Comparative Analysis of Temporal and Dose-Dependent TCDD-Elicited Gene Expression in Human, Mouse, and Rat Primary Hepatocytes

Agnes L. Forgacs,*† Edward Dere,* Michelle M. Angrish,†‡ and Timothy R. Zacharewski*†,1

*Department of Biochemistry & Molecular Biology, †Center for Integrative Toxicology, and ‡Genetics Program, Michigan State University, East Lansing, Michigan

Received November 19, 2012; accepted February 11, 2013

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)—elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48 h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 2097 mouse, and 533 rat hepatocytes, respectively. Only 16 orthologs were expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 2097 mouse, and 533 rat hepatocytes, respectively. Only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 2097 mouse, and 533 rat hepatocytes, respectively. Only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 2097 mouse, and 533 rat hepatocytes, respectively.

Key Words: dioxin; microarray; primary hepatocyte; interspecies.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) elicits a broad spectrum of species-specific effects including endocrine disruption, hepatotoxicity, and immunotoxicity that are mostly mediated by the aryl hydrocarbon receptor (AhR) (Denison and Heath-Pagliuso, 1998; Gonzalez and Fernandez-Salguero, 1998; Hankinson, 1995; Poland and Knutson, 1982; Vorderstrasse et al., 2001). Briefly, ligand binding causes a conformational change that results in the dissociation of the chaperone protein complex and translocation of the AhR to the nucleus where it heterodimerizes with the AhR nuclear translocator (ARNT). The AhR:ARNT heterodimer binds to dioxin response elements (DREs) in the regulatory regions of target genes and affects their transcriptional response (Denison et al., 2002; Hankinson, 1995). Recent studies also suggest that non-canonical mechanisms independent of DREs serve an underappreciated role in AhR-mediated effects (Beischlag et al., 2008; Denison et al., 2011; Dere et al., 2011a, c; Huang and Elferink, 2012; Patel et al., 2009; Tanos et al., 2012a, b).

With the exception of polymorphic differences in selected strains (Okey et al., 2005), AhR structure, TCDD binding affinity, and complex stability are comparable across species (Denison et al., 1986; Okey et al., 1989; Olson et al., 1980; Poland et al., 1976). For example, human, mouse, and rat AhRs exhibit 87% amino acid similarity, with the rat AhR having comparable similarity. Despite its evolutionarily conserved mechanism of action, structure, and function, the AhR mediates a broad spectrum of species-specific responses (Boverhof et al., 2006; Flaveny et al., 2010; Schmidt and Bradford, 1996) that not only confound extrapolations in support of human risk assessment but also challenge the assumption of a common mechanism of toxicity for TCDD and related compounds beyond ligand binding. Significant differences in TCDD sensitivity exist between species, with LD₅₀ values ranging from 1 μg/kg for guinea pigs to > 5000 μg/kg for hamsters, whereas mice (~200 μg/kg) and rats (~30 μg/kg) exhibit LD₅₀ values in the mid range (McConnell, 1985). Hepatic responses including species-specific histopathology and metabolite, gene expression, and serum biochemistry changes have been observed in response to TCDD (Black et al., 2012; Boutros et al., 2008; Boverhof et al., 2006; Carlson et al., 2009; Forgacs et al., 2012; Silkworth et al., 2005). Comparative
in vitro and in vivo toxicogenomic studies report TCDD-elicited lipid accumulation consistent with AhR-mediated hepatic steatosis in mice but not in rats (Boverhof et al., 2005; Forgacs et al., 2012). Complementary differential gene expression profiles suggest that TCDD-elicited hepatic steatosis in mice is due to the downregulation of de novo fatty acid (FA) biosynthesis with the induction of hepatic lipid uptake and metabolism of saturated FAs (SfAs) to mono-unsaturated FAs (MUfAs) and poly-unsaturated FAs (PUfAs) (Angrish et al., 2012b; Forgacs et al., 2012). Although a single oral gavage of TCDD also elicited an increase in relative liver weight in rats, histopathology and gene expression studies are consistent with hepatocyte hypertrophy with only modest hepatic lipid accumulation (Boverhof et al., 2006; Forgacs et al., 2012). Unfortunately, comparative studies examining the relevance of these differences in rodent hepatic responses to human models are lacking.

Computational genome-wide DRE analyses in the human, mouse, and rat genomes also indicate species-specific DRE distribution that may further contribute to species-specific AhR-mediated gene expression and metabolite profiles (Dere et al., 2011a; Sun et al., 2004). For example, <15% of TCDD-responsive orthologous genes in C57BL/6 mouse liver are also differentially expressed in Sprague Dawley rats (Boverhof et al., 2006). Likewise, comparisons between human HepG2, mouse Hepa1c1c7, and rat H4IIE hepatoma cells report <8% of differentially expressed orthologs are conserved, with examples of divergent regulation (e.g., ortholog induced in one species, repressed in another) despite the conserved induction of “AhR battery” genes (e.g., Cyplal, Cyplal2, and Tiparp) (Dere et al., 2011b; Dere et al., 2006; Nebert et al., 2000). However, the significance of divergent gene expression between hepatoma cell lines and their relevance to human toxicity are debatable due to possible mutation differences, genetic instability, and clonal selection under differing culture conditions.

In order to further investigate the human relevance of TCDD-elicited hepatic steatosis and metabolic disruption in rodents, systematic time- and dose-dependent whole-genome transcriptomic comparisons were conducted in human, mouse, and rat primary hepatocytes. Overall, TCDD elicited species-specific hepatic gene expression profiles, consistent with reported in vitro and in vivo studies. Conserved overrepresented functions and pathways were also identified including lipid transport, processing, and metabolism. However, further examination revealed species-specific differences within the orthologs comprising lipid transport, processing, and metabolism gene expression that contribute to TCDD-elicited hepatic steatosis in mice but not in rats. Moreover, comparisons to human primary hepatocytes suggest that TCDD-induced hepatic FA accumulation in mice may be more similar to human responses compared with rats.

MATERIALS AND METHODS

Primary cell culture and treatment. Cancer-free human, mouse, and rat primary hepatocytes preplated in six-well plates with collagen type I substratum and Matrigel overlay were obtained from CellzDirect (Invitrogen, Carlsbad, CA). Human primary hepatocytes were isolated from cancer-free portions of a hepatic resection as determined by the vendor. All donors were Caucasian, postmenopausal, alcohol-free, nonsmoking females with body mass indexes <30, experiencing cancer at the time of hepatic resection. Three independent biological replicates were used for all human time course and dose-response studies. Rodent primary hepatocytes were pooled from four 12-week-old CD-1 male mice and two 9-week-old male Sprague Dawley rats, respectively, to obtain three technical replicates (Table 1). The vendor reported rodent primary hepatocyte viabilities as 95%, whereas human primary hepatocyte viability was >84% for all donor isolations. Black et al. reported no significant cytotoxicity to 100 nM TCDD in rat and human primary hepatocytes from the same vendor after 24 h. Upon receipt, cells were incubated overnight in fresh DMEM/F-12 media (Invitrogen) supplemented with 10% fetal bovine serum (FBS; Thermo Scientific), HyClone, Logan, UT), 100 μM penicillin (Invitrogen), 100 μg/ml streptomycin (Invitrogen), and 50 μg/ml gentamicin (Invitrogen) under standard conditions (5% CO2, 37°C). Primary hepatocytes from all species were cultured with the same media and culture conditions. For dose-response studies, hepatocytes were treated with dimethyl sulfoxide (DMSO) vehicle (Sigma, St Louis, MO), 0.001, 0.01, 0.1, 1, 10, or 100 nM TCDD (provided by S. Safe, Texas A&M University, College Station, TX) for 12 and 24 h. Time course studies were conducted for 1, 2, 4, 8, 12, 24, and 48 h, and hepatocytes were treated with DMSO vehicle or 10 nM TCDD.

RNA isolation. Hepatocytes were harvested by homogenization in RLT lysis buffer (Qiagen, Valencia, CA) using a Polytron PT2100 homogenizer (Kinematica, Bohemia, NY). Total RNA was isolated with RNaseasy Mini Kits (Qiagen) according to the manufacturer’s protocol and stored at -80°C. RNA was quantified spectrophotometrically (NanoDrop; Thermo Scientific, Wilmington, DE), and purity was assessed by A260/A280 ratio.

Microarray experimental design. Total RNA (500 ng) isolated from TCDD- and DMSO vehicle–treated primary hepatocytes were individually hybridized to 4 × 44K Agilent oligonucleotide microarrays (human, G4112F; mouse, G4122F; rat, G4131F; Agilent Technologies, Santa Clara, CA). One-color labeling (Cy3) and hybridization of three replicates for all doses and time points were carried out according to the manufacturer’s protocol (Agilent manual: G4140–90040 v5.7). Independent reactions were performed per array whereby Cy3 dye was incorporated into TCDD- and vehicle-treated samples, respectively. One-color labeling produces comparable data with no significant variation compared with two-color (Cy3 and Cy5) labeling studies (Patterson et al., 2006). The 4 × 44K microarrays have four arrays per slide allowing four samples to be evaluated per slide. For the dose-response studies, each slide was hybridized with three TCDD-treated samples and one vehicle control, whereas time course microarrays were hybridized with two TCDD-treated samples and two time-matched vehicle control samples. Microarrays were scanned at 532 nm with a GenePix 400B scanner (Molecular Devices, Union City, CA) using GenePix Pro 6.0 to extract feature and background intensities. All images and data were managed in TIMS dBZach data management system (Burguen and Zacharewski, 2007).

<p>| TABLE 1 | Primary Hepatocyte Donor Information |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Sex</th>
<th>Age</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human<sup>+</sup></td>
<td>Female</td>
<td>54–64 years</td>
<td>> 84%</td>
</tr>
<tr>
<td>Mouse<sup>a</sup></td>
<td>Male</td>
<td>12 weeks</td>
<td>95%</td>
</tr>
<tr>
<td>Rat<sup>a</sup></td>
<td>Male</td>
<td>9 weeks</td>
<td>95%</td>
</tr>
</tbody>
</table>

Notes. Cancer-free primary hepatocytes were isolated from three separate Caucasian postmenopausal human donors. Each donor represents one independent biological replicate.

^aFour CD-1 mouse livers were pooled. All studies were conducted with the same preparation, with three technical replicates.

Two Sprague Dawley rat livers were pooled. All studies were conducted with the same preparation, with three technical replicates.
Microarray analysis. Each treatment and time point (n = 3) for the 12- and 24-h dose-response studies and the time course study for human, mouse, and rat, respectively, resulted in nine separate microarray experiments that were analyzed independently. All microarray data passed the quality assurance protocol (Burgoon et al., 2005) and were normalized in SAS v9.1 (SAS Institute) using a semiparametric approach (Eckel et al., 2005) adapted for one-color microarray analysis. Statistical values, herein referred to as P1(t) values, were obtained by evaluation of posterior probabilities on a per gene and per dose or time point basis (Eckel et al., 2004) to determine model-based t values in SAS v9.1. An empirical Bayes method was then used to calculate P1(t) in R (R, Institute for Statistics and Mathematics, WU Wien). Data were ranked and prioritized based on a fold change > 1.5 and P1(t) > 0.90 to identify differentially expressed genes in mice and rats. Because human dose-response and time course datasets exhibited greater variability, the filtering criteria were relaxed to ifold changel > 1.4 and statistical cutoff of P1(t) > 0.80. All filtering, prioritization, and comparisons were done using MetaMine (BioConsortium, University of Missouri-Columbia). The complete microarray datasets are available as supplementary tables, time course for human (Supplementary table S1), mouse (Supplementary table S2), and rat (Supplementary table S3), 12-h dose-response for human (Supplementary table S4), mouse (Supplementary table S5), and rat (Supplementary table S6), and 24-h dose-response for human (Supplementary table S7), mouse (Supplementary table S8), and rat (Supplementary table S9).

Comparative analyses and functional annotation. Agilent 4×44K oligonucleotide arrays are annotated using Entrez Gene ID, RefSeq, Ensembl and/or GenBank accession numbers, and gene symbols as defined by NCBI using human genome build hg19, mouse genome build mm9, and rat genome build rn4. Only genes with known human, mouse, and rat orthologs were included in interspecies comparisons. HomoloGene identifiers (HID, www.ncbi.nlm.nih.gov/HomoloGene), which compare protein and DNA sequences between species to calculate alignment and distance metric scores for orthologous gene groups, were used to identify orthologous human, mouse, and rat genes. Each ortholog group (i.e., genes arising from a common ancestor) is assigned a unique HID. HomoloGene contains 18,981, 21,766, and 19,229 unique HIDs for human, mouse, and rat, respectively, of which 17,258 human, 17,578 mouse, and 15,013 rat HIDs are represented on the corresponding species microarray. Profile similarities between differentially expressed orthologs in time course studies were evaluated by performing a BLAST v5.01 search of the complete database. The statistical model-based t values were obtained by evaluation of posterior probabilities on a per gene basis by MetaMine (BioConsortium, University of Missouri-Columbia). The complete microarray datasets are available as supplementary tables, time course for human (Supplementary table S1), mouse (Supplementary table S2), and rat (Supplementary table S3), 12-h dose-response for human (Supplementary table S4), mouse (Supplementary table S5), and rat (Supplementary table S6), and 24-h dose-response for human (Supplementary table S7), mouse (Supplementary table S8), and rat (Supplementary table S9).

Quantitative real-time PCR. Assays were performed as previously described (Dene et al., 2011b). Briefly, 2 μg of total RNA was reverse transcribed by Superscript II reverse transcriptase (Invitrogen) using an anchored Thermo-oligo primer, producing cDNA that was used as template for quantitative real-time PCR (QRT-PCR). Reactions consisting of 1 μl of cDNA, 0.15 μM forward and reverse gene-specific primers (Supplementary table S10), 3 mM MgCl2, 1.0 mM dNTPs, 0.025 IU AmpliTaq Gold, and 1× SYBR Green PCR Buffer (Applied Biosystems) were amplified using an Applied Biosystems PRISM 7500 Sequence Detection System. Transcript copy numbers were calculated from a standard curve and normalized to the geometric mean of three housekeeping genes to control for differences in RNA loading, quality, and cDNA synthesis (Vandesompele et al., 2002). For graphing purposes, relative expression levels were calculated such that the expression level of the vehicle control group is equal to 1. QRT-PCRs from time course and dose-response data were analyzed using ANOVA followed by Tukey’s or Dunnnett’s post hoc test, respectively (SAS v9.1, SAS Institute). Differences between TCDD treatment compared with vehicle control samples were considered significant when p < 0.05.

Dose-response modeling. Microarray dose-response data meeting the filtering criteria (ifold changel > 1.5 and P1(t) > 0.90 for mouse and rat, ifold changel > 1.4 and P1(t) > 0.80 for human) were evaluated on a per gene basis by particle swarm optimization to determine the best-fit model among five classes (sigmoidal, exponential, linear, quadratic, or Gaussian) using the ToxResponse modeler (Burgoon and Zacharewski, 2008). EC50 values were calculated for genes exhibiting a sigmoidal dose-response and reported if within the experimental dose range (0.001 – 100 nM).

Gas chromatography-mass spectrometry of MAE methyl esters. MAE extractions were performed as previously described (Angrish et al., 2011; Forgacs et al., 2012). Briefly, human hepatocytes were treated with 10 nM TCDD for 48 h and collected in PBS. Cells were pelleted by centrifugation, and supernatant was discarded. Pellets were weighed, homogenized in 40% methanol, and acidified with concentrated hydrochloric acid. Lipids were extracted with chloroform:methanol (2:1) containing 1 mM 2,6-di-tert-butyl-4-methylphenol. The organic phase was removed, and protein and aqueous phases were re-extracted with chloroform. Organic phases were pooled and solvents evaporated under nitrogen. Samples were resuspended in 3 N nonaquesous methanolic hydrochloric acid and held at 60°C overnight and then cooled to room temperature followed by addition of 0.9% (wt/vol) sodium chloride and hexane. The organic phase was separated by centrifugation, collected, dried under nitrogen, and resuspended in hexane. Samples were analyzed with an Agilent 6890N GC with a 30mDB23 column interfaced to an Agilent 5973 MS. 19:0 triglyceride were added as extraction efficiency controls with 17:1n1 FA methyl ester added as a loading control (Nu-chek, Elysian, MN). GC-MS data files were converted to Waters MassLynx format and analyzed with MassLynx software. Data are reported as nmol/mg wet cell pellet based upon peak areas from total ion chromatograms obtained from a linear calculation based on a calibration curve and normalized to wet cell pellet weight.

RESULTS

Microarray Analysis

Each microarray species platform contained ~41,000 features representing 19,406 human, 21,307 mouse, and 17,142 rat unique genes (Fig. 1). Human datasets exhibited greater variability, likely due to biological variation between individual donors, and were filtered using ifold changel > 1.4 and P1(t) > 0.80 compared with ifold changel > 1.5 and P1(t) > 0.90 criteria for rat and mouse datasets. Analysis of the time course microarray data identified the TCDD-elicted differential expression of 540 human, 2422 mouse, and 762 rat genes over the 48-h period. Mapped orthologs were then examined using HIDs in order to compare the differential expression of equivalent genes across human, mouse, and rat primary hepatocytes. The HomoloGene database contains 18,981 human, 21,766 mouse, and 19,229 rat unique HIDs, of which 17,258, 17,578, and 15,013 HIDs are represented on the respective microarray platforms. In the time course study, 10 nM TCDD elicited the differential expression of 495 human, 2305 mouse, and 711 rat orthologs.

Dose-Dependent Differential Gene Expression and EC50 Determination

Dose-response studies were conducted at 12 and 24 h, with EC50 values calculated for all differentially expressed features (human: ifold changel > 1.4 and P1(t) > 0.80; mouse and rat: ifold changel > 1.5 and P1(t) > 0.90) exhibiting a sigmoidal
dose-response profile as identified by the ToxResponse mod-
eler (Fig. 2)(Burgoon and Zacharewski, 2008). In total, 397 and 615 human, 100 and 426 mouse, and 443 and 314 rat genes exhibited a sigmoidal dose-response profile at 12 and 24 h, respectively. Box and whisker plots of the EC50 distributions for these genes (Fig. 3) indicate that human, mouse, and rat primary hepatocytes have similar overall median EC50s at 12 h (mouse: 0.8 nM, human: 1.1 nM, rat: 2.3 nM) and 24 h (mouse: 9.3 nM, human: 2.3 nM, rat: 0.9 nM) that ranged over five orders of magnitude.

In general, EC50 values for AhR battery genes were comparable across species. For example, \(\text{Cyp1a1} \) EC50s at 24 h were 0.04 nM in all species based on microarray data (Fig. 4). QRTPCR-based \(\text{Cyp1a1} \) EC50s at 24 h were also similar across all species (0.1, 0.05, and 0.08 nM in human, mouse, and rat, respectively) and comparable to other reported human (0.14 – 0.37 nM) and rat (0.003 – 0.012 nM) primary hepatocyte EC50 values (Fig. 4; Table 2) (Budinsky et al., 2011; Silkworth et al., 2005). Differences in fold change between microarray and QRTPCR have been previously reported and attributed to data compression (Burgoon et al., 2005). Mouse hepatocytes showed the greatest \(\text{Cyp1a1} \) efficacy (~400- to 800-fold), followed by human (~40- to 100-fold) and rat (~6- to 60-fold). \(\text{Tiparp} \) EC50 values of 0.97 nM for human, 0.63 nM for mouse, and 0.14 nM for rat at 12 h exhibited the greatest variability among AhR battery genes but were still within an order of magnitude.

Interspecies Comparison of Temporal Gene Expression

A total of 12,448 unique HIDs are represented on the Agilent microarray platforms across all three species (Fig. 5A). However, only 16 orthologs were differentially expressed in response to TCDD in all three species (Fig. 5B; Table 3), representing < 3% of common orthologs. The majority of orthologs exhibited species-specific expression. More specifically, 81% (399/495) of human, 91% (2,097/2,305) of mouse, and 75% (533/711) of rat orthologs exhibited species-specific differential expression (Fig. 5B). Eleven of the 16 orthologs differentially expressed in all three species exhibited a comparable expression pattern (Table 3). This included the induction of prototypical “AhR battery” genes such as \(\text{Cyp1a1}, \text{Cyp1a2}, \text{Tiparp}, \) and \(\text{Ugt1a6} \), as well as the induction of \(\text{Ptgs2} \) (also known as \(\text{Cox-2} \)) involved in inflammation, the cell adhesion gene \(\text{Lmo7}, \) the tumor suppressor \(\text{Bmf} \), and the oxidative stress response regulator \(\text{Nfe2l2} \) (also known as \(\text{Nrf2} \)). Repression of the FA transporter \(\text{Slc27a1} \), \(\text{Nr1h4} \) (also known as the farnesoid X receptor) essential for hepatic bile acid and carbohydrate metabolism, and \(\text{Cited2} \) involved in the regulation of liver development also exhibited comparable temporal expression. However, several orthologs exhibited divergent expression. For example, \(\text{Igf1} \) and \(\text{Kank1} \) involved in cell growth were repressed in rodents but induced in human, whereas the chemokine \(\text{Cxcl10} \) and the transcription factor \(\text{Litaf} \) were repressed in human and mouse but induced in rat primary hepatocytes. The alcohol dehydrogenase \(\text{Adh1c} \) was repressed in human and rat but induced in the mouse. These examples suggest that divergent expression may also contribute to AhR-mediated species-specific effects and differing sensitivities to TCDD and related compounds.

Pairwise comparisons did not identify better correlations between any two species (Fig. 6). For example, only 26 of 71 commonly expressed human and mouse orthologs exhibited a
Fig. 2. Automated dose-response modeling and EC₅₀ determination. ToxResponse modeler calculated EC₅₀ values for each probe that exhibited a sigmoidal dose response at 12 and 24 h for human, mouse, and rat. Total number of sigmoidal dose-responsive genes, EC₅₀ range, and direction of regulation are provided.
positive correlation (quadrant I), suggesting variable magnitude and/or direction of regulation. Collectively, these results provide compelling evidence that despite the conservation of the AhR and its signaling mechanism, species-specific gene expression profiles likely underlie the species-specific effects of TCDD and related compounds.

Functional Annotation and Pathway Enrichment

All differentially expressed genes from the time course studies were analyzed for overrepresentation within specific functional categories and canonical pathways. Differential gene expression associated with cholesterol, steatosis, and necrosis/cell death was overrepresented in all three species (data not shown). The number of significantly enriched Bio Functions (IPA; Ingenuity Knowledge Base) was comparable (66 human, 73 mouse, and 64 rat overrepresented functional categories) in the time course datasets (Fig. 7A). Overall, 49 categories were overrepresented in all three species including functions associated with carbohydrate metabolism, gene expression regulation, lipid homeostasis, metabolic disease, and protein synthesis. Species-specific overrepresented functions included hypersensitivity and immune response in human hepatocytes, RNA damage and repair in mouse primary hepatocytes, and energy production and protein folding in rat primary hepatocytes. Note that the number of genes included in these functional analyses varied between species, requiring further analysis to elucidate potential consequences on pathways to determine consistency with reported phenotypic effects.

TCDD-mediated differential gene expression mapped to 41 human, 153 mouse, and 142 rat canonical pathways, of which 11 were specific to human primary hepatocytes and < 50% were in common between mice and rats (Fig. 7B). Pathways in common to all three species included AhR and Nrf2 signaling, as well as lipid transport, processing, and metabolism. Mouse-specific differential gene expression mapped to immune response pathways and included the activation of CD40, IL-2, IL-3, IL-9, IL-10, and IL-17 signaling pathways, consistent with reports of immune cell infiltration (Boverhof et al., 2006). In the rat, energy homeostasis pathways such as oxidative phosphorylation, pyruvate metabolism, citrate cycle, and mitochondrial dysfunction predominated. Most of the genes within these rat-specific pathways were downregulated including electron transport chain constituents such as complex I NADH dehydrogenase subunit (Ndufa2) and complex V ATPase subunits (Atp6v02, Atp1a1, Atp1c1, Atp5a1), as well as ATP citrate lyase (Acyl) and pyruvate kinase (Pklr). Xenobiotic metabolism signaling (p value 3.34E−05) was one of the most significantly enriched canonical pathways in humans. This included CYP1A1 and CYP1A2 induction and the downregulation of several dehydrogenases (ADH1A, ADH1C, and ALDH1B1). Amino acid metabolism pathways, such as tyrosine and histidine metabolism, the catabolism of valine, leucine, and isoleucine, and the repression of serine dehydrogenase (SDS) and histidine ammonia-lyase (HAL) were also uniquely enriched in human primary hepatocytes.

Comparative Analysis of Lipid Transport, Processing, and Metabolism

A single oral gavage of TCDD elicits hepatic steatosis in C57BL/6 mice but not in Sprague Dawley rats within 7 days (Boverhof et al., 2006; Forgacs et al., 2012). However, the human relevance of this response is unknown. Differential gene expression was functionally enriched for lipid transport, processing, and metabolism genes in human (p value 1.64E−07), mouse (p value 1.08E−08), and rat (p value 1.02E−07) primary hepatocytes. There are ~300 genes functionally associated with lipid transport, processing, and metabolism, according to DAVID (http://david.abcc.ncifcrf.gov/), represented on the human, mouse, and rat Agilent microarrays. In the time course study, 39 human, 176 mouse, and 133 rat lipid genes were differentially expressed, corresponding to 36, 150, and 102 orthologs, respectively, of which only 4 were differentially expressed in all three species (Fig. 8). The majority of these genes exhibited species-specific regulation with 26, 123, and 102 orthologs specific to human, mouse, and rat, respectively. Lipid transport, processing, and metabolism genes were also identified in dose-response datasets. For example, in the 24-h dose-response study, 13 human (median EC$_{50}$ 2.2 μM), 31 mouse (median EC$_{50}$ 1.3 μM), and 9 rat (median EC$_{50}$ 0.4 μM) genes were associated with lipid functions.

In order to determine whether these species-specific lipid-related gene expression changes are consistent with
reported phenotypes, the direction of regulation within over-represented functions and pathways was further examined. Overrepresentation of functional annotation terms such as lipid hydroxylation, lipid quantity, and synthesis of lipid was observed in all species. Mouse-specific enrichment included lipid generation and metabolism genes such as phospholipases that cleave lipids to release free FA and are implicated in FA uptake, including the induction of \(\text{Pla2g6} \) (fourfold) and \(\text{Pla2g15} \) (twofold). In contrast, rat-specific functions were associated with intracellular lipid transport and localization such as the retinol binding protein 7 (\(\text{Rbp7} \) formerly known as CRBP-III). \(\text{Rbp7} \) is an intracellular lipid-binding protein that exhibited both temporal and dose-dependent induction up to threefold at 24 h solely in the rat. Rat hepatocytes also exhibited phospholipid and choline metabolism differential gene expression (\(\text{Acsl1}, \text{Acaca}, \text{Agpat6}, \text{Chka}, \text{Pck1}, \text{Pctl1a}, \text{and} \text{Pemt} \)). These species-specific categories are consistent with hepatic lipid accumulation in the mouse but not in the rat.

Human-specific functions in lipid transport, processing, and metabolism include the TCDD-mediated temporal repression of \(\text{Fasn} \) (biosynthesis), \(\text{Acly} \) (biosynthesis), \(\text{Ppap2a} \) (processing), and \(\text{Elovl6} \) (metabolism) and dose-dependent induction of \(\text{Acsl5} \) (processing, EC\(_{50} 9.1 \) nM), \(\text{Lipg} \) (processing, EC\(_{50} 1.0 \) nM), and \(\text{Ffar3} \) (transport, EC\(_{50} 12.3 \) nM) all supporting decreased lipid metabolism in human primary hepatocytes, consistent with TCDD-elicited hepatic steatosis due to increased FA uptake and decreased \textit{de novo} FA biosynthesis (Angrish et al., 2012b). These species-specific lipid metabolism effects demonstrate that although the same functional categories and pathways may be affected by TCDD, differences in which genes are differentially expressed within a category and their direction of regulation can significantly influence the resulting phenotype.

FA Accumulation in Human Primary Hepatocytes

The human relevance of differentially expressed genes associated with lipid transport, processing, and metabolism was...
examined by investigating the effect of TCDD on FA accumulation in human primary hepatocytes using GC-MS (Fig. 9). TCDD induced total FA with increases in SFAs, MUFAs, and PUFAs. More specifically, palmitate (16:0), stearate (18:0), linoleic (18:2n6), and oleic (18:1n9) acids increased ~twofold after 48 h of 10 nM TCDD treatment. Interestingly, these were also the most abundant FA species detected by GC-MS in the

DisCussion

The current risk assessment paradigm assumes a common mechanism or mode of action, as well as similar effects between species. Although the conserved activation of AhR is generally accepted as the primary mode of action for TCDD-elicted effects across all species, toxicogenomic studies indicate that TCDD elicits species-specific AhR-mediated changes in differential gene expression and metabolite levels, consistent with the species-specific effects elicited by TCDD and related compounds (Black et al., 2012; Boutros et al., 2008; Boverhof et al., 2006; Carlson et al., 2009; Dere et al., 2011b; Flaveny et al., 2010; Forgacs et al., 2012). Previous cross-species hepatic gene expression studies examining TCDD focused on a limited number of genes (e.g., AhR gene battery: Cyp1a1,
Cyp1a2, Ugt1a6, Tiparp, etc.) or used transformed cell lines that may not accurately reflect normal human responses. Consequently, comparative studies using primary hepatocytes provide a unique opportunity to distinguish causative mechanisms from adaptive responses, especially for species-specific responses. In this study, human, mouse, and rat primary hepatocytes were used to comprehensively evaluate genome-wide time- and concentration-dependent TCDD-elicited gene expression with a focus on the potential human relevance of TCDD-elicited hepatic steatosis in rodents.

It is important to note that all comparative studies may be confounded by study design limitations. For example, the accuracy and quality of the genome builds and their associated annotation varies between species, with the human and mouse genomes considered to be more complete compared with the rat. This difference is reflected in the total number of annotated genes represented on each respective microarray. Incomplete annotation also reduced the number of comparable orthologs across all three species, again with the rat limiting the number of mapped orthologs. Although the use of primary hepatocytes facilitate the inclusion of human samples in these comparative studies, the use of the same culture conditions may have inadvertently biased the results and confounded data interpretation. More specifically, the same incubation temperature (37°C) was used for all primary hepatocytes despite differences in normal in vivo body temperatures between humans and mice (~37°C) compared with rats (~39°C). Furthermore, media composition may also affect the availability and response to TCDD, which could differ between species. This study also included cancer-free primary hepatocytes isolated from postmenopausal female human donors compared with hepatocytes from male rodents. Although the human and rat donors were of comparable sexual maturity, mouse hepatocytes were from older donors. Despite these biases, the hallmark measure of TCDD sensitivity, the induction of Cyp1a1, and the induction of Tiparp were comparable among species, suggesting that study design differences likely did not confound the >3% conserved expression of common orthologs across human, mouse, and rat primary hepatocytes.

Previous studies have also compared the effect of TCDD and related compounds on gene expression in human and rat primary hepatocytes but excluded mouse primary hepatocytes and reported similar species-specific expression (Black et al., 2012; Budinsky et al., 2011; Carlson et al., 2009; Silkworth et al., 2005). For example, using a comparable dosing regimen and microarray platform as used herein, only 12 genes were identified as differentially expressed in both human and rat primary hepatocytes.
hepatocytes following treatment with 0.01–100 nM TCDD for 24 h (Black et al., 2012). Our results further demonstrate that TCDD elicited minimal overlap between human, mouse, and rat primary hepatocyte differential gene expression with only 16 orthologs (< 3%) in common between all three species. This mainly included the induction of “AhR battery” genes such as Cyp1a1, Cyp1a2, Tiparp, and Ugt1a6 with Cyp1a1 EC₅₀s similar to values previously reported in other human and rat primary hepatocyte studies (Budinsky et al., 2011; Silkworth et al., 2005). These results are also consistent with other comparative in vivo and in vitro studies that report TCDD-elicted species-specific histopathology as well as species-specific gene expression and metabolic effects (Black et al., 2012; Boutros et al., 2008; Boverhof et al., 2006, 2005; Fletcher et al., 2005; Forgacs et al., 2012). TCDD-elicted gene expression in mice was also enriched with functions related to immune response pathways, consistent with immune cell infiltration and the emergence of steatohepatitis, which was not observed in rat liver following a single oral gavage of TCDD (Boverhof et al., 2005, 2006; Lu et al., 2011a).

Despite the conservation of the structure and function of the human, mouse, and rat AhR, TCDD-elicted species-specific differential gene expression leads to species-specific responses and sensitivities as illustrated with hepatic fat accumulation in mice but not in rats. In humans, dyslipidemia has been reported following exposure to TCDD and related compounds (Bertazzi et al., 2001; Calvert et al., 1996; Lee et al., 2006, 2007; Pelclová et al., 2002, 2009). The human relevance of hepatic fat accumulation was further evaluated by comparing overrepresented differential gene expression functions and pathways identified in primary hepatocytes. To determine whether these alterations

In vivo studies have shown that TCDD elicits marked hepatic FA accumulation in mice but not in rats. A single oral gavage of TCDD induced histological and metabolite changes consistent with hepatic steatosis in mice, whereas minimal metabolite changes and no histological evidence of lipid accumulation are reported in rats (Boverhof et al., 2006; Forgacs et al., 2012). The differential expression of lipid transport, processing, and metabolism genes in mouse hepatocytes is consistent with the reported hepatic steatosis in mice. This included the induction of lipid uptake genes and the concomitant inhibition of de novo lipogenesis gene expression (Angrish et al., 2012b). Meanwhile, differential gene expression was associated with lipid localization and trafficking, and choline metabolism was overrepresented in rat primary hepatocytes, consistent with the**

FIG. 7. Comparison of overrepresented functional annotation terms using time-dependent differential gene expression. (A) The total number of unique enriched functional categories identified in the time course across species. (B) Comparison of enriched canonical pathways. All terms and pathways included in the comparisons were significantly enriched (p value < 0.05).

FIG. 8. Comparison of time-dependent differentially expressed orthologs associated with lipid transport, processing, and metabolism. Functional annotation terms related to lipid metabolism were identified by IPA; terms were considered significantly enriched at p < 0.05.
are consistent with reported phenotypes, the direction of gene expression regulation within overrepresented functions or pathways was evaluated. Only three of the conserved differentially expressed orthologs (Nfe2l2, Nr1h4, and Cited2) have been implicated in hepatic steatosis (Kong et al., 2009; Lu et al., 2011a, b; Qu et al., 2007; Yang et al., 2010; Zhang et al., 2010). The differential expression of other lipid transport, processing, and metabolism genes in human primary hepatocytes is also consistent with hepatic fat accumulation. This included gene expression changes associated with lipid conversion/metabolism such as Ppapa2, Acly, Acsl5, and Elovl6 supporting triacylglycerol synthesis for FA storage, the induction of lipase (Lipg), and FA transport (Ffar3, Fabp5) expression in support of uptake and intracellular retention. In addition, the functional significance of these gene expression changes was phenotypically anchored to FA accumulation in human primary hepatocytes. More specifically, GC-MS analysis identified an increase in linoleic acid (18:2n6), an essential dietary FA that cannot be synthesized in human cells. TCDD-elicited accumulation of linoleic acid in human primary hepatocytes, consistent with the increased uptake of linoleic acid that is present at high levels in FBS. It is also consistent with recent studies reporting that FAs from the diet are the primary source of lipids in AhR-mediated hepatic steatosis (Angrish et al., 2012b). Moreover, functional analysis identified immune response gene enrichment in human primary hepatocytes, whereas canonical pathway analysis and histological examination identified immune response enrichment in mouse primary hepatocytes and mouse hepatic tissue (Boverhof et al., 2005). Collectively, these results suggest mice may be a better model than rats for AhR-mediated hepatic steatosis in humans.

The induction of hepatic steatosis is not unique to TCDD and related compounds. Many chemicals, drugs, and natural products also induce lipid accumulation in the liver. Furthermore, continuous TCDD exposure increases serum triglyceride levels in a variety of species including mice, guinea pigs, rabbits, and hamsters (Boverhof et al., 2006; Brewster and Matsumura, 1989) and hepatic fat accumulation in fish, chicken, mice, rats, and monkeys (Boverhof et al., 2006; Kanzawa et al., 2004; Korenaga et al., 2007; Lee et al., 2010; Volz et al., 2006; Walter et al., 2000). Consequently, TCDD and related compounds may use species-specific mechanisms to induce hepatic steatosis following a single bolus dose and after repeated doses or following chronic exposure. Nevertheless, the human relevance of AhR-mediated steatosis and its potential contributions in the development of metabolic diseases including nonalcoholic fatty liver disease, metabolic syndrome, hepatocellular carcinoma, and diabetes warrant further investigation.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.oxfordjournals.org/.

FUNDING

National Institute of Environmental Health Sciences Superfund Research Program (NIEHS SRP P42ES04911).

ACKNOWLEDGMENTS

The authors would like to thank Dr Lyle Burgoon and Dr Suntae Kim for their support and Dr Anna Kopec and Rance Nault for the critical review of this manuscript.
REFERENCES

