the beclomethasone inhaler with no return of symptoms. PFT
3 months after stopping all medication had returned to normal
(Table 1). Eosinophils also returned to normal within 3 weeks of
stopping the drug.

Adalimumab is a fully human recombinant monoclonal
anti-tumour necrosis factor-α (anti-TNF-α) antibody recently
licensed for the treatment of moderate to severely active
RA. Like all anti-TNF-α drugs, adalimumab has recognized
side-effects, increased susceptibility to infection being the most
worrying.

This is the only Committee on Safety of Medicines (CSM)-
reported adverse event of asthma with adalimumab to date in the
UK. Further information from Abbott Laboratories revealed
that in the pivotal trials of adalimumab asthma has been reported
as an adverse event in 0.3% of adalimumab-treated patients
compared with 0.1% of placebo-treated patients. Neither treat-
ment nor the pre-existence of asthma was recorded; however,
no patient had to stop adalimumab.

A possible explanation of the new onset of asthma in these
patients lies in the contrasting inflammatory responses in RA
compared with asthma and other allergic diseases. Among
T-helper cells (Th), two opposite poles of immune responses can
be distinguished based on secretion of cytokines: the Th1 cytokine
pattern, with predominant secretion of interferon γ (IFN-γ) and
TNF-α, and induction of a cellular immune response. In contrast,
the Th2 cytokine pattern has predominant secretion of interleukin
(IL)-4, IL-5 and IL-13 and induction of the humoral immune
response. Atopic disorders show a raised level of IgE and a
Th2 cytokine response [1], whilst RA is considered to be a
Th1-polarized disease [1–5].

Today a Th2 immune response is inhibited in the presence of Th1 cytokines and vice versa [6]. Based on
reciprocal inhibition of the development of Th1 and Th2 responses, it has been suggested that Th1- and Th2-polarized
diseases mutually exclude one another. We hypothesize that active RA in this case produced a Th1 cytokine response, which suppressed
the clinical expression of asthma. However, once the TNF-α
blocking drug was introduced, the Th1 response was suppressed, allowing the Th2-activated pathway to express itself clinically
as asthma.

This hypothesis would suggest a class effect. Indeed, asthma
has been reported as an adverse event to the CSM for both
infliximab and etanercept. There have been two reported cases
of new onset asthma with etanercept and two exacerbations
of asthma severe enough for the drug to be stopped, we would
recommend careful observation, particularly in patients with a
personal or family history of asthma or atopy, and adherence
to the BTS guidelines for asthma [7] if symptoms occur.

We conclude that asthma in this patient was precipitated by
the anti-TNF-α drug adalimumab. Although at no stage was the
asthma severe enough for the drug to be stopped, we would
recommend careful observation, particularly in patients with a
personal or family history of asthma or atopy, and adherence
to the BTS guidelines for asthma [7] if symptoms occur.

B.W.K. has received research support from Abbot Ltd and
Centocor Inc. G.P. has received sponsorship to attend meetings
and research funding from and/or acted in an advisory
capacity to a number of pharmaceutical and biotechnology
companies involved in the development or manufacture of
anti-rheumatic therapies. The other authors have declared no
conflicts of interest.

A. N. BENNETT, M. WONG, A. ZAIN, G. PANAYI1, B. KIRKHAM1
Guy’s and St Thomas’ Foundation Hospital NHS Trust and 1GKT
School of Medicine, London, UK
Accepted 1 April 2005

Correspondence to: B. W. Kirkham, Department of
Rheumatology, Thomas Guy House, Guy’s Hospital,
St Thomas St, London SE1 9RT, UK.
E-mail: bruce.kirkham@gstt.sthames.nhs.uk

1. Del Prete G. Human Th1 and Th2 lymphocytes: their role in the
2. Simon AK, Seipelt E, Sieper J. Divergent T-cell cytokine patterns
3. Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in
the pathogenesis of organ-specific autoimmune diseases. Immunol
4. Schulze-Koops H, Lipsky PE, Kavanaugh AF, Davis LS. Elevated Th1
or Th0-like cytokine mRNA in peripheral circulation of patients with
rheumatoid arthritis. Modulation by treatment with anti-ICAM-1
5. Dolhain RJEM, van der Heiden AN, ter Haar NT, Breedveld FC,
Miltonburg AMM. Shift toward T lymphocytes with a Th1 helper 1
cytokine-secretion profile in the joints of patients with rheumatoid
6. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T
7. Higgins BG, Douglas JG. The new BTS/SIGN asthma guidelines:

Rheumatology 2005;44:1200–1201
doi:10.1093/rheumatology/keh680
Advance Access publication 3 May 2005

FATAL STREPTOCOCCAL TOXIC SHOCK SYNDROME IN A PATIENT
WITH RHEUMATOID ARTHRITIS TREATED WITH ETANERCEPT

Sir. We report the case of a 24-year-old female with a 5-year history
of severe seropositive rheumatoid arthritis (RA) treated only with
chloroquine and prednisone. Over the last 2 yr she had been
maintained on prednisone 25 mg. Her physical exam revealed
Cushingoid features in addition to persistent active joint inflam-
mation in the small joints of the hands and wrists. In view of the
severity of her disease it was decided to start her on methotrexate
and etanercept. She received her first dose of etanercept 25 mg
subcutaneously; the next day she started to complain of nausea,
vomiting and diarrhoea associated with fever. She was managed
with intravenous fluid and electrolyte replacement. Two days later
she presented to the emergency room with fever, hypotension
(blood pressure 80/50 mmHg) and generalized lethargy. She
reported a history of a fall a few hours before with trauma to her
right lower extremity. Her physical exam revealed swelling and
erythema over the right knee and thigh. She was managed with
fluid replacement and broad spectrum antibiotics. Her condition
rapidly deteriorated and she went into shock with further drop in
her blood pressure, tachycardia, tachypnoea and anuria. She was
intubated, mechanically ventilated and was transferred to the
intensive care unit. Her blood pressure did not pick up despite
full-dose inotropes and flush fluids. Her right lower extremity
rapidly became mottled with sloughing of the overlying skin.
She had a cardiac arrest around 12 h after her admission to
the emergency room. Two blood cultures revealed streptococcus
group A.

The rapid development of a streptococcal toxic shock syndrome shortly after the initiation of etanercept therapy in a
Letters to the Editor

Rheumatology 2005;44:1201–1202
doi:10.1093/rheumatology/keh700
Advance Access publication 7 June 2005

Fatal Mycobacterium peregrinum pneumonia in refractory polymyositis treated with infliximab

Sir, Polymyositis (PM) and dermatomyositis (DM) are systemic inflammatory disorders affecting skeletal muscles and other organs. PM and DM are considered to be associated with high morbidity and mortality rates, particularly related to infectious complications, which have been described in up to 26% of patients [1]. Recently, opportunistic infections have been reported in 12–21% of PM/DM patients. Many factors have been implicated in this apparently increased frequency of infections in PM/DM, especially immunosuppressive drugs [1, 2]. We report a case of fatal Mycobacterium peregrinum pneumonia in a patient with refractory PM, which occurred shortly after institution of anti-tumour necrosis factor α (anti-TNF-α) therapy.

A 68-yr-old man had PM that had evolved since December 2001. Therapy with prednisone was initiated at a dose of 1 mg/kg daily. As both clinical and biochemical status continued to deteriorate gradually, subsequent treatments were started: methotrexate, azathioprine, cyclophosphamide and cyclosporin (cumulative doses of 1080 mg, 31 500 mg, 3 g and 36 000 mg, respectively), which proved ineffective. Intravenous immunoglobulins (1 g/kg/day for 2 days monthly) for 24 months resulted in partial improvement of PM. In January 2004, the patient was admitted for generalized muscle weakness. Muscle power, gauged for eight proximal muscles by a modification of the UK Medical Research Council grading system, was 59/80 points [1]. Serum creatinine kinase level was 15 000 IU/l. Pulmonary function tests showed decreased vital capacity (64% of predicted values); lung computed tomography (CT) scan was normal. Other investigations, including abdominal CT scan, gastroscopy, colonoscopy and bronchoscopy, to exclude underlying malignancy, were normal. As PM was refractory to immunosuppressive therapy, the patient was given anti-TNF-α, as mentioned previously [3]: infliximab (5 mg/kg) at weeks 0, 2 and 6, in addition to prednisone (20 mg daily). Before initiation of infliximab, gastric aspiration product cultures for mycobacteria were performed, which proved negative.

One month after the third infliximab infusion, the patient presented with a 3-week history of fatigue, non-productive cough and progressive dyspnoea. On admission, he was febrile (38°C) and his general condition was poor. Physical examination revealed ‘Verclo’ crinkles bilaterally. Laboratory findings were as follows: erythrocyte sedimentation rate 90 mm/h, C-reactive protein 142 mg/l, haemoglobin 10.2 g/dl, white blood cell count 9.5 × 10⁹/l (lymphocytes 9%, CD4 cell count 0.09 × 10⁹/l), and creatine phosphokinase 12 697 IU/l. Chest radiograph revealed diffuse bilateral lung infiltrates. Blood cultures, bacterial (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella) and viral (cytomegalovirus, influenza viruses) serologies were negative. Bronchoscopy was normal; analysis of bronchoalveolar lavage fluid (BAL) was negative for Gram and Gomori-Grocott staining and bacterial and fungal cultures. The patient was treated with ceftiraxone (2 g daily) and ciprofloxacin (500 mg/12 h) for 2 days; however, pulmonary clinical manifestations continued to deteriorate further. Microbiological studies (Ziehl–Neelsen stain) yielded acid-fast bacilli in sputum, gastric aspiration products and BAL. The patient received combined therapy with rifampin, sizoniazid, ethambutol and pirazinamide; despite the use of mechanical ventilation, he died of respiratory failure within 9 days. Cultures of BAL and three samples of sputum and gastric aspiration products grew Mycobacterium peregrinum within 15 days.

Infections are potential complications of anti-TNF-α therapy [4–9]. In patients with rheumatoid arthritis being treated with anti-TNF-α agents, Kroesen et al. [5] have found an elevated incidence of severe infections (0.181 per anti-TNF-α therapy) vs 0.008 in the 2 yr preceding anti-TNF-α therapy. In a series of patients receiving anti-TNF-α therapy, Wallis et al. [7] found the incidence rate of opportunistic infections to be as high as 313/100 000 patients; tuberculosis was the most common infection, occurring in 179/100 000 patients. Opportunistic infections due to other pathogenic microorganisms have also been observed in association with anti-TNF-α therapy: e.g. Pneumocystis carinii, Histoplasma, Aspergillus, Candida, Nocardia, Cryptococcus and non-tuberculous mycobacteria [4–9].

2. Herrlinger KR, Borutta A, Meinhardt G, Stange EF, Fellermann K. Fatal tuberculous sepsis in a patient with rheumatoid arthritis treated with etanercept, and Herrlinger et al. [3] reported the case of a 40-yr-old woman who after six infusions of infliximab for perianal Crohn’s disease developed staphylococcal pneumonia resulting in fatal adult respiratory distress syndrome. Kroesen et al. [3] reviewed patient charts and records of the infectious disease unit for serious infections in patients with RA in the 2 yr preceding anti-TNF-α therapy and during therapy. Serious infections affected 18.3% of patients treated with infliximab or etanercept. In several cases, only a few signs or symptoms indicated the severity of developing infections and sepsis; therefore a high level of suspicion of infection is necessary in patients under anti-TNF-α therapy.

Our experience with TNF-α blockers at the American University of Beirut Medical Center (a tertiary-care teaching hospital, one of the largest medical centres in Lebanon), dates back to October 2000; up to the present time around 90 patients with various rheumatic diseases have received this drug [4]. No serious infections in our series have been reported except for a case of miliary tuberculosis [5]. A thorough screening for any latent infections, besides tuberculosis, is warranted in patients prior to the initiation of TNF-α blocker therapy.

The authors have declared no conflicts of interest.

I. UTHMAN, A. HUSARI, Z. TOUMA, S. S. KANI

Departments of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

Accepted 8 April 2005

Correspondence to: I. W. Uthman, American University of Beirut Medical Center, PO Box: 113-6044, Hamra, Beirut 1103 2090, Lebanon. E-mail: iuthman@aub.edu.lb


Rheumatology 2005;44:1201–1202
doi:10.1093/rheumatology/keh700
Advance Access publication 7 June 2005

Fatal Mycobacterium peregrinum pneumonia in refractory polymyositis treated with infliximab