Review

Takayasu arteritis in children and adolescents

Juergen Brunner1, Brian M. Feldman2,3, Pascal N. Tyrrell2, Jasmin B. Kuemmerle-Deschner4,5, Lothar B. Zimmerhackl1, Ingmar Gassner5 and Susanne M. Benseler2

Abstract

Takayasu arteritis is a devastating vasculitis of the aorta and its major branches. The clinical manifestations in paediatric patients are less specific than in adults: in children the disease presents with fever, arthralgias and hypertension. Intramural inflammation results in narrowing of the blood vessel lumen and therefore hypoperfusion of the parenchyma. Conventional angiography is the gold standard diagnostic procedure. Corticosteroids, cyclophosphamide, MTX and biological therapies such as TNF-α blocking agents are treatment options.

Key words: Vasculitis, Angiitis, Children, Takayasu arteritis.

Introduction

Takayasu arteritis (TA) is the most common, granulomatous inflammation of large arteries; it is potentially life threatening. TA appears to have an acute early phase, with non-specific symptoms—such as hypertension, headache, fever, muscle pain, arthralgia, night sweats and weight loss. Due to the non-specific symptoms and the absence of specific laboratory parameters, the disease is often unrecognized in this phase, although the diagnosis should be made early if possible. If untreated, during the next phase the disease affects the aorta and its main branches. Vessel wall inflammation leads to concentric wall thickening, fibrosis and thrombus formation. Affected vessels may become stenotic or may develop aneurysms and vascular remodelling. Presenting symptoms at this stage commonly reflect end-organ ischaemia—such as renal infarction and stroke [1, 2]. Since large-vessel biopsies are most often not possible, the diagnosis of TA is based on clinical criteria. Laboratory investigations should support the diagnosis of TA and imaging results must be confirmatory. The diagnosis of TA remains a challenge to clinicians.

To date, few studies on TA in childhood have been published [3–5]. This review focuses on the clinical presentation and diagnosis of TA in childhood and adolescence, differential diagnosis and therapeutic approach.

Epidemiology

The incidence of TA in adults is estimated to be 2.6/1 000 000/year in North America and 1/1 000 000/year in Europe overall [6–8]. The incidence in Sweden is reported at 1.2/1 000 000, in the UK 0.8/1 000 000 and in Kuwait 2.2/1 000 000 [9–12]. The incidence reported for Japan is 2/1 000 000 [13]. Studies show that the disease is distributed all over the world and is not restricted to any one ethnic group. The reported female: male ratio ranges from 1.2 : 1 in Israel to 6.9 : 1 in Mexico [13–15]. The incidence of TA in children is unknown. Kerr et al. [7] included 30% paediatric patients in their study and reported an incidence in all ages of 2.6/1 000 000.

Classification and diagnosis

Classification criteria

In 1978, Ishikawa proposed criteria for the clinical diagnosis of TA based on an analysis of 96 Japanese patients. The patients’ age had to be <30 years. Fulfilling the two major and at minimum one minor criterion or one major and at least four of nine minor criteria (representing vessel involvement) resulted in a diagnostic sensitivity of 84% and a specificity of 95% [16]. The patients were only compared with a control group of 12 persons with other aortic diseases but not with a control group with other inflammatory vascular diseases [17]. The Ishikawa criteria
Takayasu arteritis

Clinical features

Clinical diagnosis of TA commonly presents a challenge to the clinician. It is estimated that one-third of children present with inactive, so-called ‘burnt-out’ disease, in which clinical features represent vascular sequelae rather than active vasculitis. Both the natural history and the time from onset of symptoms to diagnosis are variable. It is likely that the non-specific clinical presentation of childhood TA contributes to a delay in diagnosis. The clinical spectrum at presentation of children with TA differs from that of adults; however, hypertension is the most common symptom in both groups. Children frequently have hypertension, headaches, fever and weight loss at diagnosis of TA [2, 16, 25–54]. The most common presenting features in adulthood are hypertension and bruits [6, 7, 55–61].

General features

The most frequent presentation in childhood is hypertension (82.6%), followed by headaches (31%), fever (29%), dyspnoea (23%), weight loss (22%) and vomiting (20.1%) [2, 16, 25–54]. Non-specific symptoms such as abdominal pain (16.6%) and vomiting can herald TA in children [3, 4]. Musculoskeletal symptoms are, overall, observed in only 14% of children with TA [2, 16, 25–54]. However, in South American TA patients, arthritis appears to be more common and has been noted in 65% [4]. In contrast, adult patients rarely report arthritis or arthralgia at diagnosis of TA [6, 7, 61, 62]. Clinical data are summarized in Table 1. TA has been found to be associated with RA and chronic IBD [59, 63].

Organ-specific features

Organ manifestations result from decreased blood supply due to vascular stenosis and subsequent ischaemia in the vascular territory. Claudication (13%) and poor or absent arterial pulses (13%) occur in areas of vessel involvement [2, 16, 25–54]. Bruits are uncommonly described. Secondary cardiac disease is reported in 19% of paediatric patients [2, 16, 25–54]. In contrast, the most common vascular symptoms in adults are bruits (48%) and claudication (27%) [6, 7, 55–61]. In paediatric TA, neurological manifestations include headaches (31%) and stroke (17%) [2, 16, 25–54]. Skin manifestations including nodules and rashes are uncommon [4, 64–66]. Skin ulcers are not reported in children. Lymphadenopathy is uncommon [4]. Ocular manifestations such as retinopathy are rare in children [3, 67, 68]. The diagnosis of childhood TA remains challenging due to the often non-specific character of symptoms including headaches, fever, dyspnoea, weight loss, vomiting, abdominal pain and musculoskeletal symptoms. The combination of systemic symptoms of inflammation, decreased or absent pulses and possibly intermittent or activity-related features of organ ischaemia should raise the level of suspicion for TA. Suspicion of the diagnosis mandates additional testing.

Common laboratory tests

There is no specific laboratory marker for TA. Classical inflammatory markers are commonly tested; 53% of children had an elevated ESR compared with 45% of adult TA patients overall. ESR is considered the best available routine laboratory indicator for disease activity of TA in adolescents [7, 17, 69–71]. However, the ESR may continue to be elevated in disease remission [7, 69]. CRP is increasingly measured as a disease activity marker in TA. It appears to correlate well with active TA. High CRP levels have also been found to be associated with a higher risk of thrombotic complications in TA [72–74].

Novel laboratory markers

Novel TA markers including tissue plasminogen activator, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and platelet endothelial cell adhesion molecule-1 were evaluated in TA and appear to
<table>
<thead>
<tr>
<th>Patients</th>
<th>Paediatric</th>
<th>Case series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Cakar</td>
<td>D’Souza</td>
</tr>
<tr>
<td>Number of patients, n</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>Sex female : male</td>
<td>2.8 : 1</td>
<td>1.2 : 1</td>
</tr>
<tr>
<td>Age (mean), years</td>
<td>8–17 (13)</td>
<td>4–17 (9.6)</td>
</tr>
<tr>
<td>Location (country)</td>
<td>Turkey</td>
<td>Canada</td>
</tr>
<tr>
<td>General, n (%)</td>
<td>17 (65)</td>
<td>19 (60)</td>
</tr>
<tr>
<td>Fever</td>
<td>5 (26)</td>
<td>NR</td>
</tr>
<tr>
<td>Weight loss</td>
<td>2 (11)</td>
<td>NR</td>
</tr>
<tr>
<td>Chest pain</td>
<td>NR</td>
<td>2 (33)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>7 (37)</td>
<td>NR</td>
</tr>
<tr>
<td>Vomiting</td>
<td>NR</td>
<td>2 (33)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Palpitations</td>
<td>NR</td>
<td>2 (33)</td>
</tr>
<tr>
<td>Cough</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Headache</td>
<td>16 (84)</td>
<td>2 (18)</td>
</tr>
<tr>
<td>Syncope</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hypertension</td>
<td>17 (89)</td>
<td>11 (100)</td>
</tr>
<tr>
<td>Dermal manifestation</td>
<td>NR</td>
<td>3 (50)</td>
</tr>
<tr>
<td>Arthritis/arthritis</td>
<td>3 (16)</td>
<td>NR</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Organ specific, n (%)</td>
<td>Poor pulses anywhere</td>
<td>11 (58)</td>
</tr>
<tr>
<td>Bruits</td>
<td>5 (29)</td>
<td>NR</td>
</tr>
<tr>
<td>Claudication</td>
<td>8 (42)</td>
<td>4 (66)</td>
</tr>
<tr>
<td>Stroke/encephalopathy</td>
<td>NR</td>
<td>2 (33)</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>8 (42)</td>
<td>NR</td>
</tr>
<tr>
<td>Respiratory disease</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Uveitis</td>
<td>NR</td>
<td>3 (50)</td>
</tr>
<tr>
<td>Laboratory, n (%)</td>
<td>ESR</td>
<td>19 (100)</td>
</tr>
</tbody>
</table>

The patients reported in clinical studies [3, 4, 64, 65, 67, 83, 84] and case series [2, 24, 54] are compared with clinical presentation of adult patients [6, 7, 55–61]. The percentage of clinical manifestations is related to the amount of paediatric patients enrolled in studies asking for the manifestation. NR: not reported.
correlate with other measurements of vascular inflammation and disease activity [75, 76]. Specific AECA have been found in patients with TA in recent studies; their pathogenic role remains unclear [73, 77, 78]. AECA may cause endothelial cell activation and expression of adhesion molecules, assisting and continuing the inflammation in TA [79]. Anti-monocyte antibodies and AECA are present in a significant proportion of adult patients with TA and correlate with disease activity [7, 77, 78]. Annexin V is a regulatory protein in apoptosis. Antibodies directed against annexin V have been shown to lead to apoptosis of vascular endothelial cells [80]. Antibodies against annexin V have been demonstrated in adult patients in conjunction with AECA [81]. Platelets and pro-coagulatory markers are frequently increased in TA, possibly causing a hypercoagulable state and increased risk of thrombus formation [76, 82].

So far, no TA-specific laboratory marker of disease activity is available. Classical inflammatory markers have limited sensitivity and lack specificity. Raised inflammatory markers are more often than not associated with active inflammation in TA.

Imaging

A combination of imaging modalities is commonly required for diagnosis and monitoring of TA in children. Vascular imaging is accomplished by conventional angiography, magnetic resonance angiography (MRA), CT angiography (CTA) or Doppler ultrasound. Distinct vessel wall imaging techniques include gadolinium-enhanced MRA and more recently fluorodeoxyglucose PET.

The thoracic and abdominal aorta are the vessels most often involved in childhood TA [3, 4, 64, 65, 67, 83, 84]; the characteristic appearance on angiography is diffuse aortic involvement [4]. Recent studies have included 19 patients investigated with conventional angiography [15] or MRA [4]. One hundred and thirty-seven vascular lesions were detected, with stenosis being the most common type of lesion (53%). Occlusion was present in 21%, dilatation in 16% and aneurysm in 10% of patients. In this series of studies, the most frequently involved vessels were the renal arteries (in 73% of the patients), the subclavian arteries (in 57%) and the carotid arteries (in 52%). The thoracic or abdominal aorta was affected in ~50% of the children [29]. Several classifications have been proposed based on the distribution of angiographic abnormalities seen in TA [17, 23, 24, 85].

The diagnosis of TA in children is often based on the findings of conventional angiography of the aorta and its branches, which is considered the gold standard [22]. Conventional angiography is invasive, is associated with exposure to a significant radiation dose, requires iodinated contrast material and can be difficult to perform—especially in young children or patients with high degree of vascular stenosis. The strength of the conventional angiogram is the exact visualization of flow in the blood vessels and the extent of collateralization. It provides an estimate of ischaemic risk. Conventional angiography does not provide information about the vessel wall itself [86–89]. Vascular narrowing may be due to acute intramural inflammation or chronic wall fibrosis [90], which are indistinguishable by conventional angiography.

MRA is a less invasive imaging technique. It can provide calculated, non-dynamic blood flow information. Its strength is that MRA provides important additional information about the vessel wall. Mild inflammation of the wall without associated significant stenosis will be missed by conventional angiography but may be picked up by MRA [87, 88]. Axial T_1-weighted MRA best demonstrates abnormal wall thickening of the vessels. The inflammatory oedema of the wall causes a bright T_2-weighted signal. Contrast-enhanced MRA further depicts vessel wall irregularity (Fig. 1). Focal TA disease activity can be determined in contrast-enhanced MRI, which has been shown to correlate with clinical and laboratory findings in some patients [88]. Designated ‘oedema-weighted’ images in MRI detect fluid, representing inflammation, within the vessel wall. Evidence of new anatomical lesions with evidence of vessel wall oedema is thought to represent active disease [91]. Clinical and laboratory features plus
CTA provides similar information about disease to MRA [92]. Spiral CTA with breath-hold technique makes well-enhanced, thin-section transaxial images available and reveals luminal narrowing. Additionally, it points out mural changes as high-attenuation wall changes in pre-contrast CT images, circumferential wall thickening with inhomogeneous enhancement or a concentric low-attenuation ring inside the aortic wall [7, 93]. Maximal intensity projection images show luminal obstruction or narrowing or dilatation of the vessels as well. In the delayed phase mural enhancement is also present [7, 92, 94]. Radiation exposure has to be considered as CTA involves a large dose of radiation.

Ultrasonography is useful in establishing an early diagnosis of TA [95, 96]. Comparison of ultrasound with angiography has shown agreement on stenosis in 97% when examining the common carotids, 95% for the brachiocephalic trunks and 97% for the vertebral arteries [97]. Sonography reveals thickening of affected vessel walls, occlusion and dilatation. Sonography might help to establish early disease of TA in a pre-stenotic phase in the extracranial vessels [96]. Alterations in flow velocity can be determined (Fig. 2A and B). The method is inexpensive and without radiation exposure. Limitations include the investigator-dependent quality of the examination.

18FDG-PET is an imaging technique used to assess the increased glucose metabolism in inflammatory cells. Some recent studies have concluded that there is a possible role for 18FDG-PET as a screening method in early TA, especially for those patients presenting with uncharacteristic symptoms [98–100]. It appears that 18FDG-PET can identify more vascular regions affected by the inflammatory process than MRA [101]. However, the PET results are not specific for vasculitis [102]. Although PET scanning may provide valuable information about inflammation in the arterial wall, it cannot show changes in the structure (and therefore the damage) of the vessel wall nor it can show luminal blood flow. PET access is limited to large medical centres; for this reason there is a lack of standardization of PET imaging for TA.

In conclusion, conventional angiography is still the gold standard for the diagnosis of TA. MRA and MRI are helpful in monitoring the disease. Standardized high-resolution sonography might become an important addition to the diagnostic armamentarium.

Differential diagnosis

In children with suspected TA, some more common diagnoses have to be considered. The differential diagnosis includes developmental disorders (coarctation and Marfan syndrome), other autoimmune disorders [primary vasculitides (Behcet’s disease, Kawasaki disease and thrombangiitis obliterans), secondary vasculitides (SLE, SpA and sarcoidosis) or infectious aortitis (tuberculosis, syphilis, *Staphylococcus aureus*, *Salmonella*, *Treponema*, CMV or herpes virus) [103–106]. An association of true TA with tuberculosis, in some regions, has been suggested [104, 107]. Both TA and tuberculosis are chronic granulomatous diseases. Active tuberculosis has been recognized in up to 20% of patients with TA [55]. TA and tuberculosis have been associated with HLA-B alleles; however, these have different distributions in TA and tuberculosis [108]. The role of tuberculosis in the pathogenesis of TA is therefore unclear. Cross-reactivity between *Mycobacteria* and human HSP may play a role [109]. TA is associated more often with vascular stenosis, whereas tuberculosis is more often associated with erosion of the vessel wall and aneurysm development. TB particularly affects the descending thoracic and abdominal aorta [1]. Regarding hypertension, FMD is an important differential diagnosis [1]. Differentiating TA from FMD may be a challenge; however, FMD is not an inflammatory disease.

Therapy

Adequate therapy in TA is important to prevent irreversible vessel damage with resulting insufficiency of vital organs. Corticosteroids are still the mainstay of treatment [1]. Other immunsuppressive agents are a therapeutic option [1].

Glucocorticoids are an effective agent for most patients with active TA. Remission has been achieved in 60% of patients treated with glucocorticoids alone [6, 7, 110, 111]. Although improvement of symptoms in TA usually follows glucocorticoid therapy, relapses usually occur with dosage reduction [73].

In the most recent survey, 19 children with TA all received prednisone (2 mg/kg/day). The dose was tapered after 1–2 months and was thereafter continued at alternate day dosing; the lowest dose was 5–10 mg/alternate days. Nine patients received additional...
cyclophosphamide and one patient received infliximab. MTX (10–12.5 mg/m²/week) was used in 11 patients and AZA (2 mg/kg/day) was used in 5 patients. All 17 patients with hypertension were treated for their hypertension. Ten patients with renal artery stenosis underwent surgery or interventional radiographical stenting [29]. There are no randomized therapeutic trials in TA. Immunomodulatory drugs, such as MTX and mycophenolate mofetil, are believed to be of some benefit in TA [6, 7, 52, 110–112]. The best observational evidence for treatment is for corticosteroids (to which 50% appear to respond) and MTX (to which a further 50% appear to respond) [1]. In about one-fourth of the treated patients, remission is never achieved [111]. Anti-TNF therapy may be a possible beneficial agent for these patients. The initial series have shown seemingly successful results with improvement in patients with therapy-resistant TA. In an open-label trial of anti-TNF therapy, including 15 patients with active, relapsing TA, addition of anti-TNF resulted in improvement in 14 of 15 patients [113].

The role of intravenous immunoglobulin, recombinant IL-1 receptor antagonists, IL-4 and transforming growth factor is speculative [113]. In patients with TA, platelet and coagulation activities may be increased resulting in a hypercoagulable state and sometimes in thrombus formation. Therefore, some have advocated including heparin or anti-platelet agents when treating PA [76, 82]. Percutaneous transluminal angioplasty (PCTA) is the commonest palliative procedure performed, with a success rate varying from 56 to 80% [7]. Stenosis in TA can be effectively dilated by PCTA [114, 115]. However, despite providing short-term benefit, endovascular revascularization procedures (bypass grafts, patch angioplasty, endarterectomy, PTA, stent placement) are associated with a high failure rate in patients with TA [116–118].

Outcome

Anti-inflammatory therapy can lead to dramatic improvement in TA. The 5-year survival rate in adults is as high as 94% [119]. The mortality rate in children, though, is as high as 35% [4]. The outcome depends on the vessel involvement and on the severity of hypertension [3]. In a Turkish survey, one patient with pulmonary artery stenosis died within the first 3 years and two patients underwent nephrectomy [29]. In South Africa, the mortality rate was 22.5%; 7 of 31 patients died because of hypertension or complications after kidney transplantation. One patient died after EBV-associated haemophagocytic syndrome [65]. In India, 2 of 24 patients (8.3%) died because of renal failure and congestive heart failure [84]. Prevention of organ damage may avoid worse outcome.

Summary

TA in children and adolescents is a potentially life-threatening condition. The diagnosis should be suspected in a child presenting with symptoms of hypertension, fever, weight loss and vomiting. An awareness of TA, and appropriate suspicion, is the first step for clinical diagnosis. TA is thought to require early diagnosis for the best outcome. Each child with suspected TA requires a thorough diagnostic evaluation to exclude other conditions on the differential diagnosis and to confirm the diagnosis of TA. Classical inflammatory markers have limited sensitivity. Angiography is the standard for establishing the diagnosis. Non-invasive methods such as ultrasound may be considered, and may become more useful in the future. Corticosteroids are the standard therapy. Corticosteroids are frequently combined with other immunomodulatory treatments especially for therapy-resistant disease.

Rheumatology key messages

- In children with fever, vomiting and weight loss, TA should be considered in the differential diagnosis.
- Musculoskeletal symptoms, cardiovascular signs, headaches, dyspnoea and abdominal pain may point to TA.
- The diagnosis of TA is supported by elevated inflammatory markers. Suspected TA mandates vascular imaging.

Disclosure statement: The authors have declared no conflicts of interest.

References

60 Sharma BK, Sagar S, Singh AP, Suri S. Takayasu arteritis in India. Heart Vessels 1992;7(Suppl. 7):37–43.
Juergen Brunner et al.

1814
www.rheumatology.oxfordjournals.org

100 Umekita K, Takajo I, Myauchi S et al. [(18)F]fluorodeoxyglucose positron emission tomography is a useful tool to diagnose the early stage of Takayasu’s arteritis and to evaluate the activity of the disease. Mod Rheumatol 2006;16:243–7.

Downloaded from https://academic.oup.com/rheumatology/article-abstract/49/10/1806/1774240 by guest on 03 May 2019