcor¼ Tmod þ1.82 Tcor¼ Tmod� 26.1*(0.33þ 27.9) Tcor¼ 4.49(0.50* Tmod)

December 1.78 Tcor¼ 22.03þ (0.61*(Tmod� 22.03)� 1.78) Tcor¼ Tmod� 1.78 Tcor¼ Tmod� 23.8*(0.62þ 22.0) Tcor¼ 3.97(0.51* Tmod)
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Table 3 | Correction functions for correcting the CSIRO model minimum temperature data for four RCP scenarios

Months

Correction functions under different BC methods

Difference method Leander and Buishand Linear scaling Variance scaling Quantile scaling

RCP 2.6

January �0.73 Tcor¼ 5.05þ (0.29*(Tmod� 5.05)þ 0.73) Tcor¼ Tmod þ0.73 Tcor¼ Tmod� 4.32*(0.29þ 5.05) Tcor¼ 4.82(0.52* Tmod)

February 1.39 Tcor¼ 8.32þ (1.00*(Tmod� 8.32)� 1.39) Tcor¼ Tmod� 1.39 Tcor¼ Tmod� 9.71*(0.33þ 8.32) Tcor¼ 5.19(0.50* Tmod)

March 1.25 Tcor¼ 12.66þ (0.52*(Tmod� 12.66)� 1.25) Tcor¼ Tmod� 1.25 Tcor¼ Tmod� 13.9*(0.83þ 12.6) Tcor¼ 4.05(0.50* Tmod)

April 1.96 Tcor¼ 17.32þ (0.58*(Tmod� 17.32)� 1.96) Tcor¼ Tmod� 1.96 Tcor¼ Tmod� 19.2*(0.58þ 17.3) Tcor¼ 4.24(0.51* Tmod)

May 5.11 Tcor¼ 21.91þ (0.86*(Tmod� 21.91)� 5.11) Tcor¼ Tmod� 5.11 Tcor¼ Tmod� 27.0*(0.86þ 21.9) Tcor¼ 4.60(0.50* Tmod)

June 3.75 Tcor¼ 24.76þ (0.76*(Tmod� 24.76)� 3.75) Tcor¼ Tmod� 3.75 Tcor¼ Tmod� 28.5*(0.76þ 24.7) Tcor¼ 3.96(0.52* Tmod)

July 1.80 Tcor¼ 25.28þ (0.44*(Tmod� 25.28)� 1.80) Tcor¼ Tmod� 1.80 Tcor¼ Tmod� 27.0*(0.44þ 25.2) Tcor¼ 5.75(0.52* Tmod)

August 2.44 Tcor¼ 24.50þ (0.24*(Tmod� 24.50)� 2.44) Tcor¼ Tmod� 2.44 Tcor¼ Tmod� 26.9*(0.24þ 24.5) Tcor¼ 5.33(0.49* Tmod)

September 2.43 Tcor¼ 22.39þ (1.16*(Tmod� 22.39)� 2.43) Tcor¼ Tmod� 2.43 Tcor¼ Tmod� 24.8*(1.16þ 22.3) Tcor¼ 4.25(0.51* Tmod)

October 3.57 Tcor¼ 16.95þ (0.91*(Tmod� 16.95)� 3.57) Tcor¼ Tmod� 3.57 Tcor¼ Tmod� 50.5*(0.91þ 16.9) Tcor¼ 4.39(0.48* Tmod)

November �1.96 Tcor¼ 10.56þ (0.31*(Tmod� 10.56)þ 1.96) Tcor¼ Tmodþ 1.96 Tcor¼ Tmod� 8.60*(0.31þ 10.5) Tcor¼ 3.54(0.50* Tmod)

December 2.85 Tcor¼ 6.27þ (0.41*(Tmod� 6.27)� 2.85) Tcor¼ Tmod� 2.85 Tcor¼ Tmod� 9.11*(0.41þ 6.27) Tcor¼ 4.65(0.49* Tmod)

RCP 4.5

January �0.91 Tcor¼ 5.05þ (0.29*(Tmod� 5.05)þ 0.91) Tcor¼ Tmod þ0.91 Tcor¼ Tmod� 4.14*(0.29þ 5.05) Tcor¼ 4.82(0.52* Tmod)

February 1.11 Tcor¼ 8.32þ (0.32*(Tmod� 8.32)� 1.11) Tcor¼ Tmod� 1.11 Tcor¼ Tmod� 9.43*(0.32þ 8.32) Tcor¼ 5.19(0.50* Tmod)

March 1.03 Tcor¼ 12.66þ (0.82*(Tmod� 12.66)� 1.03) Tcor¼ Tmod� 1.03 Tcor¼ Tmod� 13.6*(0.82þ 12.6) Tcor¼ 4.05(0.50* Tmod)

April 1.79 Tcor¼ 17.32þ (0.57*(Tmod� 17.32)� 1.79) Tcor¼ Tmod� 1.79 Tcor¼ Tmod� 19.1*(0.57þ 17.3) Tcor¼ 4.24(0.50* Tmod)

May 5.08 Tcor¼ 21.91þ (0.87*(Tmod� 21.91)� 5.08) Tcor¼ Tmod� 5.08 Tcor¼ Tmod� 27.0*(0.87þ 21.9) Tcor¼ 4.60(0.50* Tmod)

June 3.62 Tcor¼ 24.76þ (0.76*(Tmod� 24.76)� 3.62) Tcor¼ Tmod� 3.62 Tcor¼ Tmod� 28.3*(0.76þ 24.7) Tcor¼ 3.96(0.52* Tmod)

July 1.73 Tcor¼ 25.28þ (0.44*(Tmod� 25.28)� 1.73) Tcor¼ Tmod� 1.73 Tcor¼ Tmod� 27.0*(0.44þ 25.2) Tcor¼ 5.75(0.52* Tmod)

August 2.29 Tcor¼ 24.50þ (0.24*(Tmod� 24.50)� 2.29) Tcor¼ Tmod� 2.29 Tcor¼ Tmod� 26.7*(0.24þ 24.5) Tcor¼ 5.33(0.49* Tmod)

September 2.37 Tcor¼ 22.39þ (1.16*(Tmod� 22.39)� 2.37) Tcor¼ Tmod� 2.37 Tcor¼ Tmod� 24.7*(1.16þ 22.3) Tcor¼ 4.25(0.51* Tmod)

October 3.40 Tcor¼ 16.95þ (0.90*(Tmod� 16.95)� 3.40) Tcor¼ Tmod� 3.40 Tcor¼ Tmod� 20.3*(0.90þ 16.9) Tcor¼ 4.39(0.48* Tmod)

November �2.08 Tcor¼ 10.56þ (0.31*(Tmod� 10.56)þ 2.08) Tcor¼ Tmodþ 2.08 Tcor¼ Tmod� 8.49*(0.31þ 10.5) Tcor¼ 3.54(0.50* Tmod)

December 2.65 Tcor¼ 6.27þ (0.40*(Tmod� 6.27)� 2.65) Tcor¼ Tmod� 2.65 Tcor¼ Tmod� 8.92*(0.40þ 6.27) Tcor¼ 4.66(0.49* Tmod)

RCP 6.0

January �0.94 Tcor¼ 5.0þ (0.3*(Tmod� 5.0)þ 0.9) Tcor¼ Tmod þ0.9 Tcor¼ Tmod� 4.11*(0.29þ 5.05) Tcor¼ 4.82(0.52* Tmod)

February 1.36 Tcor¼ 8.3þ (0.3*(Tmod� 8.3)� 1.4) Tcor¼ Tmod� 1.4 Tcor¼ Tmod� 9.68*(0.33þ 8.32) Tcor¼ 5.19(0.50* Tmod)

March 1.27 Tcor¼ 12.7þ (0.9*(Tmod� 12.7)� 1.3) Tcor¼ Tmod� 1.3 Tcor¼ Tmod 13.92*(0.88þ 12.6) Tcor¼ 3.63(0.50* Tmod)

April 2.25 Tcor¼ 17.3þ (0.6*(Tmod� 17.3)� 2.3) Tcor¼ Tmod� 2.3 Tcor¼ Tmod� 19.5*(0.59þ 17.3) Tcor¼ 4.24(0.52* Tmod)

(Continued.)
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Table 3 | Continued

Months

Correction functions under different BC methods

Difference method Leander and Buishand Linear scaling Variance scaling Quantile scaling

May 5.24 Tcor¼ 21.9þ (1.0*(Tmod� 21.9)� 5.2) Tcor¼ Tmod� 5.2 Tcor¼ Tmod� 27.1*(0.97þ 21.9) Tcor¼ 4.60(0.49* Tmod)

June 3.72 Tcor¼ 24.8þ (0.8*(Tmod� 24.8)� 3.7) Tcor¼ Tmod� 3.7 Tcor¼ Tmod� 28.4*(0.77þ 24.7) Tcor¼ 3.96(0.49* Tmod)

July 1.82 Tcor¼ 25.3þ (0.4*(Tmod� 25.3)� 1.8) Tcor¼ Tmod� 1.8 Tcor¼ Tmod� 27.1*(0.44þ 25.2) Tcor¼ 5.75(0.52* Tmod)

August 2.24 Tcor¼ 24.5þ (0.2*(Tmod� 24.5)� 2.2) Tcor¼ Tmod� 2.2 Tcor¼ Tmod� 26.7*(0.24þ 24.5) Tcor¼ 5.33(0.49* Tmod)

September 2.42 Tcor¼ 22.4þ (1.2*(Tmod� 22.4)� 2.4) Tcor¼ Tmod� 2.4 Tcor¼ Tmod� 24.8*(1.16þ 22.3) Tcor¼ 4.25(0.51* Tmod)

October 3.29 Tcor¼ 17.0þ (0.9*(Tmod� 17.0)� 3.3) Tcor¼ Tmod� 3.3 Tcor¼ Tmod� 20.2*(0.91þ 16.9) Tcor¼ 4.39(0.48* Tmod)

November �2.31 Tcor¼ 10.6þ (0.3*(Tmod� 10.6)þ 2.3) Tcor¼ Tmodþ 2.3 Tcor¼ Tmod� 8.25*(0.33þ 10.5) Tcor¼ 3.54(0.50* Tmod)

December 2.56 Tcor¼ 6.3þ (0.4*(Tmod� 6.3)� 2.6) Tcor¼ Tmod� 2.6 Tcor¼ Tmod� 8.83*(0.40þ 6.27) Tcor¼ 4.66(0.49* Tmod)

RCP 8.5

January �0.90 Tcor¼ 5.05þ (0.29*(Tmod� 5.05)þ 0.90) Tcor¼ Tmod þ0.90 Tcor¼ Tmod� 4.15*(0.29þ 5.05) Tcor¼ 4.82(0.52* Tmod)

February 1.35 Tcor¼ 8.32þ (0.33*(Tmod� 8.32)� 1.35) Tcor¼ Tmod� 1.35 Tcor¼ Tmod� 9.67*(0.32þ 8.32) Tcor¼ 5.19(0.50* Tmod)

March 1.40 Tcor¼ 12.66þ (0.88*(Tmod� 12.66)� 1.40) Tcor¼ Tmod� 1.40 Tcor¼ Tmod 14.06*(0.88þ 12.6) Tcor¼ 4.05(0.51* Tmod)

April 2.18 Tcor¼ 17.32þ (0.60*(Tmod� 17.32)� 2.18) Tcor¼ Tmod� 2.18 Tcor¼ Tmod 19.50*(0.60þ 17.3) Tcor¼ 4.24(0.52* Tmod)

May 5.16 Tcor¼ 21.91þ (0.96*(Tmod� 21.91)� 5.16) Tcor¼ Tmod� 5.16 Tcor¼ Tmod 27.07*(0.96þ 21.9) Tcor¼ 4.60(0.49* Tmod)

June 3.69 Tcor¼ 24.76þ (0.76*(Tmod� 24.76)� 3.69) Tcor¼ Tmod� 3.69 Tcor¼ Tmod 28.45*(0.76þ 24.7) Tcor¼ 3.96(0.52* Tmod)

July 1.89 Tcor¼ 25.28þ (0.44*(Tmod� 25.28)� 1.89) Tcor¼ Tmod� 1.89 Tcor¼ Tmod 27.18*(0.44þ 25.2) Tcor¼ 5.75(0.52* Tmod)

August 2.30 Tcor¼ 24.50þ (0.24*(Tmod� 24.50)� 2.30) Tcor¼ Tmod� 2.30 Tcor¼ Tmod 26.80*(0.24þ 24.5) Tcor¼ 5.33(0.49* Tmod)

September 2.40 Tcor¼ 22.39þ (1.15*(Tmod� 22.39)� 2.40) Tcor¼ Tmod� 2.40 Tcor¼ Tmod 24.76*(1.15þ 22.3) Tcor¼ 4.25(0.51* Tmod)

October 3.24 Tcor¼ 16.95þ (0.92*(Tmod� 16.95)� 3.24) Tcor¼ Tmod� 3.24 Tcor¼ Tmod 20.19*(0.92þ 16.9) Tcor¼ 4.39(0.48* Tmod)

November �2.27 Tcor¼ 10.56þ (0.33*(Tmod� 10.56)þ 2.27) Tcor¼ Tmodþ 2.27 Tcor¼ Tmod� 8.30*(0.33þ 10.5) Tcor¼ 3.54(0.50* Tmod)

December 2.45 Tcor¼ 6.27þ (0.40*(Tmod� 6.27)� 2.45) Tcor¼ Tmod� 2.45 Tcor¼ Tmod� 8.72*(0.40þ 6.27) Tcor¼ 4.66(0.49* Tmod)
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Table 4 | Correction functions for correcting the CSIRO model rainfall data for all RCP scenarios

Months

Correction functions under different BC methods

Difference method Modified Leander and Buishand Linear scaling Quantile mapping

RCP 2.6

January �12.82 RFcorr¼ (RFmod þ16.20)*0.62 RFcorr¼RFmod *1.63 RFcorr¼ 2.68(0.44* RFmod)

February �26.15 RFcorr¼ (RFmod� 26.15)*2.53 RFcorr¼RFmod *2.03 RFcorr¼ 2.61(0.44* RFmod)

March 0.60 RFcorr¼ (RFmod þ0.60)*3.07 RFcorr¼RFmod *0.99 RFcorr¼ 2.59(0.45* RFmod)

April �21.90 RFcorr¼ (RFmod� 21.90)*0.62 RFcorr¼RFmod 0.00 RFcorr¼ 2.70(0.00* RFmod)

May 3.75 RFcorr¼ (RFmod þ16.20)*0.00 RFcorr¼RFmod *0.85 RFcorr¼ 2.85(0.45* RFmod)

June �79.17 RFcorr¼ (RFmod þ3.75)*1.33 RFcorr¼RFmod *2.69 RFcorr¼ 3.08(0.44* RFmod)

July 349.10 RFcorr¼ (RFmod� 79.17)*26.78 RFcorr¼RFmod *0.39 RFcorr¼ 3.24(0.47* RFmod)

August 117.82 RFcorr¼ (RFmod þ349.10)*3.95 RFcorr¼RFmod *0.69 RFcorr¼ 2.98(0.45* RFmod)

September �102.95 RFcorr¼ (RFmod þ117.82)*2.12 RFcorr¼RFmod *6.25 RFcorr¼ 2.93(0.45* RFmod)

October 54.77 RFcorr¼ (RFmod� 102.95)*13.52 RFcorr¼RFmod *0.24 RFcorr¼ 2.51(0.45* RFmod)

November �1.53 RFcorr¼ (RFmod� 1.53)*0.00 RFcorr¼RFmod *0.00 RFcorr¼ 2.39(0.00* RFmod)

December 6.05 RFcorr¼ (RFmod þ6.05)*1.22 RFcorr¼RFmod *0.84 RFcorr¼ 2.59(0.45* RFmod)

RCP 4.5

January 33.09 RFcorr¼ (RFmod þ33.08)*32.62 RFcorr¼RFmod *0.50 RFcorr¼ 2.68(0.44* RFmod)

February �25.52 RFcorr¼ (RFmod� 25.52)*156.74 RFcorr¼RFmod *1.98 RFcorr¼ 2.61(0.44* RFmod)

March �33.12 RFcorr¼ (RFmod� 33.10)*110.52 RFcorr¼RFmod *3.92 RFcorr¼ 2.59(0.45* RFmod)

April �21.9 RFcorr¼ (RFmod� 21.90)*0.00 RFcorr¼RFmod 0.00 RFcorr¼ 2.70(0.00* RFmod)

May 6.89 RFcorr¼ (RFmod þ6.90)*2.91 RFcorr¼RFmod *0.75 RFcorr¼ 2.85(0.44* RFmod)

June �98.98 RFcorr¼ (RFmod� 98.97)*19.82 RFcorr¼RFmod *4.67 RFcorr¼ 3.08(0.44* RFmod)

July 376.32 RFcorr¼ (RFmod þ376.32)*6.58 RFcorr¼RFmod *0.37 RFcorr¼ 3.24(0.40* RFmod)

August �49.87 RFcorr¼ (RFmod þ0.00)*1.00 RFcorr¼RFmod *1.23 RFcorr¼ 2.98(0.45* RFmod)

September �109.57 RFcorr¼ (RFmod� 109.60)*63.61 RFcorr¼RFmod *9.45 RFcorr¼ 2.93(0.44* RFmod)

October 68.15 RFcorr¼ (RFmod þ68.15)*11.83 RFcorr¼RFmod *0.20 RFcorr¼ 2.51(0.45* RFmod)

November �1.53 RFcorr¼ (RFmod� 1.56)*0.00 RFcorr¼RFmod *0.00 RFcorr¼ 2.39(0.00* RFmod)

December �15.93 RFcorr¼ (RFmod þ15.93)*65.62 RFcorr¼RFmod *2.03 RFcorr¼ 2.59(0.45* RFmod)

RCP 6.0

January 6.77 RFcorr¼ (RFmod þ6.77)*0.78 RFcorr¼RFmod *0.83 RFcorr¼ 2.68(0.44* RFmod)

February �24.72 RFcorr¼ (RFmod� 24.72)*69.87 RFcorr¼RFmod *1.92 RFcorr¼ 2.61(0.44* RFmod)

March �29.85 RFcorr¼ (RFmod� 29.85)*14.63 RFcorr¼RFmod *3.05 RFcorr¼ 2.59(0.44* RFmod)

April �21.90 RFcorr¼ (RFmod� 21.90)*0.00 RFcorr¼RFmod 0.00 RFcorr¼ 2.70(0.00* RFmod)

May 3.93 RFcorr¼ (RFmod þ3.93)*16.03 RFcorr¼RFmod *0.84 RFcorr¼ 2.85(0.44* RFmod)

June �92.03 RFcorr¼ (RFmod� 92.03)*294.82 RFcorr¼RFmod *3.72 RFcorr¼ 3.08(0.44* RFmod)

July 340.98 RFcorr¼ (RFmod þ340.98)*16.32 RFcorr¼RFmod *0.40 RFcorr¼ 3.24(0.47* RFmod)

August 31.40 RFcorr¼ (RFmodþ 31.40)*3,142.97 RFcorr¼RFmod *0.89 RFcorr¼ 2.98(0.44* RFmod)

September �44.77 RFcorr¼ (RFmod� 44.77)*190.15 RFcorr¼RFmod *1.58 RFcorr¼ 2.91(0.44* RFmod)

October 8.40 RFcorr¼ (RFmod þ8.40)*383.47 RFcorr¼RFmod *0.67 RFcorr¼ 2.51(0.44* RFmod)

November �1.53 RFcorr¼ (RFmod� 1.53)*0.00 RFcorr¼RFmod *0.00 RFcorr¼ 2.39(0.00* RFmod)

December �3.98 RFcorr¼ (RFmod� 3.98)*1.60 RFcorr¼RFmod *1.14 RFcorr¼ 2.59(0.44* RFmod)

RCP 8.5

January �19.38 RFcorr¼ (RFmod� 19.38)*0.01 RFcorr¼RFmod *2.40 RFcorr¼ 2.68(0.43* RFmod)

(Continued.)
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solar radiation are given in Tables 2–4. Twelve different equations have been developed for each weather parameter separ-
ately as values of these weather variables differ for every month of the year. The study area, which is located in the

subtropical zone, has experienced higher monthly fluctuations in weather characteristics. This area has both hot and cold
weather extremes, as well as dry and wet spells. The goal of employing the equations independently for each month in the
research region was to precisely assess and adjust the model-generated forecasted data. Hence, the futuristic corrected
model data were obtained by using these equations for each month. All these methods are used to fetch model and observed

data closer but out of these methods the difference method gives closer values of model data relative to the observed data, so a
difference method is selected.

Performance evaluation of different BC methods

BC methods are post-processing tools for numerical modeling, which aim to improve the model agreement with the obser-
vations. Overall, data bias-corrected with either of the methods exhibited substantial improvements in all the statistical
parameters compared to raw model data, but improvements were more pronounced for the difference method (Table 5).

In the case of maximum temperature, the uncorrected model data gave NRMSE values of 14.1, 14.0, 13.8, and 13.6%
under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively, which were reduced to 6.47, 6.48, 6.37, and 6.51%, respectively,
by the difference method (Table 5). However, other methods showed NRMSE values above 8%. Likewise, the above 23%

NRMSE values for uncorrected model minimum temperature under different RCP scenarios depict poor simulation results.
But the BC by the difference method reduced it to 8.2, 8.1, 8.3, and 8.1% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5,
respectively, indicating excellent simulation results by this method (Table 6). All other BC methods lagged behind the differ-

ence method due to their higher NRMSE values (more than 11%). Similar results were observed for the uncorrected model
rainfall data having high NRMSE values which were reduced more by the difference method. In the case of solar radiation,
the NRMSE values (115.3, 115.2, 114.5, and 115.9% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios, respectively) in

the uncorrected model data were reduced by the difference method (16.6, 20.9, 21.9, and 21.3 under RCP 2.6, RCP 4.5, RCP
6.0, and RCP 8.5 scenarios, respectively) after the BC (Table 7).

Similarly, uncorrected model data for maximum temperature, minimum temperature, rainfall, and solar radiation rep-
resented higher values of MAE, MBE, MAPE, and PBIAS, but low CRM and NSE values, depicting more errors in the

uncorrected model data (Tables 5–7). All these statistical parameters were improved after applying different correction tech-
niques for all the climatic variables. However, the difference method consistently and uniquely adjusted the mean and
standard deviation correctly in comparison with other methods. The difference method followed by VS and LB methods

gave good fits between observed and simulated temperature as indicated by various statistical parameters (Table 5). The differ-
ence method and VS corrected the biases of simulated temperature very well, but the better statistics of the difference method
over the VS encouraged us to adopt it for further correction and projections of model data beyond 2020. Hence, this method

Table 4 | Continued

Months

Correction functions under different BC methods

Difference method Modified Leander and Buishand Linear scaling Quantile mapping

February �27.92 RFcorr¼ (RFmod� 27.92)*0.18 RFcorr¼RFmod *2.18 RFcorr¼ 2.61(0.44* RFmod)

March �23.50 RFcorr¼ (RFmod� 23.50)*0.01 RFcorr¼RFmod *2.12 RFcorr¼ 2.59(0.43* RFmod)

April �21.90 RFcorr¼ (RFmod� 21.90)*0.00 RFcorr¼RFmod 0.00 RFcorr¼ 2.70(0.00* RFmod)

May 13.82 RFcorr¼ (RFmod þ13.82)*0.47 RFcorr¼RFmod *0.60 RFcorr¼ 2.85(0.45* RFmod)

June �88.28 RFcorr¼ (RFmod� 88.28)*0.04 RFcorr¼RFmod *3.35 RFcorr¼ 3.08(0.44* RFmod)

July 352.62 RFcorr¼ (RFmod þ352.62)*0.21 RFcorr¼RFmod *0.39 RFcorr¼ 3.24(0.47* RFmod)

August 70.68 RFcorr¼ (RFmod þ70.68)*0.33 RFcorr¼RFmod *0.79 RFcorr¼ 2.98(0.44* RFmod)

September �50.77 RFcorr¼ (RFmod� 50.77)*0.12 RFcorr¼RFmod *1.71 RFcorr¼ 2.93(0.44* RFmod)

October 8.23 RFcorr¼ (RFmod þ8.23)*0.03 RFcorr¼RFmod *0.68 RFcorr¼ 2.51(0.45* RFmod)

November �1.53 RFcorr¼ (RFmod� 1.53)*0.00 RFcorr¼RFmod *0.00 RFcorr¼ 2.39(0.00* RFmod)

December 8.42 RFcorr¼ (RFmod þ8.42)*0.29 RFcorr¼RFmod *0.79 RFcorr¼ 2.59(0.44* RFmod)
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was very suitable for removing bias from GCM/RCM at this location. Furthermore, in this study, which mainly focused on the
lower Shivalik region of Punjab, the difference method is the best-performing one for removing the RCM/GCM bias com-
pared to the other methods.

Figure 1 | Methodological framework for applying BC and correction of projected climate data (a) and mathematical expressions of different
BC methods used in the study (b).
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Comparison of the actual and corrected modeled data (2016–2020) using the difference method of BC

The distribution of the annual temperature over the lower Shivalik region indicates that considerable biases exist between
uncorrected model outputs which ultimately advise against the direct application of model projections in climate change

studies over this region. From the BC for weather parameters by different correction methods, the difference method has
been found to be better as compared to other methods in terms of statistical results. Therefore, this method was selected
as the method of correction for the future data under all the RCP scenarios. The corrected model data for 2016–2020

Table 5 | Statistical testing of model data and data corrected by different BC methods (maximum temperature) under RCP scenarios

Statistical parameters Model data Difference method Leander and Buishand Linear scaling Variance scaling Quantile mapping

RCP 2.6

PBIAS �7.26 �2.75 �0.62 �2.75 �2.44 �169.20

NSE 0.57 0.91 0.85 0.70 0.85 �1,773.71

MBE 2.16 0.81 0.18 0.81 0.72 50.30

MAE 3.34 1.51 1.97 2.77 1.93 65.08

CRM �0.07 �0.02 �0.006 �0.02 �0.02 �1.69

MAPE 0.12 0.05 0.07 0.10 0.07 2.18

Wilmot d-index 0.90 0.97 0.96 0.92 0.96 0.01

NRMSE 14.15 6.47 8.35 11.86 8.39 917.40

RCP 4.5

PBIAS �6.86 �2.90 �0.59 �2.88 �2.47 �164.22

NSE 0.58 0.91 0.86 0.69 0.85 �1,730.88

MBE 2.04 0.86 0.17 0.85 0.73 48.82

MAE 3.30 1.52 1.92 2.80 1.94 62.73

CRM �0.06 �0.02 �0.006 �0.02 �0.02 �1.64

MAPE 0.12 0.05 0.07 0.10 0.07 2.10

Wilmot d-index 0.91 0.98 0.97 0.93 0.96 0.01

NRMSE 14.05 6.48 8.00 11.96 8.44 906.26

RCP 6.0

PBIAS �7.04 �2.56 �0.79 �2.56 �2.36 �141.17

NSE 0.59 0.91 0.85 0.72 0.85 �1,093.95

MBE 2.09 0.76 0.23 0.76 0.70 41.97

MAE 3.27 1.48 1.99 2.73 1.94 55.90

CRM �0.07 �0.02 �0.008 �0.02 �0.02 �1.41

MAPE 0.12 0.05 0.07 0.10 0.07 1.86

Wilmot d-index 0.91 0.98 0.96 0.93 0.96 0.02

NRMSE 13.83 6.37 8.35 11.44 8.26 720.60

RCP 8.5

PBIAS �7.17 �2.81 �0.90 �2.79 �2.41 �155.57

NSE 0.60 0.90 0.85 0.73 0.86 �1,314.40

MBE 2.13 0.83 0.26 0.83 0.72 46.29

MAE 3.26 1.53 1.94 2.68 1.85 60.02

CRM �0.07 �0.02 �0.00 �0.02 �0.02 �1.55

MAPE 0.11 0.05 0.07 0.10 0.07 1.97

Wilmot d-index 0.92 0.98 0.96 0.94 0.97 0.07

NRMSE 13.58 6.51 8.15 11.17 8.03 784.03
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were validated by its comparison with the observed data for that period. The results of the comparison between the monthly
averages of actual, model, and corrected data for maximum temperature, minimum temperature, rainfall, and solar radiation
under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 scenarios have been shown as follows.

Under RCP 2.6, the model overestimated the maximum temperature from February to December and underestimated for
January. The uncorrected model data for maximum temperature were comparatively higher than that observed for February,
March, and May to December, but lower for the months of January and April under the RCP 4.5 scenario. Likewise, the

Table 6 | Statistical testing of model data and data corrected by different BC methods (minimum temperature) under RCP scenarios

Statistical parameters Model data Difference method Leander and Buishand Linear scaling Variance scaling Quantile mapping

RCP 2.6

PBIAS �9.85 1.96 5.28 1.95 2.51 �148.67

NSE 0.68 0.96 0.88 0.82 0.92 �161.08

MBE 1.66 �0.33 �0.89 �0.33 �0.42 25.15

MAE 3.24 1.08 1.85 2.23 1.47 32.81

CRM �0.09 0.02 0.05 0.02 0.02 �1.48

MAPE 0.26 0.08 0.15 0.20 0.12 2.21

Wilmot d-index 0.94 0.99 0.97 0.96 0.98 0.08

NRMSE 23.63 8.21 14.37 17.80 11.44 537.33

RCP 4.5

PBIAS �9.08 1.85 5.12 1.50 2.44 253.24

NSE 0.69 0.96 0.90 0.82 0.92 �198.77

MBE 1.53 �0.31 �0.86 �0.25 �0.41 �42.85

MAE 3.22 1.08 1.73 2.23 1.46 42.85

CRM �0.09 0.01 0.05 0.01 0.02 2.53

MAPE 0.26 0.08 0.13 0.20 0.12 2.77

Wilmot d-index 0.86 0.97 0.94 0.90 0.95 0.06

NRMSE 23.48 8.18 12.98 17.86 11.41 555.96

RCP 6.0

PBIAS �8.78 2.54 5.28 2.55 2.83 �143.09

NSE 0.70 0.96 0.90 0.82 0.92 �126.34

MBE 1.48 �0.43 �0.89 �0.43 �0.48 24.21

MAE 3.20 1.11 1.70 2.15 1.46 32.09

CRM �0.08 0.02 0.05 0.02 0.02 �1.43

MAPE 0.26 0.08 0.13 0.20 0.12 2.11

Wilmot d-index 0.94 0.99 0.98 0.96 0.98 0.10

NRMSE 23.10 8.37 12.96 17.47 11.32 476.27

RCP 8.5

PBIAS �9.49 1.83 4.89 1.83 2.40 �144.71

NSE 0.69 0.96 0.90 0.83 0.92 �127.43

MBE 1.60 �0.31 �0.82 �0.31 �0.40 24.48

MAE 3.24 1.08 1.68 2.13 1.45 32.31

CRM �0.09 0.01 0.04 0.01 0.02 �1.44

MAPE 0.26 0.08 0.13 0.19 0.12 2.14

Wilmot d-index 0.94 0.99 0.98 0.96 0.98 0.10

NRMSE 23.26 8.20 12.77 17.30 11.21 478.31
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modeled values of maximum temperature under the RCP 6.0 scenario remained higher for February, March, and May to
December, but lower for January. Under RCP 8.0, all the months had higher modeled maximum temperatures except Febru-
ary. These biases in the model maximum temperature data under all the scenarios were reduced after the correction as shown

in Figure 2.

Table 7 | Statistical testing of model data and data corrected by different BC methods (rainfall) under RCP scenarios

Statistical parameters

Rainfall Solar radiation

Model Difference method Linear scaling Modified difference method Quantile mapping Model Difference method

RCP 2.6

PBIAS �1.48 2.18 29.79 �819.17 �131.97 �88.5 �10.3

NSE �1.55 �0.31 �0.45 �654.09 �19.89 4,534.7 95.2

MBE 0.05 �0.06 �0.91 25.12 4.04 8.1 0.9

MAE 4.84 4.01 3.92 29.63 8.56 9.07 1.15

CRM �0.01 0.02 0.29 �8.19 �1.32 �0.89 �0.05

MAPE 3.35 5.19 2.55 13.57 4.53 1.03 0.14

Wilmot d-index 0.40 0.49 0.44 0.01 0.12 0.50 0.50

NRMSE 358.8 257.8 271.2 5,748.9 1,026.7 115.3 16.6

RCP 4.5

PBIAS �3.25 7.10 8.57 �1,384.9 �152.8 �89.2 �9.3

NSE �1.70 �0.01 �1.24 �1,156.3 �22.6 4,525.3 149.8

MBE 0.10 �0.21 �0.26 42.48 4.68 8.2 0.9

MAE 4.97 3.51 4.49 47.23 9.39 9.0 1.3

CRM �0.03 0.07 0.08 �13.84 �1.52 �0.89 �0.05

MAPE 3.53 3.46 0.00 70.91 7.39 1.03 0.15

Wilmot d-index 0.39 0.58 0.41 0.02 0.12 0.34 0.86

NRMSE 369.6 226.1 336.3 7,642.3 1,093.0 115.2 20.9

RCP 6.0

PBIAS �5.92 8.10 11.67 �11,997. �198.1 �89.21 �10.07

NSE �1.98 �0.01 �1.44 �370,673.5 �40.1 4,492.9 165.56

MBE 0.18 �0.24 �0.35 368.01 6.07 8.2 0.9

MAE 4.81 3.49 4.35 372.5 10.58 9.13 1.31

CRM �0.05 0.08 0.11 �119.9 �1.98 �0.89 �0.05

MAPE 1.56 3.53 1.62 68.7 4.43 1.04 0.15

Wilmot d-index 0.39 0.65 0.39 0.00 0.09 0.35 0.85

NRMSE 387.5 225.8 350.6 136,634.2 1,440.0 114.5 21.9

RCP 8.5

PBIAS �7.97 12.3 14.3 �987.4 �204.7 �89.88 �10.21

NSE �2.06 �0.004 �1.28 �768.3 �40.6 4,585.3 155.9

MBE 0.24 �0.37 �0.44 30.2 6.28 8.2 0.9

MAE 4.85 3.48 4.31 34.90 10.74 9.21 1.27

CRM �0.08 0.12 0.14 �9.87 �2.04 �0.90 �0.05

MAPE 1.56 3.49 1.72 11.47 4.54 1.04 0.15

Wilmot d-index 0.35 0.57 0.37 0.01 0.07 0.35 0.86

NRMSE 393.1 224.8 339.2 6,225.0 1,448.9 115.9 21.3
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The model minimum temperature data were overestimated for June, July and October under RCP 2.6, for June, July and
October under the RCP 4.5 scenario, for February, March, June, July, August, and October under the RCP 6.0 scenario

and for February, March, June, July, and October under RCP 8.5 (Figure 2). In case of rainfall, the model estimated higher
rainfall values for the months of January, February, May, July, October, and December. Under RCP 4.5, the model rainfall
values were higher than those of observed values during the months of February, March, October, and December whereas

it becomes lower for all other months than the observed values. The modeled rainfall values were higher for the months
of February, March, October, and December but lower for all the other months as compared to observed values under
RCP 6.0 and RCP 8.5 (Figure 3). On the other hand, the modeled values of solar radiation remained higher than those of

Figure 2 | Comparison of observed, model, and corrected data (2016–2020) maximum and minimum temperature under different RCP
scenarios.

Journal of Water and Climate Change Vol 14 No 8, 2620

Downloaded from http://iwaponline.com/jwcc/article-pdf/14/8/2606/1277046/jwc0142606.pdf
by guest
on 15 February 2025



observed data from January to December under all four RCP scenarios which got closer to the observed data after correction
(Figure 4).

Projections (2021–2095) in maximum temperature, minimum temperature, rainfall, and solar radiations under
different scenarios up to 21st century

As discussed earlier, the difference method was selected for the correction of futuristic data (2021–2095) under different
RCP scenarios (Table 8). The annual and seasonal perusal of projected maximum temperature, minimum temperature,
rainfall, and solar radiations under different RCP scenarios for 2021–2095 showed that the maximum temperature has

Figure 3 | Validation results (2016–2020) of BC using the difference method for rainfall under different RCP scenarios.
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been expected to increase by 1.3–8.3 °C, 1.2–2.7 °C, 1.7–3.3 °C, 1.0–2.7 °C, and 1.2–2.7 °C and for the annual, kharif, rabi,
winter, and monsoon seasons, respectively, during 2021–2095. The minimum temperature (2021–2095) has been
expected to increase between 0.7 and 2.6 °C, 0.9 and 2.7 °C, 0.8 and 2.6 °C, 0.6 and 2.5 °C, and 1.0 and 3.0 °C for the

annual, kharif, rabi, winter, and monsoon seasons, respectively. The difference in future temperature change for different
seasons has been observed over the lower Shivalik region. The projection results denote a lower increase in the maxi-
mum and minimum temperature during kharif season as compared to rabi season, i.e. hotter months like July and

August are expected to have more increment in maximum and minimum temperature as compared to the colder
months such as January, February, and December. You et al. (2014) found a pronounced warming trend for Tmean,
Tmax, and Tmin in winter months with RCP8.5 in China during 2061–2090. Salman et al. (2018) and Almazroui et al.
(2020) also revealed higher increases in temperature during winter months but lower in the summer months under
future emission scenarios over the Arabian Peninsula. During 2021–2095 rainfall has been expected to increase by
22.4–301 mm, 107–238 mm, 43.7–66.9 mm, 17.3–45.1 mm, and 82.7–168.9 mm for the annual, kharif, rabi, winter, and

monsoon seasons, respectively. The solar radiation for the annual, kharif, rabi, winter, and monsoon seasons during
2020–2095 is expected to be increased by 0.6–1.0, 0.8–3.0, 0.9–1.4, 0.4–1.2, and 0.8–1.1 MJ/m2/day, respectively.
From the data, it has been clear that more increase in maximum temperature and minimum temperature has been
expected under the RCP 8.5 scenario followed by RCP 4.5, RCP 6.0, and RCP 2.6 scenarios, but rainfall and solar radi-

ation has been expected to increase under RCP 8.5 followed by RCP 6.0, RCP 4.5, and RCP 2.6 scenarios. Abaurrea et al.
(2018) also revealed that the temperature projections over Spain under RCP6.0 are smaller than those under RCP4.5
during 2031–2050 but a similar growth during 2051–2060. Likewise, a study conducted by Wang et al. (2021) also

demonstrated more increase in temperature under the RCP 4.5 scenario over the coastal region of China. Similarly,
an increase in the maximum temperature (under RCP 6.0 and RCP 8.5 scenarios) of 1.7–2 °C by the 2030s and 3.3–
4.8 °C by the 2080s has been reported in India by Chaturvedi et al. (2018). These temperature changes may be yield

Figure 4 | Validation results (2016–2020) of BC using the difference method solar radiation under different RCP scenarios.

Journal of Water and Climate Change Vol 14 No 8, 2622

Downloaded from http://iwaponline.com/jwcc/article-pdf/14/8/2606/1277046/jwc0142606.pdf
by guest
on 15 February 2025



limiting for the future which may increase the risk of food security in the region. Hence, different adaptation strategies
pertaining to management practices may be identified to sustain the yield of crops in the future.

CONCLUSION

Six BC methods were compared and evaluated in this study on a monthly basis using different statistical parameters, with the
goal of removing biases from climate models for future research. Because errors in climate models make them unsuitable for

direct use in impact studies, numerous statistical BC approaches have been developed to calibrate model outputs against
observations. As a result, the study was designed to investigate the consequences of BC methods on climate change projec-
tions, and it was discovered that BC approaches are extremely beneficial in enhancing the climate model simulated projected
data. In terms of other statistical tests, the VS and LB approaches are likewise good in correcting the model data. However,

the difference technique is more promising in eliminating biases than other methods, which is why it was chosen and rec-
ommended for correcting biases in model outputs in regional climate change impact studies. The results suggest that the
use of correction functions on a monthly time-scale reduces the chances of occurrence of errors in the corrected data as

the study area is characterized by more fluctuations in the weather elements, especially rainfall, throughout the year. Further-
more, all of the estimates suggested that the mean annual and seasonal minimum and maximum temperatures will likely rise
in the future period of time. The study revealed more increase in maximum and minimum temperature under RCP 8.5 (2.8

Table 8 | Annual and seasonal projections in maximum and minimum temperature (°C), rainfall (mm), solar radiation (MJ/m2/day) under
different scenarios and their deviation from baseline periods

Seasons

Maximum temperature Minimum temperature Rainfall Solar radiation

1984–2020 2021–2095 1984–2020 2021–2095 1984–2020 2021–2095 1984–2020 2021–2095

RCP 2.6

Annual 30.1 31.4(þ 1.3) 16.6 17.(þ 0.7) 1,034.1 1,011.7(22.4) 9.64 10.3(þ 0.66)

Kharif 34.8 36.0(þ 1.2) 22.7 23.6(þ 0.9) 835.3 768.4 (� 66.9) 11.18 12.0(þ 0.82)

Rabi 24.9 26.6(þ 1.7) 10.2 11.0(þ 0.8) 195.6 242.6(þ 47.0) 7.75 8.73(þ 0.98)

Winter 20.4 21.4(þ 1.0) 7.1 7.7 (þ 0.6) 90.9 136.0(þ 45.1) 6.91 7.35(þ 0.44)

Monsoon 34.5 35.7(þ 1.2) 24.3 25.3(þ 1.0) 795.0 689.7(105.3) 11.37 12.5(þ 1.13)

RCP 4.5

Annual 30.1 32.2(þ 2.1) 16.6 18.3(þ 1.7) 1,034.1 1,181.2(þ 147) 9.64 10.4(þ 0.76)

Kharif 34.8 36.9(þ 2.1) 22.7 24.4(þ 1.7) 835.3 942.4 (þ 107) 11.18 12.0(þ 0.82)

Rabi 24.9 27.5(þ 2.6) 10.2 12.0(þ 1.8) 195.6 239.4 (þ 43.7) 7.75 8.73(þ 0.98)

Winter 20.4 22.4(þ 2.0) 7.1 8.7 (þ 1.6) 90.9 108.2(þ 17.3) 6.91 7.35(þ 0.44)

Monsoon 34.5 36.7(þ 2.2) 24.3 26.2(þ 1.9) 795.0 877.8 (þ 82.7) 11.37 12.5(þ 1.13)

RCP 6.0

Annual 30.1 31.8(þ 1.7) 16.6 17.9(þ 1.3) 1,034.1 1,325.8(þ 291) 9.64 10.7(þ 1.06)

Kharif 34.8 36.5(þ 1.7) 22.7 24.2(þ 1.5) 835.3 1,074.7(þ 239) 11.18 12.3(þ 1.12)

Rabi 24.9 27.1(þ 2.2) 10.2 11.6(þ 1.4) 195.6 250.9 (þ 55.2) 7.75 9.07(þ 1.32)

Winter 20.4 22.1(þ 1.7) 7.1 8.3 (þ 1.2) 90.9 105.3 (þ 17.8) 6.91 8.14(þ 1.23)

Monsoon 34.5 36.2(þ 1.7) 24.3 25.9(þ 1.6) 795.0 964.0 (þ 168.9) 11.37 12.5(þ 1.13)

RCP 8.5

Annual 30.1 32.9(þ 2.8) 16.6 19.2(þ 2.6) 1,034.1 1,335.3(þ 301) 9.64 10.6(þ 0.96)

Kharif 34.8 37.5(þ 2.7) 22.7 25.4(þ 2.7) 835.3 1,073.8 (þ 238) 11.18 8.15(þ 3.03)

Rabi 24.9 28.2(þ 3.3) 10.2 12.8(þ 2.6) 195.6 262.6 (þ 66.9) 7.75 9.19(þ 1.44)

Winter 20.4 23.1(þ 2.7) 7.1 9.6 (þ 2.5) 90.9 118.6 (þ 27.6) 6.91 8.18(þ 1.27)

Monsoon 34.5 37.2(þ 2.7) 24.3 27.3(þ 3.0) 795.0 960.0 (þ 164.9) 11.37 12.2(þ 0.83)
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and 2.6 °C) followed by RCP 4.5 (2.1 and 1.7 °C), RCP 6.0 (1.7 and 1.3 °C), and RCP 2.6 (1.3 and 0.7 °C) scenarios whereas

rainfall and solar radiation are also expected to increase under RCP 8.5 (301 mm and 0.96 MJ/m2/day), RCP 6.0 (291 mm
and 1.06 MJ/m2/day), RCP 4.5 (147 mm and 0.76 MJ/m2/day), and RCP 2.6 (22.4 mm and 0.66 MJ/m2/day) scenarios by
end of 21st century. Due to rainfed agriculture, the lower Shivalik region is highly sensitive to changes in meteorological

parameters. These are bound to have a direct effect on crop production along with their implications on water resources
also. Hence, the corrected data could be helpful for the researchers in planning the impact studies related to crop plan-
ning and water reservoirs, etc. There would be more fine-scale adaptation strategies and resulting management practices.
Thus, in view of the changing climatic conditions, a decrease in productivity seems forthcoming due to warming scen-

arios in the future. Thus, some strategies could be planned for adapting to or mitigating the effects based on the
model outputs.
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