reparative process. An MRI study of bone ankylosis in the hands of a cohort of consecutive RA patients could help understand the true frequency and significance of this finding.

Rheumatology key message

- Bone ankylosis of the wrist joints in RA may be a reparative process.

Disclosure statement: The authors have declared no conflicts of interest.

References

Dysregulation of P2X7 receptor-inflammasome axis in SAPHO syndrome: successful treatment with anakinra

Sir, The syndrome of Synovitis Acne Pustulosis Hyperostosis Osteitis (SAPHO) is a rare condition characterized by a variable combination of osteoarticular and cutaneous manifestations [1]. Although often related to the SpAs, emerging evidence suggests that SAPHO might be a primitive inflammatory osteitis, probably related to polygenic auto-inflammatory disorders [2]. In this report, we describe a dysregulation of extracellular ATP-dependent P2X7-IL1β axis in a case of SAPHO syndrome effectively treated with the IL-1 receptor antagonist (IL-1Ra) anakinra.

A 47-year-old female, was admitted to our unit in July 2007 with a 3-year history of remitting pain and swelling of anterior chest wall (ACW) structures, and a 10-year history of severe palmoplantar pustulosis (PPP). During adolescence she suffered from acne conglobata. Total white blood cell (WBC) count was 14.5 × 10^9/l; ESR was 35 mm/h (normal range <20) and CRP was 1.8 mg/dl (normal range <0.6). HLA-B27 antigen was negative. A CT scan of ACW revealed massive osteitis with periostitic and erosive aspects. A diagnosis of SAPHO syndrome was made, and therapy with SSZ (3 g/day) was set up for 6 months without any significant improvement. The patient was further evaluated in February 2008, after appearance of intermittent right knee arthritis. A slight leucocytosis and elevated acute-phase markers were still present (ESR and CRP were 28 mm/h and 1.1 mg/dl, respectively). At that time, the patient also referred low-grade fever and asthenia. Joint SF showed 7800 cells (65% of monocytes). SF cultures for Propionibacterium acnes resulted negative and so did the PCR for 16S ribosomal RNA and lipase genes. Technetium 99m (99mTc) bone scan revealed hypercapta on the manubriosternalis syncondrosis and at the right sternoclavicular joint. As increasing evidence suggests that IL-1β might be involved in chronic inflammatory diseases of unknown origin, at the time of this second hospital admission we investigated whether a dysfunction in the processing and release of this cytokine was present [3].

Peripheral blood mononuclear cells (PBMCs) were purified by Ficoll gradient and IL-1β secretion measured in the presence of stimulators or blockers of the P2X7 receptor, a major activator of the inflammasome complex, and therefore of IL-1β processing and release [4]. Spontaneous IL-1β release from SAPHO as well as healthy control PBMCs was negligible; however, SAPHO PBMCs were significantly more responsive to lipopolysaccharide (LPS) alone or LPS plus the P2X7 agonist benzoyl-ATP (BzATP). IL-1β release from SAPHO PBMCs averaged 130 (0.15) pg/ml (n = 3) after a 2 h incubation in the presence of LPS, whereas in healthy controls it never exceeded 54 (8.9) pg/ml (n = 12; P < 0.001). Furthermore, IL-1β secretion stimulated by appropriate doses of BzATP reached ~1910 (7.14) pg/ml, compared with 1324 (32.8) pg/ml in healthy control PBMCs (P < 0.05; Fig. 1A). Converging evidence from different laboratories points to the P2X7 receptor as the main activator of IL-1β maturation and release via the inflammasome, whether by endogenously released or exogenously added ATP [5, 6]. The P2X7 blocker oxidized-ATP fully abolished IL-1β secretion triggered by LPS or LPS plus BzATP (Fig. 1A). Real-time PCR and western blot analysis of P2X7 receptor expression revealed a level of expression of the P2X7 receptor about 1.75-fold higher in SAPHO than in healthy control leucocytes (net intensity ratio: 0.26 (0.005) and 0.45 (0.005) for healthy
To understand the molecular basis of the higher P2X7-stimulated IL-1β release in SAPHO PBMCs, we measured the level of expression of the inflammasome constituents NLRP3 and ASC. While NLRP3 expression did not differ, ASC was expressed at higher level in SAPHO than in healthy controls [net intensity ratio: 3.4 (0.12) and 4.54 (0.35) for the expression of ASC in healthy and SAPHO subjects, respectively; Fig. 1D]. Finally, measurement by firefly luciferin-luciferase assay showed that plasma ATP level in SAPHO patient was much higher than that in 13 healthy controls [1689 (11.54) and 1016 (160) nM, respectively, average (S.D.) of three determinations from SAPHO patient and healthy controls].

These findings suggested a possible dysregulation of the IL-1β processing machinery, which prompted us to start off label treatment with anakinra 100 mg/day, in late March 2008 after local ethics committee approval from The Ethical Committee of Azienda Ospedaliero – Universitaria Sant’Anna, Ferrara, and patient’s written informed consent was obtained. By June 2008, the painful osteoarticular symptomatology, the cutaneous lesions and the systemic symptoms had disappeared. Peripheral synovitis at the right knee remitted, and laboratory parameters were within the normal range. A 99mTc bone scintigraphy showed complete resolution of previous uptake abnormality at the manubrium sterni and a considerable reduction of tracer uptake in the right sternoclavicular joint. The dosage of anakinra was then gradually reduced to 100 mg every 2 days and the patient is still symptom free.

In conclusion, we wish to suggest that these findings and response to anakinra should be taken as the criteria to include SAPHO syndrome in the growing family of auto-inflammatory disorders. However, since a positive
response to anti-TNF-α agents has also been observed [7, 8] the precise pathogenetic role of IL-1β and TNF-α is a matter for further investigations.

Rheumatology key message

- IL-1 is involved in the pathogenesis of SAPHO syndrome.

Acknowledgements

Funding: This research was supported by grants from the Italian Association for Cancer Research, Telethon of Italy (no. GGPO0670), the Italian Space Agency (ASI-OSMA), the Italian Ministry of University and Scientific Research (PRIN), the Commission of European Communities (Seventh Framework Program HEALTH-F2-2007-202231), the Emilia-Romagna Region, the Fondazione Cassa Di Risparmio di Ferrara and institutional funds from the University of Ferrara.

Disclosure statement: F.D.V. acts as a consultant for Cordex Pharma Inc. and Affectis Pharma AG, Biotech Companies involved in the development of ATP-based drugs.

Matteo Colina1, Cinzia Pizzirani2,3, Micheline Khodeir4, Simonetta Falzoni2,3, Marco Bruschi1, Francesco Trotta1 and Francesco Di Virgilio2,3

1 Department of Clinical and Experimental Medicine, Rheumatology Section, 2 Interdisciplinary Center for the Study of Inflammation (ICSI), 3 Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara and 4 Department of Radiology and Clinical Pathology, Microbiology Section, Azienda Ospedaliero-Universitaria di Ferrara Arcispedale Sant’Anna, Ferrara, Italy

Accepted 16 February 2010

Correspondence to: Matteo Colina, Department of Clinical and Experimental Medicine, Rheumatology Section, University of Ferrara, Corso della Gioveccha 203, Ferrara 44100, Italy. E-mail: teocolina@libero.it

References

