
Downloaded from http
by guest
on 07 August 2022
Determination of salt concentration in water using decision trees and electromagnetic

waves

Ebru Efeoglu a and Gurkan Tuna b,*

a Department of Software Engineering, Kütahya Dumlupınar University, Kütahya, Turkey
b Department of Computer Technologies, Trakya University, Edirne, Turkey
*Corresponding author. E-mail: gurkantuna@trakya.edu.tr

EE, 0000-0001-5444-6647; GT, 0000-0002-6466-4696

© 2022 The Authors Journal of Water and Health Vol 20 No 5, 803 doi: 10.2166/wh.2022.302
ABSTRACT

Salt water adversely affects human health and plant growth. In parallel with the increasing interest in non-contact determination of salt con-

centration in water, a novel approach is proposed in this study. In the proposed approach, S parameter measurements, which show the

scattering properties of electromagnetic waves, are used. First, the relationship between salt concentration in water and permittivity

values, a distinguishing feature for liquids, is shown. Then, based on the derived correlations from a set of S parameter measurements, it

is shown that the salt concentration in water can be predicted. Finally, after exactly determining the relations of permittivity, salt concen-

tration and S parameter, a system that allows non-contact determination of salt concentration is proposed. Since the proposed system

makes its prediction using a classifier, decision tree algorithms are employed for this purpose. In order to evaluate the appropriateness

and success of the algorithms, a set of classification experiments were held using various water samples with different levels of salt con-

centration. The results of the classification experiments show that the Hoeffding tree algorithm achieved the best results and is the most

suitable decision tree algorithm for determining the salt concentration of liquids. For this reason, the proposed non-contact approach can

be used to determine the salt concentration in water reliably and quickly if its hardware and software components can be embedded

into a prototype system.
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HIGHLIGHTS

• Showing the relationship between salt concentration in water and permittivity values.

• Predicting salt concentration.

• Proposing a system that allows non-contact determination of salt concentration.
1. INTRODUCTION

The effect of salt water on human health and life can be examined in two ways. First, the salt concentration in drinking water
causes direct health problems, and second, the salt concentration in irrigation waters and water used in agriculture and
animal husbandry causes damage to plants, soil, animals and ecosystems. In (Deniz & Kadioglu 2021) the geochemistry

of salts and in the study by Jabed et al. (2020), the effects of water salinity on human health were investigated. Jabed et al.
(2020) showed the relationship between drinking water salinity and hypertension and excessively diluted urine. It was
shown that the high salinity level in drinking water affects human health and may pose a significant health risk, especially

for diabetic and renal dialysis patients who need to control their daily salt intake (Ekinci et al. 2011). Evaluation of water
quality and associated health risk was performed in the Terme River, Turkey, using physicochemical quality indices and
multivariate analysis (Ustaoğlu et al. 2021).

Salt water has effects on agriculture and plants as well as human health. Salinity is one of the environmental factors affect-
ing the growth of plants; because water with high salinity damages plants (Bartels & Sunkar 2005). Soils with high salinity are
barren soils and inhibit the growth of plants; because salinity reduces the ability of plants to take up water (Fipps 2003). In
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and

redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf

https://orcid.org/0000-0001-5444-6647
https://orcid.org/0000-0002-6466-4696
mailto:gurkantuna@trakya.edu.tr
http://orcid.org/
http://orcid.org/0000-0001-5444-6647
http://orcid.org/0000-0002-6466-4696
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/wh.2022.302&domain=pdf&date_stamp=2022-05-16


Journal of Water and Health Vol 20 No 5, 804

Downloaded fr
by guest
on 07 August 2
addition, excess salt in the transpiration stream damages the cells in the transpiration leaves (Munns & Tester 2008). In

addition, excessive salinity damages cells in sweaty leaves (Munns & Tester 2008).
The amount of salt in water can be determined by ultrasonic waves. On the other hand, it is known that the speed of ultra-

sonic waves changes according to the salt concentration and temperature (Wong & Zhu 1995). The absorption and

fluorescence properties of salts and their aqueous solutions were investigated using UV-vis spectroscopy and spectrofluoro-
metry (Chai 2008). Since the refractive index of an environment increases with the salinity level, salinity sensors based on the
refractive index was also developed (Quan & Fry 1995).

Optical techniques based on various fibre optic sensors were proposed for in situmonitoring of water salinity (Zhao & Liao

2002; Meng 2014). For this purpose, separate optoelectronic components such as laser source, photodetector, microcontrol-
ler and microprocessor are used, but such detection systems are costly. In addition, a separate communication setup is
required for the transfer of on-site data to the laboratory. It is important to determine whether there is salt in water and if

yes how much salt it contains with low-cost systems. Therefore, an effective optoelectronic system was proposed for
remote sensing of salinity (Villarreal et al. 2018).

Microstrip antennas are widely used in many applications such as data communications, medicine (Daliri 2010) and agri-

culture (Yahaya 2012). However, in this study, a microstrip patch antenna was used during a process carried out to determine
the salt concentration in water. To do this, first, the relationship between the salt concentration in water and the permeability
values, which is a distinguishing feature for liquids, was investigated. This relationship led to the understanding that there may

be a relationship between salt concentration and scattering (S) parameters. Therefore, a measurement system was designed to
measure the S parameters. The measurement system consists of a microstrip patch antenna designed and manufactured in this
study and a commercial Vector Network Analyser (VNA). The S parameters of the liquids, i.e. different brand waters and
water with different salt concentration levels, classified in this study were measured with the VNA and the antenna. After

deriving the relationship between the permeability value obtained from the measurements and the S parameter, the relation-
ship between the Smax value and the salt concentration was determined using the curve fitting approach.

The approach proposed in this study was designed to allow a quick, automated and non-contact determination of salt con-

centration. Such an automated process requires a software application relying on a machine learning algorithm embedded to
the designed system. In this study, decision tree algorithms were preferred as classifiers and their performances were com-
pared using well-known performance metrics in order to make a fair comparison. The results obtained in the performance

evaluation part of this study showed that the Hoeffding tree algorithm is the most suitable algorithm to determine the salt
concentration in water. The remainder of this paper is as follows. Experimental setup and methodology used in this study
are presented in Section 2. Classifiers used by the proposed system and metrics employed to evaluate the results are explained
in Section 3. The results are reported in Section 4. Finally, this paper is concluded in Section 5.
2. EXPERIMENTAL SETUP AND METHODOLOGY

From a hardware point of view, the experimental setup consists of a VNA and an antenna (Figure 1). A VNA consists of a
signal source, a receiver and a display. In order to make a measurement, a signal is sent from the source and the circuit is

triggered with this signal. The response signal consists of the reflected signal and the transfer signal received from the circuit
Figure 1 | Experimental setup.
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output. It is possible to calculate the voltage values of incoming and outgoing signals by the following equations.

Vr1 ¼ S11Vi1 þ S12Vi2 (1)

Vr2 ¼ S21Vi1 þ S22Vi2 (2)

where Vi1 and Vi2 represent the voltage values applied to the circuit, and Vr1 and Vr2 represent the voltage values reflected

from the circuit. In real applications, voltage measurements are difficult to obtain due to the wavelength of the signal at
high frequencies. However, if the activated and reflected voltage is normalised with the square root of characteristic impe-
dance (Z0), the square root of the power is obtained using the following equations.

bn ¼ Vmffiffiffiffiffiffi
Z0

p (3)

an ¼ Vinffiffiffiffiffiffi
Z0

p (4)

Using the power expression, the two-port circuit can be expressed as in the following equations.

b1 ¼ S11a1 þ S12a2 (5)

b2 ¼ S21a1 þ S22a2 (6)

S parameters of a linear two-port circuit are shown in Figure 2. Impedance connection is made to the ports according to the
parameter to be calculated. For example, if there is no reflected sign, that is, when a2¼ 0, S11 can be calculated. In order for a2
to be zero, an impedance equal to the transmission impedance must be connected to the second port so that the signal applied

on the impedance is used immediately and there is no signal reflection back. In this case (when a2¼ 0), Equation (7) becomes:

S11 ¼ b1
a1

(7)

Antennas send electrical signals from any transmitter into free space by converting them into electromagnetic waves. These
types of antennas are called transmitting antennas. Similarly, they receive electromagnetic waves from free space and convert
these waves into electrical signals and transmit them to receivers. Such antennas are called receiving antennas. The antenna

used in this study is both a transmitter and a receiver. There are some antenna parameters that need to be considered in
microstrip antenna design. These are antenna patch, ground plane, feeding method, dielectric constant and thickness of
the dielectric layer. The patch is a conductive structure that allows electromagnetic waves to absorb or radiate and is posi-

tioned on a dielectric layer. A circular copper patch was preferred in the antenna. The reason why the circular patch was
preferred is its symmetrical radiation characteristic, which is not found in other types of patches. The dielectric layer is
the material between the antenna radiation patch and the underside where the ground plane is located. FR-4 material

with a thickness of 1.6 mm and a dielectric constant of 4.4 was used as a dielectric layer in the antenna. If the dielectric
value of the dielectric layer is high in patch antennas, surface waves occur. For this reason, material with a very high dielectric
Figure 2 | S parameters with incident and reflected waves in a two-port linear circuit.
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value was not preferred. The conductive material used in the ground plane has a material similar to the material used in the

radiant patch. The coaxial probe feeding method was preferred as the feeding method. The reasons why this method was pre-
ferred are that it is easy to manufacture, has low artificial radiation characteristics, low interference radiation and less line
losses.

The flowchart of the methodology used in this study is given in Figure 3. First, using four different classification algorithms,
various salt water and pure water samples were classified. Then, the performances of these algoritms were evaluated using a
set of performance metrics obtained with and without 10-fold cross validation.

3. CLASSIFIERS AND PERFORMANCE METRICS

In the following subsections, decision trees and performance metrics used in this study are explained.

3.1. Decision trees

The Rep tree algorithm (Quinlan 1987), originally proposed by Quinlan, uses regression tree logic. It creates many trees in
different iterations and chooses the best tree among these trees. It uses the principle of gaining information by entropy in
the creation of the regression tree, and achieves the least error with pruning (Devasena 2014; Srinivasan & Mekala 2014).

Hoeffding tree was proposed by Hulten et al. (2001). It uses the statistical value known as the Hoeffding boundary in each
node of the decision tree to decide how to split the node. It reads each sample once and processes at an appropriate time
interval.

Random Forest, proposed by Breiman, performs well even for classifying large amounts of data. Instead of branching nodes
selected from the best attributes in the dataset, it branches all nodes by selecting the best of randomly received attributes in
each node. Each dataset is generated from the original dataset with displacement and no pruning is involved (Breiman 2001).

The reason why Random Forest is faster and more accurate than other algorithms is that it increases the classification rate by
generating more than one decision tree.

Logistics Model Tree (LMT) combines logistic regression and decision tree (Lavrač 2003; Landwehr et al. 2005). While
ordinary decision trees form a fragmented fixed model, LMT is a decision tree with a linear regression model whose
Figure 3 | Flowchart of the methodology.
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leaves provide a piecewise linear regression (Lavrač 2003). The LogitBoost algorithm can be used to generate a logistic

regression model at each node of the tree and then the node is separated using C4.5 criteria. With each LogitBoost execution,
it restarts from its results via the parent node. Finally, the tree is pruned (Sumner et al. 2005).

3.2. Performance metrics

Following are the four outcomes in a classification process: True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN). In this study, TP occurs when the sample predicted as salt water is actually salt water. TN occurs when

the sample predicted as not salt water is actually not salt water. FP occurs when the sample predicted as salt water is actually
not salt water. Finally, FN occurs when the sample predicted as not salt water is actually salt water. In determining the saline
concentration, the correctly predicted concentration amounts represent TP value. Based on TP, TN, FP and FN, various per-
formance metrics can be calculated. Accuracy is the ratio of the number of correctly classified samples (TPþ TN) to the total

number of samples (TPþ TNþ FPþ FN). Recall is the ratio of the number of correctly classified positive samples (TP) to the
total number of positive samples (TPþ FN). Precision is the ratio of the number of correctly classified positive samples (TP) to
the total number of TPþ FP. F-Score is the harmonic mean of the recall and precision metrics and can have a maximum of 1

and a minimum of 0. It is difficult to compare two models with low recall and high precision and vice versa; but, F-Score is
used to make them comparable. The Kappa statistic is a numerical value comparing the expected and observed values. The
observed accuracy rate is obtained by dividing the number of correctly classified samples by the total number of samples. The

expected accuracy means that the classification algorithm is successful. Using these values, Kappa value can be calculated
using Equation (8). Kappa statistic provides a measure of how closely a classification algorithm classifies by controlling its
expected accuracy.

Kappa ¼ Observed accuracy value� expected accuracy value
1� expected accuracy value

(8)

There are some error criteria that are used to determine how accurately the predictions made by the algorithms. In this

study, Mean Absolute Error (MAE) and Matthews Correlation Coefficient (MCC) were used. The MAE is one of the most
frequently used error criteria and is calculated by taking the average of the absolute value of each difference between the
actual value and the predicted value for that sample in the entire samples of the dataset. The MCC is a measure of the quality
of classifications, introduced by biochemist Brian W. Matthews in 1975 (Matthews 1975). It is often used when imbalanced

datasets are used. It is calculated using the following equation.

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPþ FP)

p
� (TPþ FN)� (TNþ FP)� (TNþ FN)

(9)
4. RESULTS

When an electromagnetic wave is sent to liquids, interaction between molecules and electromagnetic waves occurs. As a

result of this interaction, polarisation and depolarisation occur in molecules with different dielectric permittivity values.
These cause a decrease in the magnitude of the wave in the wave velocity, the loss of energy caused by the friction of the
directing molecules. In this study, the real part of permittivity (εr0) is a measure of how much energy from an external electric

field is stored in a liquid sample and the imaginary part of permittivity (εr0 0) is a measure of how dissipative or lossy a liquid
sample is to an external electric field.

In curve fitting algorithms, a mathematical model is created and correlation coefficient (R2) in this model is determined.
Correlation coefficient is between 0 and 1, the closer it is to 1, the more perfect the harmony has been achieved. In this study,

curve fitting algorithms were used to determine the relation between salt concentration, permittivity and S parameter. For this
purpose, first, the permittivity measurements of liquid samples in the range of 1.5–3 GHz were made with a coaxial probe
method. The measurement results are presented in Figure 4. It was observed that when salt content in a liquid sample

increased, the permittivity value changed depending on the salt concentration, and there was also a difference
between the pure water and salt water graphs. The relation between salt concentration and permittivity is presented in
Figure 5. The correlation coefficients between salt concentration and permittivity values, real part and imaginary part,
://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf



Figure 4 | Permittivity measurement of liquid samples. (a) The real part of permittivity and (b) the imaginary part of permittivity.

Figure 5 | Relation between salt concentration and permittivity. (a) The real part of permittivity and (b) the imaginary part of permittivity.
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were R2¼ 0.94 and R2¼ 0.98, respectively. These values show that there is a very consistent relation between salt concen-

tration and permittivity value.
S parameter measurements of the liquid samples with the proposed measurement system are given in Figure 6. The relation

between the peak points (Smax) expressing the maximum amplitude values from the S parameter measurements and the per-
mittivity values is presented in Figure 7. It can be seen that increase in salt concentration in water is inversely proportional to

ε0 and directly proportional to ε00. As the salt concentration increases, ε0 decreases and ε0 0 increases. The relation between Smax

value and salt concentration is shown in Figure 8. It is seen that Smax and salt concentration change inversely. A correlation
coefficient of 0.93 indicated that the fit was high and the correlation allowed to determine the relation between salt concen-

trations or permittivity using S parameter measurements.
Since there is a strict relation between salt concentration and S parameter, both deciding whether a liquid sample was salt

water or pure water and predicting salt concentration using S parameter measurements is possible. To prove this
om http://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf
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Figure 6 | S parameter measurements.

Figure 7 | Relation between Smax and permittivity. (a) The real part of permittivity and (b) the imaginary part of permittivity.
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experimentally, S parameter measurements of seven different brands of bottled water and different concentrations of salt

water were made. All measurements were made two times and a dataset was created. Using the dataset, first it was predicted
whether a liquid sample was salt water or pure water. Then, the sample’s salt concentration was predicted. The results were
also validated using 10-fold cross validation. Tables 1 and 2 list the results in terms of the performance metrics employed in

this study and the total number of correct and incorrect classifications for each of the classification algorithms.
In predicting whether a liquid sample was salt water or not, Precision, Recall, F-Score and MCC values were 1 in all algor-

ithms except Rep tree. This shows that the algorithms made perfect classifications. On the other hand, Rep tree achieved a
://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf



Figure 8 | Relation between salt concentration and Smax.

Table 1 | Performance metrics obtained when the aim was to predict whether liquid samples were salt water or pure water

Hoeffding Tree

Class Without Cross validation With Cross validation

Precision Recall F-Score MCC Precision Recall F-Score MCC

Salt water 1 1 1 1 1 1 1 1

Pure water 1 1 1 1 1 1 1 1

Average 1 1 1 1 1 1 1 1

LMT

Class Without Cross validation With Cross validation

Precision Recall F-Score MCC Precision Recall F-Score MCC

Salt water 1 1 1 1 1 1 1 1

Pure water 1 1 1 1 1 1 1 1

Average 1 1 1 1 1 1 1 1

Random Forest

Class Without Cross validation With Cross validation

Precision Recall F-Score MCC Precision Recall F-Score MCC

Salt water 1 1 1 1 1 1 1 1

Pure water 1 1 1 1 1 1 1 1

Average 1 1 1 1 1 1 1 1

Rep Tree

Class Without Cross validation With Cross validation

Precision Recall F-Score MCC Precision Recall F-Score MCC

Salt water 0.83 1 0.90 0,84 1 0,80 0.88 0.83

Pure water 1 0.85 0.92 0.84 0.87 1 0.93 0.83

Average 0.93 0.91 0.91 0.84 0.92 0.91 0.91 0.83
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precision of 0.83, a recall of 1, an F-Score of 0.9 and an MCC of 0.84. The recall value of 1 in predicting whether salt water or

not indicates that Rep tree correctly classified all the salt water samples. However, there is a decrease in its recall value in
classifying pure water samples. This shows that Rep tree made wrong classifications in predicting the classes of the salt
water samples. The value of F-Score also supports this. The fact that Rep tree’s precision value was 1 indicates that it correctly

classified all the pure water samples. When cross validation was applied, a decrease in MCC was observed as the success in
predicting salt water samples decreased. Figure 9 presents the total number of correct and incorrect classifications for each of
the classification algorithms when the aim was to predict whether the liquid samples were salt water or pure water.
om http://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf

022



Table 2 | Performance metrics obtained when the aim was to predict the salt concentration of liquid samples

Hoeffding Tree

Class

Without cross validation With cross validation

Precision Recall
F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number) Precision Recall

F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number)

10 (%)
Salt

1 1 1 1 1 0.50 0.66 0.66

25 (%)
Salt

1 1 1 1 0.66 1 0.80 0.76

50 (%)
Salt

1 1 1 1 10 0 1 1 1 1 9 1

75 (%)
Salt

1 1 1 1 1 1 1 1

100 (%)
Salt

1 1 1 1 1 1 1 1

Average 1 1 1 1 0.93 0.90 0.89 0.88

LMT

Class Without cross validation With cross validation

Precision Recall
F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number) Precision Recall

F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number)

10 (%)
Salt

1 1 1 1 1 1 1 1

25 (%)
Salt

1 1 1 1 1 0.50 0.67 0.66

50 (%)
Salt

1 1 1 1 10 0 1 0.50 0.67 0.66 8 2

75 (%)
Salt

1 1 1 1 1 1 1 1

100 (%)
Salt

1 1 1 1 0.50 1 0.67 0.61

Average 1 1 1 1 0.90 0.80 0.80 0.78

Random Forest

Class Without cross validation With cross validation

Precision Recall
F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number) Precision Recall

F-
Score MCC

Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number)

10 (%)
Salt

1 1 1 1 1 0.50 0.66 0.66

25 (%)
Salt

1 1 1 1 0.66 1 0.80 0.76

50 (%)
Salt

1 1 1 1 10 0 1 1 1 1 9 1

75 (%)
Salt

1 1 1 1 1 1 1 1

100 (%)
Salt

1 1 1 1 1 1 1 1

Average 1 1 1 1 0.93 0.90 0.89 0.88

(Continued.)
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Rep Tree

Class Without cross validation With cross validation

Precision Recall F-
Score

MCC Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number)

Precision Recall F-
Score

MCC Correct
Instances
(Total Number)

Incorrect
Instances
(Total Number)

10 (%)
Salt

0.33 1 0.50 0.40 0 0 0 �0.50

25 (%)
Salt

– 0 – – 0 0 0 �0.25

50 (%)
Salt

– 0 – – 4 6 0 0 0 �0.25 0 0

75 (%)
Salt

0.50 1 0.66 0.61 – 0 – –

100 (%)
Salt

– 0 – – 0 0 0 �0.16

Average – 0.4 – – – 0 – –

Table 2 | Continued
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Five classes were created for predicting the salt concentration of the liquid samples. Without cross validation, all the per-

formance metrics had a value of 1 for Hoeffding Tree, LMT and Random Forest. On the other hand, Rep Tree showed a very
bad performance in this classification. When cross validated, the results were worse compared to the classification without
cross validation. This indicates that when a liquid sample with a different concentration level is analysed with the proposed

system, the concentration level might be predicted incorrectly; although, the decision regarding whether the liquid is salt
water or pure water is correct.

Accuracy, Kappa and MAE values of the algorithms are listed in Figures 10–12, respectively. It is seen that without cross

validation Hoeffding Tree, LMT and Random Forest achieved an accuracy of 100% and a Kappa value of 1. However, Rep
Tree achieved an accuracy of 91% and a Kappa value of 0.83 in predicting whether a liquid sample was salt water or not. On
the other hand, in predicting salt concentration it achieved an accuracy of 40% and a Kappa value of 0.25. After cross vali-

dation, accuracy rates and Kappa values of Hoeffding Tree and Random Forest were lower. Hoeffding Tree and Random
Forest achieved an accuracy of 90% and a Kappa value of 0.87 in.predicting salt concentration. LMT achieved an accuracy
of 80% and a Kappa value of 0.75 in predicting salt concentration. Since Rep Tree could not classify any samples correctly, its
accuracy was 0%. Hoeffding Tree had the lowest MAE values.

When all the performance metrics are taken into consideration, it is seen that all the algorithms are suitable for predicting
whether a liquid sample is salt water or not. Among the algorithms, Rep Tree had the lowest performance in terms of all the
Figure 9 | Predicting whether liquid samples were salt water or pure water (a) without cross validation and (b) with cross validation.
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Figure 11 | Kappa. (a) Predicting whether a liquid sample was salt water or not and (b) predicting the salinity level.

Figure 10 | Accuracy. (a) Predicting whether a liquid sample was salt water or not and (b) predicting the salinity level.

Figure 12 | MAE. (a) Predicting whether a liquid sample was salt water or not and (b) predicting the salinity level.
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performance metrics. It had an accuracy rate of 91.66%, while the others achieved an accuracy rate of 100%. While the aver-
age values of Precision, Recall, F-Score, MCC and Kappa were 1 in the others, in Rep Tree, the average of these values was

0.92, 0.91, 0.91, 0.83 and 0.82, respectively. In predicting the salt concentration of the liquid samples, Hoeffding Tree, LMT
and Random Forest algorithms achieved an accuracy rate of 100%, while Rep Tree achieved an accuracy rate of 40%. As
expected, after cross validation, all the algorithms had lower performance. Nevertheless, Hoeffding Tree and Random
Forest algorithms achieved an accuracy rate of 90%, a precision of 0.93, a recall of 0.90, an F-Score value of 0.89 and a

Kappa value of 0.87. Although they had almost the same metric values, compared to Random Forest, Hoeffding Tree had
a lower error rate. Therefore, it can be concluded that Hoeffding Tree made better classifications.
://iwaponline.com/jwh/article-pdf/20/5/803/1055191/jwh0200803.pdf
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5. CONCLUSION

Due to the increasing interest in non-contact detection of salinity, in this study a novel approach for this purpose was pro-
posed. Since the proposed approach relies on software component, i.e. classifiers, as well as hardware components, a set
of classification experiments were performed to evaluate the success of different decision tree algorithms in order to deter-

mine the most suitable one for salinity detection. The results of the classification experiments show that the Hoeffding
tree algorithm achieved the best results and Rep tree had the worst performance. The main limitation of the proposed
approach is that it can deliver uncertain results when the concentration of salinity is below 5%. Future work of this study

focuses on the development of a VNA-embedded system for the proposed system. Such a prototype system when supported
by software application based on the Hoeffding tree algorithm will be able to quickly determine salt concentration in water. It
will be a standalone and automated solution and its single requirement to operate will be a power supply.
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