Microbiological quality of ice and ice machines used in food establishments
Hamparsun Hampikyan, Enver Baris Bingol, Omer Cetin and Hilal Colak

ABSTRACT
The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. *Escherichia coli* was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas *E. coli* was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

Key words | food establishments, ice, ice machine, ice microbiology, ice quality

INTRODUCTION
Ice is used in large quantities as refreshment in alcoholic and non-alcoholic beverages, especially in spring and summer time, and is the raw material in ice slush production. Ice is also used in foods such as compote, sliced fruits, fruit salads and cacık (a Turkish appetizer which is a mixture of cucumber and yoghurt) to keep them cool. Furthermore, ice is commonly used to retain the freshness of various foods, especially fish and fishery products, which deteriorate rapidly during distribution, cold storing, display, service and whole/retail sales (Vieira *et al.* 1997; Rodriguez *et al.* 2006; Gerokomou *et al.* 2011). Because ice abates the product temperature and slows down the growth of microorganisms, it is used effectively in the poultry industry for lowering the carcass temperature and therefore, it reduces the number of carcass-associated bacteria (Berrang *et al.* 2008; Northcutt & Smith 2009). Moreover, ice is used in the meat industry to decrease the temperature of sausage dough during meat chopping in bowl cutters. Because ice is used in large quantities in most aspects, the enterprises may use their own ice making machines for producing ice, placed in their production areas.

The water can contain harmful bacteria (*Salmonella* spp., *Escherichia coli* etc.), viruses (hepatitis A, hepatitis E etc.) and parasites (*Cryptosporidium*, *Giardia* etc.) that cause water-borne diseases and outbreaks which affect thousands of people from various regions of the world (Cetin *et al.* 2013; Frickmann *et al.* 2013; Adell *et al.* 2016; Wankar *et al.* 2016). The World Health Organization has declared that ice which is to be consumed or which is in contact directly with food is expected to be at the same quality and safety level as drinking water (WHO 1997). However, a number of bacteria can be found in water and also in ice that originate
from contaminated water. Therefore, if poor quality water is used in ice production, it is probable that the beverages and various foods that contact the contaminated ice will be contaminated with pathogenic bacteria (Falcao et al. 2002, 2004). Contrary to popular opinion, acidic and alcoholic beverages are not enough to inhibit the pathogenic bacteria which can be found in contaminated ice (Mako et al. 2014). Dickens et al. (1985) investigated the survival of several bacterial enteropathogens in the ice of popular drinks (cola, scotch and tequila) and concluded that none of the organisms were completely eliminated.

Besides the use of contaminated water in ice production, hygiene deficiencies in ice producing and handling processes, inadequate knowledge of staff about cleaning, the design and the cleanliness of ice machines are important factors in acquiring contaminated ice. This case adds a special interest to periodic maintenance and hygienic design of these machines and periodic training of relevant staff (Wilson et al. 1997; Hertin 2005; Chavasit et al. 2011).

The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. Outbreaks of gastroenteritis according to the consumption of contaminated ice have been reported in different regions of the world by a number of researchers and the Centers for Disease Control and Prevention (Anonymous 1990; Cannon et al. 1991; Quick et al. 1992; Pawsey & Howard 2001; Pedalino et al. 2005). In recent years, Young-Eun et al. (2015) isolated Enterotoxigenic *E. coli* ST/LT from seven of 28 people (26 baseball club students, two food handlers) and the researchers concluded that the contaminated ice cubes and ice making machines and eating ice cubes from the machines were the major risk factors for the mentioned outbreak.

The studies showed that *E. coli*, coliforms and other various bacteria can be found in ice and since the freezing process cannot eliminate these microorganisms, many of them may survive in ice. Therefore, when the ice thaws in beverages or foods, microorganisms may be able to recover their viability and if the ice is produced from contaminated water, there may be a chance of causing infection in consumers (FEHD 2005; Mako et al. 2014).

The relationship between contaminated ice and human diseases emphasizes the importance of studies to gain knowledge about the hygienic condition of ice machines and ice used in the food sector. In Turkey, data on the microbiological quality of ice used in the food industry are very limited and studies about the hygienic conditions of ice making machines are not available. The objective of this first comprehensive study is to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food service enterprises.

METHODS

Samples

Water samples

A total of 105 water samples from the water inlet of ice making machines were collected from 75 restaurants/fast food restaurants, 20 bars and 10 fish markets located in different regions of Istanbul. All the establishments were independent in operation. The bars were snack bars and the fish markets were public retail markets.

Ice samples

Ice samples weighing 1,000 g were obtained directly from 105 ice making machines (75 restaurants/fast food restaurants, 20 bars and 10 fish markets) and sealed in sterile polyethylene bags. Water and ice samples were transported to the laboratory under cold conditions (<4 °C) as quickly as possible.

Surface samples

A total of 105 surface samples were collected from 75 restaurants/fast food restaurants, 20 bars and 10 fish markets. For surface sampling, a 10 × 10 cm aluminium template was used to swab 100 cm² areas on three sites of the ice chests.
(left, right and bottom parts) yielding a total of 300 cm² area. For template sterilization, first it was dipped into 70% ethanol and then inflamed before each sampling process. Sterile cotton swabs (Cultiplast, Tampone Swab, Milano-Italy) were moistened in 10 mL of sterile saline peptone water (OXOID CM0009) and the chest surface swabbed in horizontal and vertical directions using the template. The swabs were plated immediately after the surface sampling process on-site to the relevant growth media.

Microbiological analysis

Ice and water samples

Ice samples were stored at 4 °C until completely thawed and then analysed for E. coli, coliform, enterococci, psychrophilic and Total Aerobic Mesophilic Bacteria (TAMB), and water samples (from the water inlet of the ice machine) were analysed for E. coli, coliform, enterococci and TAMB.

The E. coli, coliform, and enterococci analyses were carried out using the membrane filtration technique signified by Sartorius Membrane Filtration Manual (Sartorius Stedim Biotech 2009) and the psychrophilic bacteria and TAMB were detected with using conventional plate count methods as proposed by Falcao et al. (2002). For E. coli and coliform bacteria, a 100 mL sample was filtered through a 0.45 μm sterile membrane (Sartorius Nutrient Pad Set 13906) which retained the microorganism. Then the membrane was placed in Tergitol TTC NPS (Sartorius 14056) a dehydrated media and incubated at 36 ± 2 °C for 48 ± 3 h. Yellow colonies with yellow surroundings counted as E. coli and red colonies with yellow dots under the membrane filter counted as coliform. For enterococci a 100 mL sample was filtered through a 0.45 μm sterile membrane (Sartorius Nutrient Pad Set 13806) and placed in Azide NPS (Sartorius 14051), a dehydrated media, and incubated at 36 ± 2 °C for 44 ± 4 h. The red, pink or reddish brown colonies with 0.5–2 mm colonies counted as enterococci. TAMB and psychrophilic bacteria were determined by plating 1 mL Plate Count Agar (OXOID CM0525) and incubating at 35 °C for 48 h and 2 °C for 48 h, respectively.

Surface samples

After collecting the surface samples, the swabs were applied into related medium immediately. For coliforms, Violet Red Bile Lactose Agar (OXOID CM0107) plates were used and incubated at 36 °C for 48 h, for E. coli Tryptone Bile X-Glucuronide Medium (OXOID CM0945) plates were incubated at 44 °C for 24 h. For TAMB and psychrophilic bacteria, PCA (OXOID CM0325) plates were incubated at 35 °C for 48 h and 2 °C for 48 h, respectively.

RESULTS

The results of microbiological analysis of water, ice chest and ice samples are shown in Tables 1–3. TAMB were detected in 85 out of 105 (80.9%) water samples and ranged between 1.58 and 6.94 log₁₀ colony forming unit (cfu)/mL, 98 out of 105 (93.3%) ice samples ranged between 1.87 and 6.81 log₁₀ cfu/mL and all ice chest samples (100.0%) ranged between 48 and 214 cfu 300 cm². Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. On the other hand, E. coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples, whereas E. coli was negative in all examined water samples. Enterococci were detected only in 13 (12.4%) ice samples (Tables 1 and 2 and Figure 1). According to Turkish regulations about the water intended for human consumption, the limits for coliforms, E. coli and Enterococci in drinking and potable water are 0/100 mL (Anonymous 2005). Consequently, 13 water and 54 ice samples exceeded the Turkish limits in terms of coliforms, and seven and 13 ice samples were unacceptable in terms of E. coli and Enterococci, respectively.

DISCUSSION

The relationship between contaminated water, unhygienic ice machines and human diseases highlights the significance of studies to obtain information about the hygienic quality of ice. However, in Turkey, data on the microbiological quality of ice were limited.
contamination of ice are quite limited. In a study conducted by Isik (2008), E. coli contamination was found in seven out of 70 ice samples collected from bars. The E. coli counts correlated well with ours.

A number of studies about the microbiological quality of ice are available in the literature worldwide. Lateef et al. (2006) conducted research into the microbiological quality of ice used to cool drinks and foods in Ogbomoso, Nigeria. The researchers found that the ice samples collected from ice manufacturing plants and retail outlets were contaminated with various bacteria (Pediococcus cerevisiae, Bacillus subtilis, Streptococcus pyogenes, Bacillus

<p>| Table 1 | Positive counts and percentages of water, ice and ice machine samples |
|---------|---|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>TAMB (n) (%)</th>
<th>Psychrophilic bacteria (n) (%)</th>
<th>Coliform (n) (%)</th>
<th>E. coli (n) (%)</th>
<th>Enterococci (n) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant/Fast food</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>75</td>
<td>62</td>
<td>82.7</td>
<td>NA</td>
<td>9</td>
<td>12.0</td>
</tr>
<tr>
<td>Ice chest</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>63</td>
<td>84.0</td>
<td>49</td>
</tr>
<tr>
<td>Ice</td>
<td>75</td>
<td>71</td>
<td>94.7</td>
<td>52</td>
<td>69.3</td>
<td>36</td>
</tr>
<tr>
<td>Bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>20</td>
<td>16</td>
<td>80.0</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>Ice chest</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>14</td>
<td>18.6</td>
<td>14</td>
</tr>
<tr>
<td>Ice</td>
<td>20</td>
<td>18</td>
<td>90.0</td>
<td>11</td>
<td>55.0</td>
<td>11</td>
</tr>
<tr>
<td>Fish markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>7</td>
<td>70.0</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>Ice chest</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>6</td>
<td>60.0</td>
<td>8</td>
</tr>
<tr>
<td>Ice</td>
<td>10</td>
<td>9</td>
<td>90.0</td>
<td>5</td>
<td>50.0</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>105</td>
<td>85</td>
<td>80.9</td>
<td>NA</td>
<td>NA</td>
<td>13</td>
</tr>
<tr>
<td>Ice chest</td>
<td>105</td>
<td>105</td>
<td>100</td>
<td>83</td>
<td>79.0</td>
<td>71</td>
</tr>
<tr>
<td>Ice</td>
<td>105</td>
<td>98</td>
<td>93.3</td>
<td>68</td>
<td>64.7</td>
<td>54</td>
</tr>
</tbody>
</table>

N: Analysed sample number; n: Positive sample number; ND: Not detected; NA: Not analysed.

<p>| Table 2 | Minimum, maximum and average microbial counts of positive water and ice samples |
|---------|---|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Establishment</th>
<th>TAMB (log_{10} cfu/mL)</th>
<th>Psychrophilic bacteria (log_{10} cfu/mL)</th>
<th>Coliform (log_{10} cfu/mL)</th>
<th>E. coli (log_{10} cfu/mL)</th>
<th>Enterococci (log_{10} cfu/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Restaurant/Fast food</td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Bar</td>
<td>2.16</td>
<td>6.94</td>
<td>4.88</td>
<td>NA</td>
<td>1.85</td>
<td>3.15</td>
</tr>
<tr>
<td>Fish markets</td>
<td>2.62</td>
<td>6.33</td>
<td>5.10</td>
<td>1.95</td>
<td>1.95</td>
<td>1.95a</td>
</tr>
<tr>
<td>Ice</td>
<td>Restaurant/Fast food</td>
<td>1.95</td>
<td>5.95</td>
<td>2.80</td>
<td>1.25</td>
<td>2.65</td>
</tr>
<tr>
<td>Bar</td>
<td>2.87</td>
<td>6.81</td>
<td>5.08</td>
<td>1.48</td>
<td>4.70</td>
<td>3.12</td>
</tr>
<tr>
<td>Fish markets</td>
<td>3.48</td>
<td>6.57</td>
<td>5.62</td>
<td>1.62</td>
<td>3.87</td>
<td>3.01</td>
</tr>
</tbody>
</table>

NA: Not analysed; ND: Not detected (<10).

*aOne positive sample.

<p>| Table 3 | Minimum, maximum and average microbial counts of positive ice chest surface samples (cfu 300 cm², sum of three petri dishes) |
|---------|---|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Establishment</th>
<th>TAMB</th>
<th>Psychrophilic bacteria</th>
<th>Coliform</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice chest</td>
<td>Restaurant/Fast food</td>
<td>48</td>
<td>185</td>
<td>128</td>
<td>9</td>
</tr>
<tr>
<td>Bar</td>
<td>55</td>
<td>166</td>
<td>144</td>
<td>17</td>
<td>93</td>
</tr>
<tr>
<td>Fish markets</td>
<td>70</td>
<td>214</td>
<td>153</td>
<td>20</td>
<td>106</td>
</tr>
</tbody>
</table>

 firmus, Pseudomonas aeruginosa, Streptococcus equi, Staphylococcus epidermidis and Micrococcus luteus) ranging from 1.88 to 3.20 × 10^{-4} \text{ cfu/mL}. Chavasit et al. (2011) investigated the surfaces of ice collecting bins, manual packaging machines and the conveyor part of the ice machine and determined the total coliform counts as 7.3, 56.9 and 7.3 MPN/10.16 cm², respectively. In another study, Gerokomou et al. (2011) reported that ice samples were contaminated with total coliforms (37%), fecal coliforms (25%) and E. coli (15%) ranging between 1–95, 1–100 and

![Figure 1](https://iwa.silverchair.com/jwh/article-pdf/15/3/410/393744/jwh0150410.pdf)
1–50 cfu 100 mL, respectively. In a similar research conducted by Vieira et al. (1997), the ice samples were collected from fish stalls and TAMB counts ranged between 10 and 2,700 cfu/mL and fecal coliform counts ranged between 0 and 1,100 MPN/mL. Mako et al. (2014) reported that 64 (43%) and 26 (17.5%) retail ice samples, 29 (28.7%) and six (5.9%) vending machine ice samples were unacceptable in terms of coliforms and enterococci, respectively. Wilson et al. (1997) examined 194 ice samples and found coliforms in 60 and E. coli in three samples. In addition to this, the authors reported TAMB counts ranged between <10 to <3×10³ cfu/mL. In a similar study conducted by Jang & Lee (2015), ice samples were collected from restaurants/food stores in different areas in Korea. The researchers detected total aerobic bacteria counts ranging between 1.83 and 2.31 log cfu/g, meanwhile one sample was contaminated with E. coli (<1 log cfu/g) and three samples with coliforms (two samples <1 log cfu/g and one sample 1–2 log cfu/g). In another study performed by Schmidt & Rodrick (1999), coliform counts exceeding the regulatory limit (<1/100 mL) were observed in 13.5% of examined ice samples. Nichols et al. (2000) investigated 4,346 ice samples collected from different food establishments and detected coliforms in 317, E. coli in 35 and enterococci in 35 samples at the levels of >10² cfu/100 mL. Similar research was conducted on commercially bagged ice by Falcao et al. (2002) and E. coli was isolated from 25 out of 60 analysed ice samples. Contrary to this, it was stated that E. coli was not found in unused ice by Northcutt & Smith (2009) in a poultry establishment. However, the researchers detected the mean levels of TAMB, coliforms and Enterobacteriaceae in ice samples as 0.3, 0.4 and 0.4 log₁₀ cfu/mL, respectively.

Data from the present study demonstrate that ice samples had undesirable hygienic conditions due to the presence of indicator microorganisms such as coliforms and E. coli. Possibly the water supply was not the main source of contamination and the transmission of bacteria to ice corresponds with ice making machines which can play an important role, based on irregular cleaning of the water tank and ice chest, infrequent cleaning and maintenance intervals and untrained personnel. On the other hand, environmental contaminations such as ambient air, equipment (ice clip, buckets etc.) should be considered as important potential sources of ice contamination. Especially in restaurants, the ice is usually held in coverless ice buckets and in refrigerators and this situation is favourable for environmental contamination. Besides this, the personnel involved in ice are not trained enough in matters of personal hygiene and this situation can be evaluated as another important contamination method of ice with enteric bacteria.

CONCLUSIONS

Worldwide, ISO 22000 and hazard analysis and critical control points (HACCP) are the food safety management systems that can be used frequently and effectively by various food industries along with good manufacturing practices (GMPs) and good hygiene practices (GHPs) to enhance food and water safety and to protect public health. These systems include pre-requisites such as considering the food handling, hygiene and cleaning (the conditions of cleanliness and sanitation of the equipment and supplies), pest control, storage, water supply (ensuring the water quality) etc. (Lateef et al. 2006). In the light of these data, the quality of water used for different purposes in various food establishments has to be ensured by GMPs and GHPs.

In conclusion, in order to improve the microbiological quality of ice, pre-requisites should be performed. For this purpose, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. High quality water should be used for ice production; additionally the water should be sanitized by using sufficient amounts of chlorine or other proper methods such as UV and ozone treatments. Routine training should be given to relevant staff regarding hygiene matters and maintenance of ice machines. Furthermore, periodic surveys should be performed regarding the microbiological quality of ice, the hygienic conditions of ice machines and the hygiene of employees as a necessity of HACCP and ISO 22000 food safety management systems.

Nowadays, quality assurance standards and guidelines are widely applied in the food industry in many countries. For this reason the HACCP plan should be developed and applied for ice production processes. In addition to this,
microbiological standards for ice should be determined and
regular inspection by proper authorities should be estab-
lished for consumer’s health in order to prevent the risk of
exposure to pathogenic bacteria.

Several studies have focused on the microbiological
quality of ice or just the water that ice was produced from.
This is a comprehensive study that investigates not only
the microbiological quality of ice, but also the water used
in producing ice and the hygienic conditions of ice making
machines in various food establishments such as restaur-
ants/fast food restaurants, bars and fish markets.
Consequently, even if the water used in ice production is
appropriate for WHO’s criteria, during the different steps
of its production, ice can be contaminated by hazardous bi-
ological agents which can pose various risks for consumers.
Taking this into consideration, the results of the current
research provide significant data that demonstrate the pos-
sible pathways of ice contaminations.

ACKNOWLEDGEMENTS

The present study was supported by the Research Fund of
Istanbul University, Istanbul, Turkey (Project No. UDP-
55653).

REFERENCES

Adell, A. D., McBride, G., Wuertz, S., Conrad, P. A. & Smith,
W. A. 2016 Comparison of human and southern sea otter
(Enhydra lutris nereis) health risks for infection with
MMWR Surveill. Summ. 39 (SS-1), 1–9. Centers for Disease
Control and Prevention, Atlanta.
Anonymous 2005 Regulation Concerning Water Intended for
Human Consumption (2005). Republic of Turkey Ministry of
Berrang, M. E., Meinersmann, R. J., Smith, D. P. & Zhuang, H.
2008 The effect of chilling in cold air or ice water on the
microbiological quality of broiler carcasses and the
population of Campylobacter. Poultry Sci. 87, 992–998.
Cannon, R. O., Poliner, J. R., Hirschhorn, R. B., Rodeheaver, D. C.,
Silverman, P. R., Brown, E. A., Talbot, G. H., Stine, S. E.,
Monroe, S. S. & Dennis, D. T. 1991 A multistate outbreak of
Norwalk virus gastroenteritis associated with consumption of
Cetin, O., Colak, H., Bingol, E. B., Akhan, M., Hampikyan, H. &
Turgay, I. S. 2013 Investigation of physical dirtiness and
microbiologic quality of recycled demijohns used in a
39 (1), 46–54.
Chavasit, V., Sirilaksanamanon, K., Phithaksantayothin, P.,
Norapoompipit, Y. & Parinyasiri, T. 2011 Measures for
controlling safety of crushed ice and tube ice in developing
enteropathogens in the ice of popular drinks. J. Am. Med.
Assoc. 252, 3141–3143.
Microbiological quality of ice used to refrigerate foods. Food
Falcao, J. P., Falcao, D. P. & Gomes, T. A. T. 2004 Ice as a vehicle
for diarrheagenic Escherichia coli. Int. J. Food Microbiol. 91,
99–103.
FEHD 2005 The Microbiological Quality of Edible Ice From Ice
Manufacturing Plants and Retail Businesses in Hong Kong.
Risk Assessment Studies, Report No. 21, Food and
Environmental Hygiene Department: The Government of
the Hong Kong Special Administrative Region, Hong Kong.
pp. 1–27.
Frickmann, H., Schwarz, N. G., Wiemer, D. F., Fischer, M.,
Tannich, E., Scheid, P. L., Müller, M., Schotte, U., Bock, W.
& Hagen, R. M. 2013 Food and drinking water hygiene and
intestinal protozoa in deployed German soldiers. Eur. J.
Gerokomou, V., Voidarou, C., Vatopoulos, A., Velonakis, E.,
Rozos, G., Alexopoulos, A., Plessas, S., Stavropoulou, E.,
Bezirtzoglou, E., Demertzis, F. G. & Akrida-Demertzi, K. 2011
Physical, chemical and microbiological quality of ice used to
cool drinks and foods in Greece and its public health
implications. Anaerobe 17, 351–353.
Hertin, K. J. 2005 A Comparative Study of Indicator Bacteria
Present In Ice and Soda from Las Vegas Food Establishments.
Master of Public Health Department of Environmental and
Occupational Health School of Community Health Sciences
Division of Health Sciences: The Graduate College
University of Nevada, Las Vegas.
Isik, O. 2005 A Study on the Microbiological Quality of Ice Used in
Food Services. MSc Thesis, Ege University, Institute of
Science, Department of Food Engineering, Izmir, Turkey.
Jang, H. K. & Lee, H. 2015 Monitoring of microorganism
contamination of ice for foods in the store and
hygienic management methods. J. Food Hyg. Saf. 30 (4),
309–314.
Lateef, A., Oloke, J. K., Kana, E. B. G. & Pacheco, E. 2006 The
microbiological quality of ice used to cool drinks and foods in
Ogbomoso Metropolis, Southwest Nigeria. Int. J. Food Saf.
8, 39–43.
Mako, S. L., Harrison, M. A., Sharma, V. & Kong, F. 2014
Microbiological quality of packaged ice from various sources
in Georgia. J. Food Prot. 77 (9), 1546–1553.
Nichols, G., Gillespie, I. & De Louvos, J. 2000 The microbiological quality of ice used to cool drinks and ready-to-eat from retail and catering premises in the United Kingdom. J. Food Prot. 63, 78–82.

