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Waterborne disease outbreak detection: an integrated

approach using health administrative databases

S. Coly, N. Vincent, E. Vaissiere, M. Charras-Garrido, A. Gallay, C. Ducrot

and D. Mouly
ABSTRACT
Hundreds of waterborne disease outbreaks (WBDO) of acute gastroenteritis (AGI) due to

contaminated tap water are reported in developed countries each year. Such outbreaks are probably

under-detected. The aim of our study was to develop an integrated approach to detect and study

clusters of AGI in geographical areas with homogeneous exposure to drinking water. Data for the

number of AGI cases are available at the municipality level while exposure to tap water depends on

drinking water networks (DWN). These two geographical units do not systematically overlap. This

study proposed to develop an algorithm which would match the most relevant grouping of

municipalities with a specific DWN, in order that tap water exposure can be taken into account when

investigating future disease outbreaks. A space-time detection method was applied to the grouping

of municipalities. Seven hundred and fourteen new geographical areas (groupings of municipalities)

were obtained compared with the 1,310 municipalities and the 1,706 DWN. Eleven potential WBDO

were identified in these groupings of municipalities. For ten of them, additional environmental

investigations identified at least one event that could have caused microbiological contamination of

DWN in the days previous to the occurrence of a reported WBDO.
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ABBREVIATIONS INTRODUCTION
AGI
 Acute gastrointestinal infection
DWN
 Drinking water network
GP
 General practitioner
ANSP
 Agence Nationale de santé publique (French

National Public Health Agency)
SISE-eaux
 Système d’Information en Santé-Environnement

sur les Eaux d’alimentation (Information system

on environmental health – drinking water

supply)
SNIIRAM
 Système national d’information inter-régimes de

l’Assurance maladie (French National Health

Insurance Information System)
WBDO
 Waterborne disease outbreak
Waterborne disease outbreaks (WBDO) are a public health
concern in developed countries because of the large pro-

portion of people potentially affected when contamination

of drinking water occurs (Hrudey & Hrudey ; Beaudeau

et al. ; Craun et al. ). To date, detection of these

events has mainly occurred through general practitioners’

(GPs) reporting of clusters of acute gastrointestinal infection

(AGI) to health authorities. The absence of a designated sur-

veillance system suggests therefore that the number of

WBDO is probably underestimated in France. In public

health terms, increasing the detection of infections caused

by contaminated drinking water contributes to improving

the following factors: knowledge of risk factors, identification
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of high risk drinking water networks (DWN), and

development of appropriate preventive measures. In this

context, the French National Public Health agency

(ANSP) is exploring the possibility of using the health

administrative databases from the French Health Insurance

System to develop a national automated detection system

for WBDO.

Searching for a link between a health indicator (e.g., a

WBDO) and associated environmental exposure factors

(e.g., drinking water consumption), is a frequent subject of

study in the field of epidemiological surveillance (Chaput

et al. ; Klassen et al. ).

To date, most related studies have considered health and

environmental data separately (Mostashari et al. ;

Hayran ; Osei & Duker ), by first attempting to

detect spatial or spatiotemporal areas in which clusters of

cases occur, and mapping environmental exposure factors.

Then, the locations of case clusters and factors linked to

the environmental area of exposure are compared (Fukuda

et al. ). Other studies in the literature have successfully

considered both health concerns and environmental factors

together. Most of these have taken a common approach

(Patil & Taillie ) whereby a statistical method is first

applied to detect the occurrence of a cluster of cases.

Then, a validation test of the detected clusters is performed,

followed by identification a posteriori of the environmental

factors related to each cluster. However, results of tests to

validate and explain detected clusters have not been con-

clusive in most of these studies (D’Aignaux et al. ;

Odoi et al. ).

In our study, within the framework of the detection of

WBDO, the environmental exposure factor considered was

the DWN (or distribution zone). Our hypothesis was that

a DWN delivers water of homogenous microbiological qual-

ity to consumers, i.e., any individuals connected to the same

DWN are similar from the point of view of water quality. For

this reason, DWN was considered as the environmental

factor of interest for the detection of WBDO. Therefore,

the area covered by a DWN was considered as the spatial

unit of interest to study clusters of WBDO. The health

data considered in the present study came from the

French National Health Insurance Information System

(SNIIRAM: Système national d’information inter-régimes

de l’Assurance maladie).
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The aim of the study presented in this article was to

develop an integrated approach to detect and study clusters

of AGI in geographical areas with homogeneous exposure

to drinking water, for which data on the human population

and cases of AGI were both available.

This newly developed approach was tested on real AGI

data in France.
METHODS

The integrated approach we used needed to manage the

absence of systematic overlapping between exposure data

area (DWN) and cases of AGI data area (municipality).

This was a two-step approach, as follows: first, the creation

of new geographical units taking into account a priori drink-

ing water exposure and aggregation of cases of AGI; second,

the application of a space-time detection method of clusters

of AGI in these geographical units (Kulldorff et al. ).

The method is briefly detailed in a following section.

Three types of data were used: health data, geographical

and population data, and environmental data.

Health data and case definition

The health indicator used in our study for the detection of

WBDO was cases of AGI following a medical visit by a GP.

In 2011, an algorithm was specifically developed in

France to identify AGI cases by using data on reimburse-

ment for payment of prescribed drugs from the SNIIRAM

database (Bounoure et al. ). The SNIIRAM aims at eval-

uating beneficiaries’ healthcare consumption and associated

expenditures. It covers more than 98% of the French popu-

lation and records all reimbursements to patients for out-of-

pocket medical procedures, medications, and payments to

professionals for consultations (Tuppin et al. ). AGI

medications which are reimbursable, prescribed by a GP

and dispensed in a pharmacy are included in this database.

The identification of AGI cases required two consecutive

steps: (i) data extraction from the SNIIRAM database and

(ii) use of the AGI algorithm developed by Bounoure et al.

() during a pharmacy-based survey to select AGI cases.

The criterion for the first step was as follows: reimbursement

for at least one prescribed target drug used to treat AGI



Figure 1 | Population number for DWN, municipalities and intersection DWN/

municipalities.
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(antiemetic drugs – ATC classification: A04A, A03F; anti-

diarrhea drugs – A07X, A07D; intestinal adsorbent drugs –

A07B, A02X and oral rehydration salts). The criteria for

the AGI discriminative algorithm were as follows: a delay

of <24 hours between the prescription and delivery of

drugs, the number of different AGI-specific drugs pre-

scribed, treatment duration (less than 8 days), and the

co-prescription of non-AGI specific drugs (e.g., anti-cancer

drugs). In the study by Bounoure et al. (), the sensitivity

and specificity of the AGI algorithm were estimated by the

ability of the algorithm to provide a conclusive answer

about the existence or not of an AGI case compared with

the diagnosis verbally reported by patients participating in

the pharmacy-based survey (n¼ 557 individuals). Both indi-

cators reached almost 90% (Bounoure et al. ).

Data on age, gender, date of consultation, and munici-

pality of residence were available for each case of AGI

and cases were aggregated by municipality of residence.

The AGI database used for analysis contained the

number of new cases for each day and for each municipality

of residence.
Geographical data

The data describing the municipalities’ coordinates came

from the national geographic institute (Institut National de

l’Information Géographique et Forestière ).
Environmental and population data

To take account of the environmental exposure factor

(DWN), we used the Information system on environmental

health – drinking water supply (SISE-eaux: ‘Système

d’Information en Santé-Environnement sur les Eaux

d’alimentation’) managed by the French Ministry of

Health. This database contains the list of all DWN in

France and the list of the municipalities served. For each

DWN, technical information about installations is also

available (e.g., water treatment plant, tank). Moreover,

population data correspond to the number of people

served by each DWN, the number of inhabitants in each

municipality, and the number of people served at the over-

lap of DWN and served municipalities.
://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
Data extraction was performed by selecting the follow-

ing variables: French county number, DWN code and

name, zip codes and names of municipalities served by

DWN, population numbers for DWN (Di in Figure 1),

number of inhabitants of each municipality (Mj in Figure 1),

and population number at the overlap of DWN and munici-

palities served (e.g., Xij in Figure 1).
Study area and period

The study area was an administrative region in the center of

France (Auvergne). This area was chosen because of the

existence of an environmental and sanitary signal associated

with tap water, specifically, the occurrence of frequent

microbiological contaminations of DWN and of WBDO

(Mouly et al. ).

Health data were collected for the period between Janu-

ary 1, 2009 and December 31, 2012.
Description of an algorithm used to define area with

homogeneous tap water exposure in WBDO detection

system

The geographic areas for aggregation of cases of AGI (muni-

cipality level) and for exposure to drinking water (DWN

area) do not always overlap. There are four configurations

to represent the correspondence between DWN geographi-

cal limits and municipality boundaries in France

(Figure 2), as follows. (i) 1 municipality for 1 DWN (e.g.,

DWN 1 in Figure 2). This is the perfect overlapping con-

figuration. The aggregated unit of health data (cases of

AGI) corresponds exactly to a single aggregated unit of tap

water exposure (i.e., one single DWN). (ii) 1 municipality¼
n DWN indicates that the population of the municipality is

served by different DWN so the population of the same



Figure 2 | Several possible configurations for overlapping between DWN area and

municipalities’ boundaries.
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municipality may be exposed to heterogeneous tap water

quality (e.g., DWN 2–4). (iii) m municipalities¼ 1 DWN

indicates that only one DWN serves several municipalities

(e.g. DWN 5). The whole population of these municipalities

drinks water of the same quality. (iv) m municipalities¼ n

DWN is the most complicated configuration, because

there is no direct relationship whatsoever between exposure
Figure 3 | Pattern of new geographical areas based on population size data in DWN and mun
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by aggregation unit (i.e., DWN) and health data aggregation

unit (i.e., municipalities) (e.g., DWN 6–8).

Based on the different possible configurations between

DWN and municipalities, the algorithm contained the fol-

lowing phases (Figure 3):
1. Listing the municipalities served by each DWN and eval-

uating the corresponding population size (step 1,

Figure 3). For each DWN, all the municipalities partially

or globally served were recorded. The following variables

were specified:

• total number of people served by the DWN (Di,

Figure 1);

• total number of people living in each municipality

(Mj, Figure 1);
icipalities.
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• total number of people served by the DWN in each

municipality (Xij, Figure 1).

2. Listing all the possible configurations between DWN and

municipalities (step 2, Figure 3). Two situations were

distinguished:

1st situation: All the municipalities were served by only
://iwap
one DWN (configurations ‘1 municipality¼ 1 DWN’

and ‘m municipalities¼ 1 DWN’). In this case it was

supposed that all the municipalities were fully

exposed when pollution occurs. Consequently, they

were all systematically included in the possible con-

figurations associated with this DWN.
2nd situation: Municipalities were partially served by a
DWN (configurations ‘1 municipality¼ n DWN’ and

‘m municipalities¼ n DWN’). In this case, including

or excluding this municipality in the grouping which

best matched the DWN had to be decided. If k is the

number of municipalities partially served by the

DWN, 2k�1 is the possible number of groupings of

municipalities which must be considered for inclusion

or not.
3. Computing indicators for each configuration (step 3,

Figure 3).

For each DWN, two indicators were built for each

possible grouping of municipalities:

• The ‘exposure-municipalities ratio’. This is the ratio of

the population size served by a DWNi in a grouping of

municipalities (ΣiXij) to the total population of all the

concerned municipalities (Σ Mj). The higher the ratio,

the greater the capability of the statistical methods

employed to detect low-intensity WBDO (i.e., higher

power of detection).

• The ‘exposure-DWN ratio’. This is the ratio of the

population size served by a DWNi in a grouping of

municipalities (ΣiXij) to the total population served

by the DWN (Di). The higher this ratio, the stronger

the likelihood that a potential outbreak of AGI in

this grouping is due to exposure to contaminated

drinking water (likelihood of a WBDO).

4. Selection rule based on these indicators to determine the

final configuration for each DWN (step 4, Figure 3).

The selection of the optimized configuration (grouping

of municipalities) for each DWN was made by minimizing
online.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
the Euclidian distance between (exposure-municipalities

ratio, exposure-DWN ratio) and (1, 1): M¼ (1� exposure-

municipalities ratio)2þ (1� exposure-DWN ratio)2

The grouping of municipalities chosen was the one

associated with the smallest value of M.

5. Merging the DWN corresponding to the same grouping of

municipalities (step 5, Figure 3). After the four previous

steps, certain DWN corresponded to the same grouping

of municipalities. We merged these to avoid any pro-

blems of repetition.

Cases of AGI were then aggregated over the new geo-

graphical area created by algorithm before the cluster

detection process.

The algorithm was implemented using R software (ver-

sions 2.14 and 2.15).

Space-time detection of cluster of AGI

Several published methods for cluster detection are avail-

able in the literature (Mostashari et al. ; Kulldorff

et al. ; Takahashi et al. ; Assuncao & Correat

; Cucala ). We selected the space-time detection

method, developed by Kulldorff et al. (). This method

has been widely used in the literature and would appear to

be a reference method for cluster detection in epidemiologi-

cal surveillance (Heffernan et al. ; Balter et al. ;

Assuncao & Correat ). Moreover, it presents several

interesting criteria for its use for WBDO detection includ-

ing: the consideration of seasonality during winter

epidemics of AGI, the possibility to use covariates (for

example, the day of the week and public holidays), the con-

sideration of the multiple comparison problem, and the

simplicity of the method’s application with SatScan

software.

Space-time permutation of Kulldorff’s method (Kulldorff

et al. , ) allows areas with excess cases of AGI to be

identified in terms of space and time. Applying the method

to the algorithm-created geographical units (see previous

section) consists of performing a scan of the whole study

area, by moving a sliding window located successively at

the central point of each geographic unit. Each window is

compared with the outer window (which constitutes the

entire geographic area under study). For space-time
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detection, the cylindrical window then travels in time and

space so that all geographic units, sizes and durations are

successively considered. This results in a great number of

windows, and each is a candidate for an AGI cluster. A clus-

ter is detected when the number of cases of AGI within the

window is significantly higher than that outside this

window. Statistical testing is based on the likelihood ratio,

i.e., the ratio of the likelihood calculated under the alterna-

tive hypothesis (the risk within the window is greater than

that outside), and the calculated likelihood in the null

hypothesis of equal risks. The window with the highest like-

lihood ratio defines the most likely cluster, i.e., the cluster

least likely to occur by chance. SatScan v9.3 software was

used to implement the Kulldorff method. The following par-

ameters were defined: time aggregation unit for AGI cases

(day), aggregation duration for analysis (day), analysis type

(retrospective space-time analysis with a space-time permu-

tation model), and finally, type of inference (Monte Carlo

inference with 999 replications).

The analysis was performed for the study area each year

from January 1, 2009 to December 31, 2012.

Selection of clusters of AGI and validation of their

waterborne origin

The clusters obtained were analyzed to select those whose

characteristics most reflected the characteristics found for

a given WBDO, according to epidemiological knowledge

already available regarding that WBDO. Criteria for the

selection of clusters were: duration of the signal for more

than 6 days, size of the outbreak with more than 10 excess

AGI cases, ratio between observed and expected cases of

AGI higher than 3, and a p-value lower than 0.05.

Finally, the selected clusters were analyzed with the

local health authorities to investigate whether specific

environmental factors could have pointed to a microbiolo-

gical contamination of the targeted DWN in the days

before clusters appeared. These factors were as follows:

results of sanitary control on fecal indicators (Escherichia

coli and fecal streptococci), heavy rains, an incident in

the water treatment plant or in the DWN, cessation of dis-

infection. Furthermore, we checked for the existence of

WBDO notification to authorities at the time of the

occurrence.
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Selected clusters were described using several epidemio-

logical and environmental parameters. The former included

the starting date and the duration of the period associated

with the cluster, the number of observed and expected

cases associated with the cluster, the observed-expected

case ratio, the AGI case attack rate (estimated by the ratio

between the number of observed cases and the size of popu-

lation). Environmental parameters included checking for

the existence of microbiological pollution during the cluster

duration, the percentage of non-microbiological compliance

with Ministry of Health fecal indicators during the study

period (2009–2012), and the existence of other environ-

mental risk factors (e.g., heavy rain) or a technical

incident in the drinking water treatment or distribution

system (e.g., water pipe breakages).
RESULTS

Description of configurations of inclusion of

municipalities and DWN

The region of Auvergne contains 1,343,964 people living in

1,310 municipalities. The biggest municipality (regional

capital, Clermont-Ferrand) contains 139,000 inhabitants.

Fifteen municipalities have more than 10,000 inhabitants

each, and 81% percent of municipalities have less than

1,000 inhabitants, accounting for 27% of the global regional

population.

In Auvergne, 543 of the region’s 1,706 DWN serve 20

people or fewer. Indeed, DWN serving 100 people or

fewer account for the majority of DWN (62%), but serve

only 2.5% of the whole population. Combined, the 10.6%

of DWN which each serve more than 1,000 people serve

86.6% of the global population. Only four DWN in

Auvergne each serve more than 30,000 people.

The four different matching configurations of DWN and

municipalities for our study area are summarized in Table 1

and Figure 4.

Description of the new areas obtained by the algorithm

After applying the algorithm, 714 new geographical areas

(Figure 5) were created which grouped together the 1,310



Table 1 | Configurations of inclusion of municipalities and DWN in Auvergne, including number of corresponding municipalities and population size

Configurations of inclusion municipalities/DWN

Total1 Municipality¼ 1 DWN m Municipalities¼ 1 DWN 1 Municipality¼ n DWN m Municipalities¼ n DWN

Municipalities

N 114 659 241 296 1,310

Percentage 8.7% 50.3% 18.4% 22.6% 100.0%

Population

N (inhabitants) 151,447 524,630 293,074 374,813 1,343,964

Percentage 11.3% 39.0% 21.8% 27.9% 100.0%

DWN, Drinking water network.

Figure 4 | Map of the configurations of inclusion of municipalities and DWN in Auvergne. Source: Sise-Eaux, Ministère chargé de la santé; DWN, Drinking Water Network.

481 S. Coly et al. | Detection of waterborne disease outbreaks: an integrated approach Journal of Water and Health | 15.4 | 2017

Downloaded from http://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
by guest
on 04 December 2023



Figure 5 | Spatial delimitation of the new geographical area.
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municipalities and 1,706 DWN in Auvergne. The average

population size of these areas was 1,891 people.

Most of the new areas contained only one municipality

(n¼ 573, 80%). However, 12% were associated with at least

three municipalities, accounting for 53% of all the municipa-

lities. These areas were much more concentrated in lowland

areas (topographic data not presented). Only 3% of the new

areas contained at least ten DWN.

Finally, all municipalities were included at least once in

the composition of the resulting new areas. Approximately

91% of the municipalities were associated with only one

new area, 9% with at least two areas. Only one municipality

was included in four new areas.
om http://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
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Description of clusters

Among all the detected clusters (50 clusters with p<

0.05), 11 were consistent with possible WBDO according

to the selection criteria above (Table 2 and Figure 6). The

impacted grouping of municipalities defined by the algor-

ithm numbered between 500 and 5,000 inhabitants each.

Between 20 and 60 cases of AGI were involved in each

cluster. The medication rate in the impacted population

was approximately 1.4% (median) and varied between

0.7% and 4.8%. The total duration of cumulated

WBDO for all the clusters was 177 days, and the longest

cluster duration was 35 days. For two of the 11 selected



Table 2 | Description of the 11 clusters of AGI most probably related to contamination of DWN, Auvergne region, 2009–2012

Cluster
ID Year

Area
ID

Number of
municipalities

Number
of DWN

Population
served
(inhabitants)

Start
date

Duration
(days)

Observed
cases of
AGI

Expected
cases of
AGI

Obs/
Exp

Medication
rate in
populationa

Microbiological
pollution during
cluster

% of non-
microbiological
complianceb

Other
environmental
factors

Notification
of WBDO to
the health
authority p-value

1 2009 707 1 2 4,910 11/26/
09

7 67 13.9 4.8 1.4% No 0.0% YES NO 1.0 ×
10�17

5 2010 385 1 3 1,563 03/19/
10

19 33 9.59 3.4 2.1% No 12.2% YES NO 6.0 ×
10�4

4 2010 155 1 1 501 03/31/
10

12 24 3.25 7.4 4.8% No 7.1% YES NO 2.4 ×
10�8

2 2010 638 1 3 2,650 06/21/
10

7 42 4.8 8.8 1.6% Yesc 1.5% YES YES 1.0 ×
10�17

6 2010 207 1 4 1,549 08/16/
10

35 21 5.29 4.0 1.4% No 8.5% NA NO 4.8 ×
10�02

3 2010 88 12 1 5,500 09/09/
10

20 72 21.88 3.3 1.3% No 14.3% YES NO 4.0 ×
10�12

9 2012 31 8 1 4,752 02/15/
12

8 34 9.76 3.5 0.7% No 0.0% NA NO 2.3 ×
10�4

10 2012 207 1 4 1,549 03/23/
12

28 31 9.48 3.3 2.0% Yesd 8.5% YES YES 5.2 ×
10�3

11 2012 452 1 4 2,411 03/27/
12

15 23 6.16 3.7 1.0% No 5.7% YES NO 3.0 ×
10�2

7 2012 53 6 1 1,933 12/03/
12

12 44 8.62 5.1 2.3% No 2.1% NA NO 1.5 ×
10�12

8 2012 673 1 4 3,628 12/03/
12

14 48 13.25 3.6 1.3% No 1.2% NA NO 2.3 ×
10�8

Total 30,946 177 439

Clusters presented in the table were selected with the following criteria: cluster duration <7 days, excess cases >10, ratio observed/expected cases of AGI >3, p-value <0.05.

NA, Not available.
aThe medication rate was estimated for the total population of municipalities impacted.
bPercentage of analysis >1 E. coli and/or fecal streptococci for the period 2009–2012.
c900 E. coli UFC/100 mL – 21/06/10.
d>100 E. coli UFC/100 mL – 10/04/12.
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Figure 6 | Description of the number of cases of AGI according to the day of medical prescription and selected clusters.
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clusters, fecal pollution of DWN during the outbreak

(clusters 2 and 10 in Table 2) was detected. For the

same two clusters, a notification of WBDO had been

made to the local health authority. Moreover, one geo-

graphic area (Group ID 207 in Table 2) concerned two

clusters, respectively, in 2010 (cluster 6) and in 2012

(cluster 10). The sanitary control of fecal indicators in

drinking water highlighted the occurrence of several epi-

sodes of non-microbiological compliance between 2009

and 2012 for nine of the 11 clusters detected (mean¼
5.6%; min¼ 0%; max¼ 14.3%).

Environmental risk factors of pollution of DWN were

identified for all selected clusters when associated infor-

mation was available (64% of clusters). These included

heavy rains in the days before the start of the outbreak

(clusters 2, 3, 4, 5, 10, 11), the flooding of the drinking-

water borehole causing a cessation of chlorination (clus-

ters 2 and 10), and water pipe breakage in a DWN

(cluster 1).

Finally, except for cluster 9, at least one environmental

factor (at least percentage of non-microbiological compli-

ance; several missing data have been observed on other

information) or water treatment/distribution incident was

associated with clusters selected as WBDO.
DISCUSSION

Several factors can explain the occurrence of clusters of

AGI cases and their increased incidence. The most com-

monly documented factors are the ingestion of

contaminated food (foodborne disease), person-to-person

transmission (in particular in children and older popu-

lations), and WBDO. The integrated approach developed

in this article for the detection of WBDO using health

administrative databases identified 11 AGI clusters in the

Auvergne region between 2009 and 2012 where a link

with the consumption of contaminated tap water was

likely. However, although the integrated approach opti-

mizes the reliability of this link (by taking into account

the DWN area prior to detection), all identified clusters

have to be analyzed and investigated individually to

increase the accuracy of determination.
://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
Validation of selected clusters as WBDO

Several criteria (statistical, epidemiological, and environ-

mental) pointed to the existence of WBDO for the 11

selected clusters:

First, cases of AGI which shared the same DWN and

therefore had homogenous drinking water quality were

aggregated into newly created geographic areas (by the

algorithm) before the application of a space-time detection

method. This ecological approach helped highlight any

link between health signal (cluster of AGI) and exposure

factor (DWN). Nevertheless, as seen in Table 1, 21.8% of

the study population lives in municipalities served by more

than one DWN (configuration 1 municipality¼ n DWN).

For this configuration, the unit of aggregation of cases of

AGI is the municipality. Health data do not enable us to

geo-localize cases of AGI at an infra-municipality level.

For the seven clusters selected where one municipality

was served by more than one DWN, additional investigation

is needed to identify the impacted DWN. This would include

checking for incidents in water treatment processes and in

the distribution networks.

For epidemiological evidence, we used results from past

investigations of WBDO (Beaudeau et al. ) in impacted

populations to identify several criteria for selecting clusters

as follows: they usually last 1 to 3 weeks (clusters over

6 days were selected here), at least a few dozen cases are

involved (clusters with more than ten cases of AGI were

selected here), the relative risk presented is greater than 3

(the same value was used here). Finally, a p-value <0.05

was also chosen. Moreover, a recent comparative study for

the description of two WBDO by using two data sources

(cohort study and health administrative database) high-

lighted a low medication rate in the population (1.5% and

2%, respectively, for both WBDO) (Mouly et al. ). The

medication rate observed for selected clusters in the present

study was between 0.7% and 4.8%) (Table 2). Moreover, the

application of epidemiological criteria enabled us to exclude

other origins of localized outbreak of AGI, for example,

foodborne origins, usually characterized by an outbreak dur-

ation between 1 and 7 days, and most of the time by fewer

than ten cases.

In addition to these epidemiological criteria, we looked

for environmental factors for each selected cluster. The
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occurrence of WBDO is often associated with heavy rainfall

(Beaudeau et al. ), particularly in rural areas with small

DWN exposed to fecal discharge from livestock farms. Fur-

thermore, the boreholes of small DWN are often poorly

protected compared with DWN in urban areas. For

example, in cluster 3, a hydrological report indicated that

heavy rains fell on 7 September 2010, i.e., 2 days before

the start of a detected cluster. For clusters 2 and 10, two

WBDO were investigated and are described in detail in

the literature (Mouly et al. ).

The combination of the integrated approach, which

takes into account exposure to DWN before the detection

of clusters of AGI and the application of selection criteria

of cluster detected based on epidemiological knowledge,

enabled us to improve the overall specificity of our detection

method. Moreover, the occurrence of several clusters of

AGI at different times, focused on the same DWN (e.g.,

two clusters for area 207 in 2010 and 2012, Table 2), pro-

vided strong evidence of a WBDO.

Additional environmental investigation for DWN

associated with selected clusters will be necessary to identify

the circumstances and the origin of the contamination of tap

water.

Benefits and limits of the algorithm in the context of an

integrated detection system for WBDO

Increased likelihood of WBDO detection and additional
investigations required

Health data were available for municipalities. Drinking

water exposure data depended on the individual DWN.

We created an algorithm to take into account exposure to

drinking water to use in tandem with an existing method

for detecting outbreaks of AGI. AGI clusters detected by

the combined system have good specificity with respect to

the individual water supply. The links between clusters

and drinking water must still be confirmed by environ-

mental investigations (rainfall) and the search for possible

incidents in drinking water processes and distribution net-

works on the date of AGI clusters.

As our definition of a DWN assumes homogenous water

quality, if pollution is introduced somewhere into the net-

work, it spreads throughout the whole DWN concerned.
om http://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
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However, such a hypothesis does not consider the state of

individual pipes, differences in flow rates, and stagnant

water which occurs when water is not drawn for a long

period of time. A potential bias may also occur when the

network is contaminated by waste water reflux. All of

these situations imply a great deal of heterogeneity in the

water quality, depending on the position of the water treat-

ment plant.

The advantage of using the algorithm-based method is

clear when several municipalities are served by a single

DWN. In our study, all the AGI cases occurring in the

same DWN were considered together. The corresponding

configurations, i.e., ‘m municipalities¼ 1 DWN’ and ‘m

municipalities¼ n DWN’, concerned 49.7% of the popu-

lation and 72.9% of the municipalities (Table 1). On the

contrary, the creation of the new geographical areas did

not help to determine which DWN was involved when a

municipality served by several DWN was concerned by an

AGI outbreak. In our study, 41.1% of the municipalities in

the new geographical areas were associated with two or

more DWN. Nevertheless, the exposure-municipalities and

exposure-DWN ratios provided information which helped

us to focus further investigations on a specific DWN and

to confirm the hydric origin. For the configuration ‘1 muni-

cipality¼ n DWN’, in the case of a disease outbreak, it is not

possible to identify the DWN responsible, as AGI cases are

counted in a municipality which is bigger than the corre-

sponding DWN. Nevertheless, merging the DWN

associated with the same municipality (or grouping of muni-

cipalities) helps decrease the number of occurrences of the

municipalities in the dataset.

Improving power of detection

The algorithm created 714 new geographical areas. This

number is much lower than the number of municipalities

and DWN (respectively, 1,310 and 1,706), which implies a

shorter computation time of spatiotemporal outbreak detec-

tions, because fewer geographical units need to be tested.

Moreover, the average population size of the new geographi-

cal units was much greater (1,891 inhabitants) than for

municipalities (1,031 inhabitants) and DWN (791 inhabi-

tants). In turn, this implies improved power of detection of

clusters using the algorithm over the standard approach.
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Algorithm characteristics

Over the course of developing the algorithm, several

methods seemed suitable. First, we considered that maximiz-

ing the number of potential AGI cases (to increase the

power of detection) was as important as taking into account

the corresponding population’s exposure to tap water. Thus,

we gave the same importance to the exposure-municipalities

and exposure-DWN ratios. Second, we chose to minimize

the Euclidian distance between combined ratios (1,1) and

(exposure-municipalities ratio, exposure-DWN ratio) to

select the grouping of municipalities which best matched

the specific DWN. These two choices did not greatly influ-

ence the results.

The set of new geographic areas constituted a territory

whose characteristics (population size, global incidence,

and number of AGI cases) were very close to those of the

Auvergne region. Accordingly, any repetition of municipali-

ties had an insignificant impact in the incidence evaluation.
Conditions to apply the algorithm

The study area is characterized by a particularly hilly land-

scape. The relationship between DWN and municipalities

is very complicated, and most of the region is rural. Accord-

ingly, one can suppose that the algorithm can be used in

other less topographically complex territories as part of an

integrated approach for the detection of WBDO.

The health and environmental data used in the algor-

ithm are available for all French regions, so the integrated

approach developed here for the detection of WBDO can

be applied to other regions in France.
SISE-Eaux database quality

The SISE-Eaux database is maintained at a regional and

departmental level. The reliability of this database is essen-

tial to obtain accurate matching of drinking water

exposure and AGI cases. These data are very reliable in

the area studied (Auvergne), in particular the population

size counted at the overlap of municipalities and the

DWN, an element which is of crucial importance when

applying our algorithm.
://iwaponline.com/jwh/article-pdf/15/4/475/393378/jwh0150475.pdf
Space-time detection method and setting

The space-time detection method used to detect clusters of

AGI sharing the same DWN (Kulldorff ) was selected

both because of the consideration of seasonality and the sim-

plicity of its application with SatScan software. With respect

to the former, selected clusters after analysis were as numer-

ous during the winter season (5/11 clusters between January

and March) as the rest of the year. While a high incidence of

AGI is common in European countries during winter, the

space-time detection method does not appear to have been

influenced by this phenomenon. For time aggregation, we

decided to use ‘days’ whereas most retrospective studies

use ‘weeks’ or ‘months’ (Demattei ). This decision was

based on the high incidence of AGI compared with other

infectious or chronic diseases. Day-based aggregation time

ensures day time precision for detected cluster duration.

Implication for waterborne disease detection

The challenge of WBDO detection addressed in published

studies (Edge et al. ; Berger et al. ; Andersson

et al. ) highlights the difficulty of detecting short out-

breaks involving fewer than 100 cases. For this purpose,

information collected for cases has to have sufficient tem-

poral (ideally daily) and spatial (municipality level may be

sufficient) resolution to enable the detection of local out-

break signals like WBDO. Unlike other studies, the

clusters identified in our study involved fewer than 100

cases of AGI. This would suggest that our method has

good sensitivity.

In addition, syndromic surveillance is useful to estimate

the size, duration, and health impact of detected outbreaks,

as it provides us with the consultation rate in the impacted

population. Any such estimation should take into account

influencing factors on consultation rate, in particular age

and access to health services, as shown in our study, and

described elsewhere (Mouly et al. ).

From a public health point of view, detected epidemic

signals from SNIIRAM data should be followed by imple-

menting a set of operational measures, including field

investigation. These should be conducted to validate and

describe the outbreak, and to understand the origin and

mechanisms involved in case diffusion. In turn, this
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information can inform decision-making for public health

prevention.
CONCLUSION

We implemented an algorithm to create new geographical

areas whichmatched health data and environmental exposure

levels in drinking water, despite complicated associations

between municipalities and DWN. The 714 new geographical

areas/units accounted for all the DWN and municipalities in

the Auvergne region. The new geographic areas were bigger

than the DWN and municipalities, both in terms of surface

and population sizes. Creating these areas resulted in greater

power of detection of potential future outbreaks. The appli-

cation of a space-time detection method on the new

geographical areas for the Auvergne region between 2009

and 2012 identified 11 potential WBDO.

Accordingly, the relevance of this approach needs to be

strengthened by analyzing other datasets (as described in

this article).
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