Isohydricity and hydraulic isolation explain reduced hydraulic failure risk in an experimental tree species mixture

Myriam Moreno 1,2,*, Guillaume Simioni 1, Hervé Cochard 3, Claude Doussan 4, Joannès Guillemot 5,6,7, Renaud Decarsin 1, Pilar Fernandez-Conradi 1, Jean-Luc Dupuy 1, Santiago Trueba 8, François Pimont 1, Julien Ruffault 1, Frederic Jean 1, Olivier Marloie 1, and Nicolas K. Martin-StPaul 1

1 URFM, INRAE, 84914 Avignon, France
2 French Environment and Energy Management Agency, 49000 Angers, France
3 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
4 EMMAH, INRAE, 84914 Avignon, France
5 UMR Eco&Sols, CIRAD, 34398 Montpellier, France
6 Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34398 Montpellier, France
7 Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
8 BIOGECO, INRAE, Université de Bordeaux, 33615 Pessac, France

* Myriam Moreno (corresponding author).

Email: myriam.moreno@inrae.fr

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plphys/pages/General-Instructions) is Myriam Moreno.
Abstract

Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (*Pinus halepensis*, drought avoidant) and the anisohydric holm oak (*Quercus ilex*, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated *Q. ilex* water stress while it marginally impacted *P. halepensis* water stress. Three mechanistic explanations for this pattern are supported by our modelling analysis. First, the difference in stomatal regulation between species allowed *Q. ilex* trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, *P. halepensis* exhibited earlier water stress and stomatal regulation. Second, *P. halepensis* trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for *Q. ilex* in mixture can - according to model simulations - be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.

Keywords

Forest, functional diversity, drought resistance, tree hydraulic, safety margins.

Introduction

The rising frequency and intensity of extreme droughts is impacting tree survival and forest functions worldwide (Allen et al., 2010; Breshears et al., 2013; Senf et al., 2020), jeopardizing crucial forest ecosystem services. Tree species diversity has been promoted as an important nature-based solution to improve the resilience of forests and tree plantations (Messier et al., 2022). The effects of species mixing on drought resistance could result from different mechanisms, such as competitive reduction for water through resource partitioning or facilitation – for instance hydraulic redistribution (Grossiord, 2020). Yet, tree species diversity effect on tree drought resistance are not universal and can change in direction and magnitude according to the sites, the species of the composition of the mixture (Grossiord, 2020; Grossiord et al., 2014b; Mas et al., 2024). Indeed, previous studies showed that tree species diversity effect can have positive (de-Dios-García et al., 2015; Lebourgeois et al., 2013; Ruiz-Benito et al., 2017), neutral (Grossiord et al., 2014b; Merlin et al., 2015) or even negative impacts (Grossiord et al., 2014a; Vitali et al., 2018). These conflicting results suggest that it is not the species richness that matters, but rather the functional composition of the mixtures (i.e., the association of species with different drought response strategies) (Forrester and Bauhus, 2016; Grossiord, 2020).
hypothesis was supported by recent research that found that the diversity of hydraulic traits determines the resilience to drought of forest water fluxes globally (Anderegg et al., 2018). Similarly, results from a large-scale tree diversity experiment showed that the diversity of drought resistance strategies is a good predictor of the stability of tree growth and forest productivity (Schnabel et al., 2021). However, we crucially miss a mechanistic understanding of the way the diversity of drought resistance strategies mediates tree mortality under extreme drought.

Tree species drought resistance strategies result from a set of functional traits that determine how rapidly plant water status (often quantified as water potential) crosses vital physiological thresholds. In particular, drought resistance strategies determine the loss of hydraulic conductance caused by a high rate of embolism in xylem conduits (Tyree and Sperry, 1989), i.e., the risk of xylem hydraulic failure, a leading mechanism in drought-induced tree mortality (Adams et al., 2017; Sanchez-Martinez et al., 2023).

It is common in the literature to distinguish species drought resistance strategies based on the water loss regulation through stomatal closure (Klein, 2014; Martin-StPaul et al., 2017) - and the xylem vulnerability to embolism (Choat et al., 2018; Delzon, 2015; Martin-StPaul et al., 2017). Isohydric species (sometime also referred as drought avoidant) close their stomata relatively early during drought and have a lower cuticular conductance. Therefore, they limit soil water depletion, which in turn limits the soil and plant water potential decrease and the overall risk of hydraulic failure (Delzon, 2015; López et al., 2021). They also tend to have relatively narrow safety margins, and are less embolism-resistant that anisohydric species. Anisohydric species (also referred as drought-tolerant), have higher resistance to drought-induced xylem embolism. However, they tend to maintain gas exchanges during drought via a delayed stomatal regulation and relatively higher cuticular conductance. This implies greater soil water depletion and greater drop in soil and plant water potential during drought (Choat et al., 2018; Martin-StPaul et al., 2017) (Figure 1A).

Based on this knowledge, one can hypothesize how mixing two species with such distinct drought response strategies will impact soil water dynamic, plant water status (water potentials), and the risk of hydraulic failure under extreme drought. To facilitate the reasoning, we assume that trees are hydraulically connected to the soil (i.e., soil and plant predawn water potential are very close) and that the root systems of both species are intimately mixed and fully occupy a given soil volume. We can then derive three complementary hypotheses (which are also depicted on Figure 1B):

(1) For an anisohydric (drought tolerant) species, it is beneficial to compete for water with an isohydric (drought avoidant) neighbour. Indeed, the soil water saved by earlier stomatal regulation of the isohydric is available to maintain gas exchanges and delay the decrease in water potential and the overall hydraulic failure risk (Figure 1B).

(2) By contrast, mixing is detrimental to an isohydric (isohydric) species, as it experiences lower soil water potential due to sustained water-use by the companion anisohydric species. This leads to a decrease in its water potential, thereby increasing the risk of hydraulic failure. The scenario presented in Figure 1B - which shows that an anisohydric always “wins the fight” during drought under mixture - holds only if the predawn water potential of the mixed species is at equilibrium with the soil water potential.
If the root systems of the two neighbour species are segregated in space, water consumption by the anisohydric species does not affect the isohydric species, and differences in water potentials between tree species in the mixture could occur given their spatial isolation (Figure 1B). In support to this hypothesis, root niche separation is often proposed as a mechanism allowing to reduce water stress for trees associated in mixture (Grossiord, 2020; Jose et al., 2006).

In this study, we combined a greenhouse experiment and a mechanistic model analysis to evaluate these hypotheses and explore the mechanisms and traits involved in the modulation of water stress in mixed forests during an extreme drought. We compared the ecophysiological responses to drought of holm oak (*Quercus ilex*) and Aleppo Pine (*Pinus halepensis*) grown in monocultures and in mixtures. In order to evaluate the importance of having root systems intimately mixed, we also added a treatment in which the root systems of the two plants were separated (Figure 1B).

Results

a) Water status dynamic in the different treatments

Soil water content, soil water potential (Ψ_{soil}) and plant predawn water potential (Ψ_{pd}) declined during drought for both species and in all pot compositions (Figures 2A and Figures S1). In accordance, soil electrical resistivity increased during drought (Figure S2). However, the temporal dynamics differed between species, in agreement with their drought-response strategies (Moreno et al., 2021). Ψ_{pd} decline was more pronounced for the anisohydric *Q. ilex*, which exhibited Ψ_{pd} as low as -8 MPa, than for the isohydric *P. halepensis*, for which Ψ_{pd} did not go below -4 MPa regardless of the pot composition (Figure 2A, Table S1 with P-value < 0.001 for the species effect).

Gas exchanges also decreased for the two species (Figure S3 P-value >0.05) for all pot compositions, but the decrease tended to occur earlier for the isohydric *P. halepensis* than for the anisohydric *Q. ilex* (Figure S3).

For *Q. ilex*, our empirical data suggested a positive effect of mixture (without separation) on drought stress at the early stage of drought as leaf gas exchanges tended to be slightly higher in mixture than in monoculture at the second date of measurements (Figure S3). This trend was confirmed during extreme drought (latest date of the experiment) on plant water potential (Figure 2A), which was significantly higher in mixture than in monoculture (mean Ψ_{pd} of -6.37 MPa in mixture against mean Ψ_{pd} of -8.3 MPa in monoculture; Table S2 P-value < 0.01 for the date:mixture interaction effect). At the drought peak, this water potential difference between treatments translated into a significant effect on hydraulic safety margins (mean HSM = Ψ_{pd} – P50, an indicator of the risk of hydraulic failure), which was higher in mixture (mean HSM = 0.73 MPa) than in monoculture (mean HSM = -1.33 MPa) for *Q. ilex* (Figure 2B, P-value < 0.05). For *P. halepensis*, there was also a trend toward lower gas exchange in mixture during early drought (Figure S3). However, during extreme drought, we found no significant difference in plant water potential (Table S2, P-value >0.05 for the date:mixture interaction effect) and thus HSM (Figure 2B, P-value > 0.05) was found between treatments (Mean HSM= 1.1 MPa in mixture and 1.43 MPa in monoculture).

For both species, plants grown in mixture with a root separation treatment exhibited no significant difference with monoculture for gas exchange or plant water potential.
This indicates that mixture only had an effect on water stress if tree root systems were intimately entangled. This result was supported by an analysis showing that water flow from one compartment to the other of the pot equipped with a mesh (i.e., through the mesh) during drought is very limited (Supplemental Method S1 and Table S3). In brief, we applied Darcy’s law for different types of soil textures using water potential gradient as the difference in predawn water potential between the two species at the penultimate and last dates of measurements (largest water potential gradient measured for the experiment). We found that water flow occurring between the two plant species through the mesh was very low, and negligible compared to the transpiration flow, due to the very sharp decline in soil hydraulic conductivity.

b) Modification of the plant vs. soil water potential relationship in mixture

During the beginning of the drought, \(\Psi_{pd} \) and \(\Psi_{soil} \) were very close for both species (Figures 2A, 3A) in all treatments. However, as drought gradually increased \(\Psi_{pd} \) and \(\Psi_{soil} \) differed progressively for both species and in all treatments except for Q. ilex in mixture (Figures 2A, 3A). The slope of the \(\Psi_{pd} \) vs \(\Psi_{soil} \) relationship differed between species (Figure 3A). Whereas \(\Psi_{pd} \) became lower than \(\Psi_{soil} \) for Q. ilex with increasing drought, \(\Psi_{pd} \) became higher than \(\Psi_{soil} \) for P. halepensis. Such observation remained significant even when considering the uncertainty in calculating \(\Psi_{soil} \) (Figure S4). The fact that \(\Psi_{soil} \) was more negative than \(\Psi_{pd} \) for P. halepensis in the monoculture suggests that some soil evaporation occurred, due to imperfect covering of the pots or to the holes made in the pots for the drainage of water and the measurement of soil resistivity. A peculiar pattern was found for Q. ilex in mixtures (without root separation), for which \(\Psi_{pd} \) equalled \(\Psi_{soil} \) all along the desiccation dynamic (Figure 3A; Table 1, P-value = 2.12e-07 for the \(\Psi_{soil} \): Pot modalities effect). Indeed, the slope of the relationship between \(\Psi_{pd} \) and \(\Psi_{soil} \) for Q. ilex in mixtures without root separation was close to 1, but was 1.74 for the other pot modalities (Table 2, P-value < 0.001 for the \(\Psi_{soil} \): Mixture without root sep. interaction).

Changes in the behaviour of Q. ilex in mixture was further confirmed by exploring the relationship between the \(\Psi_{pd} \) of the two species in mixtures with and without root separation (Figure 3A). We found a significantly lower slope (slope = 1.6) in the mixture without root separation than in the mixture with root separation (slope = 2.21; Figure 3B, Table 3, P-value = 0.03 for the species x separation modality interaction).

c) Results of the model simulations and sensitivity analysis

The Figure 4 shows simulation results with the SurEau model for water potential and transpiration under “benchmark” conditions (i.e., traits were set according to the hypothesis formulated in Figure 1B). In these simulations, the anisohydric (Q. ilex) exhibited in increase transpiration by 20% and experienced later time to hydraulic failure (THF) (increased by a factor of 1.5) in mixture compared to monoculture. On the contrary, the isohydric species (P. halepensis) showed a reduction of transpiration by ca. 20% and an earlier THF twice shorter in mixture than in monoculture. In addition, \(\Psi_{pd} \) (maximal daily \(\Psi_{plants} \), taken at night) and \(\Psi_{soil} \) were always very close to each other until significant loss of plant hydraulic conductance occurred.

These simulations were consistent with the hypotheses drawn in Figure 1B, but not with the experimental results (Figure 2). Simulations departed from our empirical findings on two points. Simulations showed (1) greater water stress for P. halepensis in mixture and (2) a tight relationship between \(\Psi_{pd} \) and \(\Psi_{soil} \), for the two species.
We conducted different sensitivity analyses (Figure 5) to further understand the reasons underpinning the departure between model and experimental data. First, we tested if plant isolation (i.e., “hydraulic decoupling”) could match the empirical data (i.e., higher Ψ_{pd} than Ψ_{soil}) during drought for the isohydric *P. halepensis*. We first implemented a root to soil hydraulic isolation by applying a decrease in root hydraulic conductance (K_{root}) as Ψ_{plant} decline (Figure S5). This did not allow to simulate higher Ψ_{pd} than Ψ_{soil} for this species (Figure 5A, variable K_{root}). Second, we implemented a leaf to air hydraulic isolation by implementing a decrease of the leaf cuticular conductance (g_{cuti}) (i.e., isolation from air dryness, Figure S6 A) with decreasing leaf relative water content, in accordance with empirical data obtained in *P. halepensis* using the drought-box method (Billon et al., 2020) (Figure S6 B). The results showed that reducing only g_{cuti} did not allow to match the empirical pattern (Ψ_{pd} > Ψ_{soil}, Figure 5A, variable g_{cuti}). In a third simulation, we implemented both a decrease of K_{root} and a decrease of g_{cuti} during drought stress. This allowed to simulate a greater survival in mixture than in monoculture (similar THF), and Ψ_{pd} > Ψ_{soil} in accordance with empirical results (Figure 5A, variables K_{root} and g_{cuti}). These tests support that hydraulic isolation can be a way for Pine to maintain a constant hydraulic risk during increasing drought even in mixture with and anisohydric oak.

Secondly, to explain the change in the Ψ_{pd} to Ψ_{soil} relationship observed for *Q. ilex* in our empirical data (Figure 3A; Table 1, P-value = 2.12e-07 for the Ψ_{soil}: Pot modalities effect), we tested the hypothesis of an enhanced soil hydraulic conductance in mixture, through increased fine root length (equations 3 and 4 in M&M section). This would be consistent with the observation of greater root length in mixture (Figure S7). Simulation results showed that increasing soil hydraulic conductance allowed Ψ_{plant} to keep closer to Ψ_{soil} during drought (Figure 5B).
Discussion

It has been hypothesized that competition for water during drought is reduced between species with contrasting hydraulic strategies (iso vs anisohydric) in mixtures (Anderegg et al., 2018; Bello et al., 2019; Haberstroh and Werner, 2022; Schnabel et al., 2021). However, very little is known about how species interactions affect tree resistance to extreme drought (Grossiord, 2020; Haberstroh and Werner, 2022) and experimental test comparing monocultures and mixtures of species with contrasting hydraulic strategies during extreme drought are lacking. The extreme drought experiment that we conducted in a greenhouse highlighted that mixing an isohydric and an anisohydric species strongly alleviated the water stress of the anisohydric species, while it had a relatively weak impact on the water stress of the isohydric species (Figure 2). This result is only partially in agreement with the initial hypotheses drawn in Figure 1B, and with the benchmark model simulations that were based on these hypotheses (Figure 4). Our data and model analyses helped to identify three mechanistic explanations for these results: (i) the differences in water use strategy between the two species, (ii) the ability of *P. halepensis* to isolate (or disconnect) during drought and (iii) the changes in the soil hydraulic conductance possibly related to fine root density. These mechanisms are discussed in the following.

a) Differences in water use strategy partly explain the mixture effect on gas exchanges and hydraulic risk

Experimental data supported that *Q. ilex* could maintain gas exchange longer and experienced lower hydraulic risk during drought in the “true mixture” (i.e., pots designed without root separation) than in the monoculture (Figure 2, S3). This pattern is in agreement with our initial hypothesis H1 (Figure 1B) and with previous assumptions of the literature (Bello et al., 2019; Mas et al., 2024). In addition, such empirical results were confirmed by the SurEau simulations under benchmark conditions that were fully in line with our initial hypothesis (Figure 4). For *P. halepensis*, lower gas exchanges during early drought were measured in the “true mixture” than in the monoculture. This is also consistent with our initial assumption and with SurEau model simulations under benchmark conditions. The most straightforward explanation for these results, is the difference in stomatal behaviour between the two species, that has been proposed in the introduction: during drought, it is beneficial for an anisohydric species (such as *Q. ilex*) to compete with an isohydric (such as *P. halepensis*), because the earlier stomatal regulation of the isohydric safe some water which is made available to the *Q. ilex* to maintain gas exchanges and delay the decrease in water potential and the overall hydraulic failure risk. On the contrary, for the isohydric species, being in mixture with an anisohydric would trigger an earlier drought stress and water losses regulation.

However, different experimental results departed from the initial assumptions and from the SurEau simulations under benchmark conditions, suggesting that additional effects were at play in the interspecific interaction. Firstly, for *Pinus halepensis*, no difference in predawn water potential between monoculture and mixture were found during extreme drought. And more importantly this species was able to maintain a predawn water potential higher than the soil water potential as commonly found in the field (e.g. Moreno et al 2021), which suggests that this species can limit its desiccation and maintain water status through some form of hydraulic disconnection.
For *Quercus ilex*, we found a change in the relationship between predawn water potential and soil water potential in mixture compared to monoculture (Figure 3), supporting that this species can maintain higher predawn water potential for a given level of soil drought in mixture. This is discussed in the third section of this discussion.

b) Hydraulic disconnection (“isolation hypothesis”) of the isohydric *P. halepensis* as a mean to limit hydraulic risk in mixture during drought

The fact that *P. halepensis* exhibited higher Ψ_{pd} than Ψ_{soil} during drought when grown in mixture with *Q. ilex* (Figure 2) contradict our initial hypothesis (Figure 1B) and the model simulations under benchmark conditions (Figure 4). An explanation for this is the ability of this species to (i) disconnect (or isolate) from the soil (i.e., reducing the soil to tree hydraulic conductance) and (ii) limit its water losses during drought. Pioneering work on this topic were conducted by (Nobel and Sanderson, 1984) who showed that roots of desert succulent plants could act as “rectifier”, thereby being able to absorb water in wet soil, but to limit desiccation in dry soils, which seems consistent with our results.

We used the SurEau model to evaluate whether root hydraulic isolation from the soil could explain the observed water potential patterns in *P. halepensis* in mixture, consistently with (Nobel and Sanderson, 1984) work. We implemented a decrease in root hydraulic conductance (K_{root}) as the plant water potential decreases. Simulations results indicated that reducing only K_{root} alone did not allow to simulate higher Ψ_{pd} than Ψ_{soil} for *P. halepensis* (Figure 5A). This means that the water losses that occurred after stomatal closure – which resulted from the leaf cuticular conductance (g_{cuti}), set in the model using the average value measured for *P. halepensis*, was high enough to cause plant water potential to drop even after a strong decrease in K_{root} isolating the plant from the soil. We thus implemented in the model a down-regulation of the leaf cuticular conductance (g_{cuti}) with decreasing tree relative water content, which is in line with empirical data obtained for this species using the drought-box methods (Billon et al., 2020) (Figure S6 B). Simulations showed that, although the reduction of g_{cuti} alone attenuated the decrease in plant water potentials, the tree kept dehydrating along with the soil water potential drop triggered by *Q. ilex* transpiration. In a last sensitivity test, we implemented a decrease of both K_{root} and g_{cuti} under drought, which caused *P. halepensis* water potentials to depart from soil water potentials (Figure 5A), in line with our observations. This suggests that these two mechanisms jointly could allow *P. halepensis* to prevent dehydration under drought. In a natural forest context, tree isolation from the soil during drought has already been proposed to explain the co-occurrence of isohydric and anisohydric trees (Aguadé et al., 2015; Moreno et al., 2021; Pangle et al., 2012; Plaut et al., 2012). The mechanisms for such an isolation are of several types, including the formation of cortical lacunae under fine roots(Cuneo et al., 2016; Duddek et al., 2022), which reduces the water transfer to the root stele and hence affects the root hydraulic conductance. Root shrinkage might also explain the plant-soil hydraulic disconnection by creating gaps between soil and fine roots, interrupting the hydraulic conductance between both them. Furthermore, the inhibition of the synthesis of proteins such as aquaporins facilitating the water transport in the transcellular pathway (Domec et al., 2021), or even fine root mortality (Leonova et al., 2022) could also lead to hydraulic isolation. Yet, to our knowledge, the mechanisms leading to strong plant hydraulic isolation from both the soil and the atmosphere had never been proposed until now.
c) The anisohydric *Q. ilex* could increase root hydraulic conductance to the soil in the mixture through increased root length

Q. ilex in "true mixture" (i.e., pots without root separation), had lower water stress for a given level of soil drought (i.e., higher predawn water potential for a given soil water potential, Figure 3A). This suggests that this species is able to increase soil water use when grown in association with *P. halepensis*. Different hypothesis could explain this phenomenon. It could be argued that differences between Ψ_{pd} and Ψ_{soil} reflect shifts in the root profiles in mixtures compared to monocultures as proposed by (Bello et al., 2019). Indeed, if roots explored only a part of the available soil, Ψ_{pd} would equilibrate with this soil subspace, possibly differing from the overall Ψ_{soil} measured at the plot level. However, such an effect should be minimal in our study for two reasons. Firstly, we used on purposes very small pots (12 L) to maximize the occupation of the soil volume by tree roots, which was verified when the plants were uprooted at the end of the experiment, and thus makes this assumption unlikely. Secondly, the measurements of soil resistivity made at two different depths, showed no significant differences between the two measured depth levels (1/3 and 2/3 of the pot height), for none of the modalities (Figure S2, P-value > 0.05). Because resistivity varies according to a power law as a function of water content (Archie, 1942; Waxman and Smits, 1968), which means that when the soil is dry, little variation of soil water content translates into a large change in resistivity, our measurements indicate that there is most likely no spatial segregation in the uptake of soil water by roots. Alternatively, one can postulate that differences between Ψ_{pd} and Ψ_{soil} resulted from changes in the soil hydraulic conductance between, which could occur as a result of increase fine root density. We carried out simulations with SurEau to test this hypothesis (Figure 5B). Hence, we conducted simulations in which we assumed that the increase in soil conductance might be achieved through an increase in the exchange surface between soil and roots ("single root" approach, see materials & methods section). We tested this hypothesis by varying the fine root length per unit soil volume. This sensitivity test showed that changing K_{soil} can change the Ψ_{pd} vs Ψ_{soil} relationship (Figure 5B). Indeed, reducing the value of this parameter (graph "root length x ½", Figure 5B) resulted in a departure between Ψ_{pd} and Ψ_{soil} as observed in the monoculture, whereas increasing root length resulted in Ψ_{pd} and Ψ_{soil} being comparable, as observed in the mixture without root separation. Interestingly, some studies have already reported modifications toward higher fine roots density in mixture conditions (Sun et al., 2017; Wambsganss et al., 2021), identifying this phenomenon as a complementarity effect between associated species.

d) Ecological and practical implications

Our study has different larger scale implications for forest management and vegetation modelling. First of all, it is noteworthy that the positive effect of mixture -- particularly highlighted for *Q. ilex* -- was not found in the pots designed to separate the root systems of the two species with a mesh (Figures 2, 3 and Figure S3). This indicates that root systems of the two individuals must be entangled for the mixture effect to be efficient. This result is important for tree plantation as it supports the premise that intimate species mixture is required to observe a mixture effect in diverse forests. Overall, this is in line with the growing body of evidence showing the importance of tree-tree interactions in driving the biodiversity vs ecosystem functioning relationships (Trogisch et al., 2021).

In addition, our study could explain how mixing tree species with contrasting hydraulic strategies limited the hydraulic risk during extreme drought by using a
mechanistic model. This paves the way for developing numerical tools allowing to
explore how to design species mixture resilient to climate change. Although the
mechanisms highlighted remain to be tested at larger scale, they could change our
representation of the mechanisms that determine water stress in plant communities.
Although positive effects of mixtures can come from a complementarity of water use
linked to spatial segregation of root systems or different water uptake depth as usually
propose (Bello et al., 2019; Grossiord et al., 2019; Haberstroh and Werner, 2022; Liu
et al., 2023), we provided support that other mechanisms can be involved. Indeed,
differences in water use regulation strategies of species along with modifications of
hydraulic connections between the plant and the soil can alone explain the observed
behaviours in a model. This challenges the way vegetation models represent water
stress in plant communities. To date, the majority of process-based models assume
that soil water deficit in the rooting zone drives the water status of the plant.
However, we provide evidence that changes in the hydraulic connection from the soil
can make the plant, in dry conditions, behave independently from the soil water
status. Implementing such processes in larger scale vegetation models could help to
refine and better predict species interactions and drought induced effects on forest
communities. This would represent a step forward in the development of tools
allowing to design drought resilient mixtures.

Materials and Methods

Seedlings and experimental design

Our study focused on two tree species commonly found in the Mediterranean region
and naturally co-occurring over large areas: the isohydric Aleppo pine (P. halepensis,
drought avoidant with tight water loss control) and the anisohydric holm oak (Q. ilex,
drought tolerant with more progressive water loss control). The experiment compared
water status and hydraulic traits during drought among seedlings grown in mixture
and monocultures, and with or without physical barrier preventing intimate root
contact among the two plants (see below). This latter treatment aimed at testing
whether the root systems of the two species need to be entangled to observe mixture
effects, or if soil matrix potential gradients are large enough to trigger mixture effect
without a close contact between root systems.

From 2019 to June 2021, saplings were grown at the French National Forestry Office
of France (ONF) nursery in Cadarache (Southeast of France) and were watered twice
a week to field capacity and fertilized once a week. Seedlings of P. halepensis and Q.
ilex (one- and two-years old respectively) of equivalent dimensions were repotted in
January 2020. 90 trees of each species were planted in 12 L containers, each
containing two individuals per pot, either in monoculture or in mixtures. The soil was
composed mainly of organic matter and of sand (~20%). Half of the pots were
equipped with a physical barrier made of acrylic fabric with a 30µm mesh that
precluded root colonization from one side to the other of the pot but allowed water
transfer between the two separated compartments. One month before the start of the
experiment (June 2021), pots were brought on the campus of INRAe in Avignon
(Southeast France) to acclimate in the experimental greenhouse. The greenhouse was
equipped with air temperature, humidity (HD 9817T1) and radiation loggers. It
included an independent regulation of climate through aeration (window opening or
forced ventilation) and cooling (humidification of the air entering through a “cool box”). These systems allowed regulating the environment of the greenhouse according to the defined settings. In addition, the sidewalls of the greenhouse had been whitewashed to homogenize the radiation and the temperature. The temperature was kept between 25 and 35 °C, relative humidity (RH) between 40 and 75%, and maximum diurnal photosynthetically active radiation (PPFD) below 1000 µmol.m⁻².s⁻¹ (Figure S1).

During the acclimation period in the greenhouse, watering was applied as in the nursery. Among the initial batch of 90 pots, we selected 54 pots for which the two trees were alive and had reached a height between 40 and 60 cm with less than 10 cm height differences between the two trees. Pots were divided into two batches: a batch of 6 pots per composition (36 pots in total) that was assigned to the drought experiment, and a batch of 3 pots per treatment (18 pots in total) that was assigned to a control treatment in which trees were maintained watered all along the season (two times a week). The day before the beginning of the experiment, at the end of the afternoon, all pots were watered at saturation and weighted.

The experiment was set up during the summer 2021. It consisted in applying a drought treatment (watering stop) to potted P. halepensis and Q. ilex trees grown in monoculture or in mixture while monitoring ecophysiological variables at 5 different dates. All pots were monitored once a week, from July 26 to August 18, for leaf water potentials, leaf gas exchanges, and pot weights.

Plant water potentials measurements

Water potentials were measured at predawn once a week across the experimental period for all trees monitored. The evening before measurements one leaf (Q. ilex) or small twig (P. halepensis) of each tree was covered with an aluminium foil and placed in a ziplock plastic bag. In addition, to limit tree nocturnal transpiration and allow water potential equilibration between the tree and the soil (Rodriguez-Dominguez et al., 2022), trees were covered with a plastic bag and a piece of wet paper was included under the plastic bag. Samples were collected before sunrise, between 4 to 5 am, kept into the ziplock and immediately placed in a cooler for water potential measurement. The 108 measurements were done randomly in less than 4 hours following sampling, with a Scholander pressure chamber (PMS model 1505 D).

Tree leaf gas exchanges

Leaf level gas exchanges were measured using two portable photosynthesis system (LI-6400XT) for all trees at all dates except the second one due to a breakdown of the greenhouse system affecting cooling system. Measurements were done between 11 am to 3 pm, period during which PAR in the green house was highest and stable (between 600 and 1000 µmol.m⁻².s⁻¹). Licor chamber conditions were set to keep close to the greenhouse while providing non-limiting conditions: PAR was set at 1000 µmol.m⁻².s⁻¹, the block temperature was set at 25°C, flow rate and scrubbing were adjusted to maintain RH between 60 and 80%. The leaves were allowed to acclimate for at least 3 minutes in the chamber before measurement, to ensure gas exchange stability. For each leaf (Q. ilex) or needle bunch (P. halepensis), ten values were recorded during one minute and the average was used in the data analysis. After the measurement, the area of leaves or needles included in the chamber were cut and stored in a plastic bag inside a cooler. The day after, leaf area was measured to correct
gas exchange computation with actual leaf area in the chamber. Samples were then
dried during 48 hours at 70°C to estimate specific leaf area.

Tree biomass and leaf area estimates

We estimated leaf area of each tree at the beginning and the end of the experiment
using a method relying on profile photographs, adapted from (Ter-Mikaelian and
Parker, 2000). It is based on a calibrated relationship between the projected area of the
tree profile and the foliage biomass estimated destructively. For each species, we first
built a calibration relationship between the number of tree pixels in profile
photographs and the foliage biomass. For the calibration relationship, trees were
selected to span the range of sizes encountered in the experiment. We sampled trees
before the beginning of the drought experiment (June 2021), but also after the
experiment (September 2021), to account for potential changes in size or leaf area or
angulation that could have occurred during the summer and influenced the
relationship. For each tree, the profile surface projected area was estimated by
photography. All the settings were made to ensure a constant reproduction ratio (i.e.,
constant dimensions of real object dimensions per pixel) among photographs. To
obtain foliage dry mass, all trees used for this calibration were cut at the base of the
stem after taking the photographs. Tree parts were sorted to separate green foliage,
dead foliage, and the rest which was almost entirely made of stems. Tree parts were
then dried at 70°C for 3 days (leaves/ needles) or until there was no variation in dry
mass (almost one week). The leaf area of each tree was computed by converting
foliage dry mass into area using specific leaf areas estimated on leaf gas exchange
measurement samples.

At the end of the experiment and for droughted pots, the belowground part of each
tree was uprooted. The rooting system was washed to separate the soil particles from
the roots. Each plant was hung vertically, and the rooting system extension (maximal
length and width) was measured using a ruler, with a millimeter resolution. The root
system was then dried out at 70°C in an oven for at least 10 days, until there are no
more weight variations, and the total dry mass was estimated.

Soil water content and soil water potentials

Pots were weighted at each measurement dates in the morning (ca. 8 AM) and at the
end of the measurement day (ca. 5 PM). Soil water content was estimated at the pot
level, by subtracting the total pot weight (measured in the morning) by the soil dry
mass and the total fresh tree biomass. Soil water potential (Ψ_{soil}) was then estimated at
the pot level from the normalized soil water content of the pots (W_{norm}) and water
retention curves determined in the laboratory on soil samples ($V= 6 \text{ cm}^3$). The
determination of the retention curve was made with the combination of suction table
($\Psi_{\text{soil}} > -0.01 \text{ MPa}$), pressure plate ($\Psi_{\text{soil}} > -1.5 \text{ MPa}$) and dew point hygrometer
(WP4C, Decagon- $\Psi_{\text{soil}} < -1.5 \text{ MPa}$) methods (Dane and Topp, 2020). Five soil
sample replicates were used for each point of the retention curve and the gravimetric
water content was determined from fresh and dry weight obtained after drying in an
oven at 70°C (temperature limit to avoid organic matter degradation) for about one
week. To perfectly match the data, two different retention curves using van-
Genuchten relationships (van Genuchten, 1980) were fitted. A first retention curve
was fitted with gravimetric water contents above 0.1214 g. g$^{-1}$ (corresponding to Ψ_{soil}
=-1.25 \text{ MPa}). For gravimetric water content lower than 0.1214 \text{ g \cdot g}^{-1}, a second of retention curve was fitted. The retention curves take the following form:

\[\psi_{soil} = \left(\left(\frac{1}{(2^n - 1)} \right)^{\frac{1}{n}} \right)^{-\alpha} \]

(1)

Where \(m, n \) and \(\alpha \) are empirical parameters describing the typical sigmoidal shape of the function and \(\Theta \) is the normalized water content. Water potentials were calculated from this fit using the gravimetric water contents of pots estimated at each measurement dates. The parameters of the curves are provided in Figure S8 and Table S4.

The normalized water content (\(\Theta \)) was computed for each pot as:

\[\Theta = \frac{W-W_r}{W_{sat}-W_r} \]

(2)

With \(W \) the gravimetric water content of the pot at a given time, \(W_r \) the residual gravimetric water content and \(W_{sat} \) the gravimetric water content at saturation. It was measured at the end of the experiment after drying the soil at 70°C. \(W_{sat} \) was estimated from the first weight measurement of the experiment, after the pots were irrigated at saturation. \(W \) and \(W_{sat} \) were computed by removing the mass of the tree and the pot to the total weight measured during the experiment. The total tree weight was measured at the end of the experiment, by assuming that tree growth that could have occurred during the experiment can be neglected due to the extreme drought experienced by the tree.

Since soil water potentials were not directly measured, we calculated soil water potentials from water contents as described above, and also plus or minus the largest error possible combining both the retention curve precision and the weighting uncertainty (Figure S4). The largest difference between measurements and the fitted van Genuchten curves in the \([-6, 0]\) MPa range (a range consistent with our experiment) was 0.63 MPa. The scale used to weight the pots had a measurement precision of \(\pm 0.5 \text{ g} \). We then compared tree water potentials to the three estimates of soil water potentials (Figure S4).

Soil resistivity measurement

Electrical resistivity of soil in pots was measured using electrical resistivity tomography (ERT). 4 pots (including one control) per modality (monoculture or mixture, with or without root separation system) were selected. On these pots, electrical resistivity was monitored with time over 2 radial planes, located at 1/3 and 2/3 of the pots’ height, by inserting 20 stainless steel screws (2cm long) equally spaced (3.9cm) along the column’s circumference. ERT measurements were done using an ABEM SAS 4000 resistivity meter connected to all these electrodes. All quadrupole combinations were used, including reciprocal measurements for assessing error and measurement quality. The resistivity measurements were taken before the start of the experiment (when the pot substrates were at field capacity), in the middle and at the end of the experiment. In the late dry situations, it was necessary to add a small amount of water at electrodes to enable soil-electrode electrical contact and resistivity measurements. Soil resistivity distribution at the two heights was obtained.
from the inversion of apparent resistivity using ResIPy software (Blanchy et al., 2020).

Statistics

We evaluated the effect of species and measurement date and their interactions on the water potential of trees by using a linear mixed model. Then, for each species independently and root separation modalities (root separation or not), we assessed the effect of pot composition (mixture or monoculture association) on predawn water potentials by considering date, composition and their interaction as explanatory factors. As we did not find any significant differences between water potentials of monoculture with and without root separation for each species (Figure S9), we decided to pool them for the analysis. We also tested the differences between soil and tree water potentials at each measurement date using Student T tests. Finally, we applied post-hoc Tuckey HSD tests to evaluate differences between pots modalities (composition and root separation) for gas exchange variables (leaf conductance and transpiration, Figure S3). All statistical analyses were performed with the R software (3.5.2, R Development Core Team 2018) with the packages lme4 and agricolae (Bates et al., 2023; Mendiburu, 2023).

Model analysis using SurEau

General overview of the model

We performed sensitivity analysis with a soil-plant hydraulic model in order to explore the mechanisms driving the mixture effects during an extreme drought. We used the SurEau model coded in C, which has been extensively presented previously (Cochard et al., 2021). In brief, SurEau has been designed to model extreme drought and accounts for the processes occurring after the point of stomatal closure (i.e., cuticular water losses as well as losses of hydraulic conductance and plant water stocks due to xylem embolism). It computes water fluxes along a discretized soil-tree atmosphere continuum and accounts for variations of plant and soil water stocks and water potential (which are the state variables of the model) by using diffusion laws (conductance and water potential gradients between compartments) and capacitances. The model is driven by hourly climate data (temperature, VPD, radiation, wind speed), which are downscaled at smaller time step to perform computation. At each time step, the model starts with the computation of leaf stomatal and cuticular transpiration as the product between leaf-to-air vapor pressure deficit and stomatal and cuticular conductance. These fluxes are used to trigger a drop in water content in the leaves, which is translated into a water potential drop (using the specific capacitances). In turn, leaf water potential is used to compute water flows with the adjacent compartments and update their water potential and water quantities. This approach is applied to all compartments (including the soil) over one small-time step to avoid numerical instabilities (ca. 0.01s; Ruffault et al., 2022) and repeated until the plants eventually reach total hydraulic failure (loss of xylem conductance) in all apoplasmic compartments.

Stomatal conductance (g_s) was modelled using a Jarvis formulation, by which g_s depends on radiation and leaf water potential (Cochard et al., 2021). The leaf stomatal response to water potential was set species specific as in (Martin-StPaul et al., 2017). The leaf cuticular transpiration is modelled as a result of the product between vapor
pressure deficit and leaf cuticular conductance \(g_{cuti}\), which by default was set constant for each species).

The soil is discretized into three soil layers and the plant system into four organs (roots, trunk, branches, and leaves). Each plant organ is composed of an apoplasmic (i.e., xylem) and a symplasmic compartments, each being defined by a capacitance and conductance with the surrounding compartments. The capacitance of the symplasm depends on the water potential according to the pressure volume curves; whereas the capacitance of the apoplasm is set constant (Cochard et al., 2021; Martin-StPaul et al., 2017). The organs are connected between each other axially via their apoplasm and each organ’s apoplasm is connected radially with a symplasm. The hydraulic conductance of the xylem (apoplasm can decline as a result of xylem embolism. Xylem embolism is computed by using the xylem vulnerability curve to cavitation. Each soil layer is connected to a root in series, and all roots are connected to the trunk in parallel. The soil hydraulic conductivity and the soil water potential of each layer are computed as a function of soil water quantity and the saturated conductivity using the van Genuchten model (van Genuchten, 1980). The hydraulic conductance between the soil and the fine roots for each soil layer is computed by using the soil conductivity and the scaling factor \(B_{GC}\) based on fine root density proposed by Gardner-Mualem, as described in (Martin-StPaul et al., 2017):

\[
k_{soil} = B_{GC} \cdot K_{sat} \cdot REW \times \left[1 - \left(1 - REW^\frac{1}{m}\right) \right]^2
\]

(3)

with \(K_{sat}\) the soil hydraulic conductivity at saturation, \(m\) a parameter from the van Genuchten soil water retention curve, \(REW\) the relative water content \((REW = \frac{\theta - \theta_r}{\theta_s - \theta_r})\), with \(\theta\) the actual soil water content, \(\theta_r\) the residual soil water content and \(\theta_s\) the soil water content at saturation), and \(B_{GC}\) the scaling factor calculated as:

\[
B_{GC} = \frac{2\pi L_a}{\ln\left(\frac{1}{r \sqrt{\pi L_v}}\right)}
\]

(4)

with \(L_a\) and \(L_v\) the root length per soil area and volume, \(r\) the radius of fine roots. The root length was the target of sensitivity analysis (see below sensitivity analysis).

Each fine root is connected to the soil layer through a symplasmic conductance which is set constant by default \((K_{root})\). This root symplasmic conductance has been modified in the sensitivity analysis to test the effect of plant isolation from the soil during drought (see below sensitivity analysis).

In the present study, the model was improved to include the possibility for two trees to absorb water in the same soil volume. In principle, two codes corresponding to two trees, parameterized for monoculture of \(P. halepensis\), monoculture of \(Q. ilex\) or for mixture, were run in parallel.

General considerations about the model parametrization and application

We describe below the main parameters used in this study and refer the reader to Cochard et al (2021) for further information about parameters definitions and their implementations. The parameters can be separated into three types:

1. plant size-related traits including (i) the hydraulic conductance for the different plant compartments, (ii) the water volumes of the different
compartments, (iii) the overall leaf area and fine root length and area. These parameters can be derived from direct measurements and from allometric relationships.

(2) physiological traits including (i) the pressure volume curves parameters (π100, ε), (ii) the vulnerability curve to cavitation (P50, slope), (iii) the stomatal response to radiation and to water potential, (iv) the leaf cuticular conductance.

(3) soil parameters including the soil depth and the water retention curves parameters (van Genuchten equation parameters) for each soil layer.

In the simulations made for this study, size related parameters were set constant for the two species. We assumed each plant to be small plant of 1m of height with a stem diameter of 1cm and a leaf area 0.2 m². The volumes of water of the different woody compartment (branches, trunk, and leaves) were computed assuming a branch to trunk ratio of 0.5 and a root to shoot ratio of 0.3. The volume of water in the leaves were computed based on the leaf area and a succulence of 100 g/m². The default fine root area was set equal to the leaf area (assuming a fine root to leaf area ratio of 1). The fine root length was computed assuming a fine root diameter of 0.5mm and distributed equally among the three soil layers.

The hydraulic conductance of the different compartments was defined by using a total leaf specific hydraulic conductance around 1 mmol/m²/s/MPa (value for small trees consistent with our measurements and with the previous literature, (Mencuccini, 2003) which was distributed among the plant compartments assuming a typical hydraulic architecture (Cruiziat et al., 2002; Tyree and Ewers, 1991). The hydraulic resistance was thus distributed as follows: 20% in the leaf symplasm, 20% in the leaf apoplasm, 8% in the branch apoplasm, 2% in the stem apoplasm, 10% in the root apoplasm and 40% in the root symplasm. The radial symplasmic resistance was computed for each woody compartment (roots, trunk, branch) using the developed areas and a symplasmic conductivity of 1 (mmol.m⁻².s⁻¹.MPa⁻¹) for trunk and branches and 3.5 (mmol.m⁻².s⁻¹.MPa⁻¹) for roots (Cochard et al., 2021). Note that the root symplasmic hydraulic conductance (K_root) dictates the water fluxes between the soil and the inner part of the root was the target of sensitivity analysis (see below).

The physiological traits used in the model to define the water use and drought resistance strategies of the two studied species were set by using previously published literature or personal data (Table 4). For the sake of simplicity, potential segmentation of xylem vulnerability was omitted and the same vulnerability curve to cavitation was used for all compartments of the same species. Similarly, the same species-specific leaf PV curve was used to compute the symplasmic capacitance of all the symplasmic compartments. The stomata response to leaf symplasmic water potential used in the model for water loss regulation was set by using published data of concurrent measurements of stomatal conductance and leaf water potential (Klein, 2014; Martin-StPaul et al., 2017). The maximum stomatal conductance and the stomata response to incident PAR were set constant among species as in (Ruffault et al., 2022). The leaf cuticular conductance was taken from (Billon et al., 2020). It is based on measurement of leaf water loss under controlled climatic conditions, averaged after the point of stomatal closure. This value has also been the target of a sensitivity analysis (see below).

Since not all the parameters of the specific soil used in the experiment have been measured, the soil hydraulic parameters (Table 5) were taken from a typical French
Mediterranean site where the SurEau model was previously applied (Ruffault et al., 2023). However, to generalize our results, a sensitivity analysis was made for a large range of soils using parameters from (Carsel and Parrish, 1988; Figure S10; Table S5). For each simulation (in monoculture and mixture with the different soil parameters) we used the time to hydraulic failure (THF) computed by the model as an indicator of drought stress resistance. THF corresponds to the modelling time required for the plant to reach water potential causing 100 % loss of hydraulic conductivity. For each type of soil and each species, we computed the relative time to hydraulic failure in mixture compared to monoculture as THFrelative = THFmixture/THF monoculture. A value of 1 means that mixture and monoculture experienced the same water stress. The results (Figure S10) highlight an overall consistent pattern (regardless of the soil type) with our current results: in mixture, hydraulic risk (i.e., THF) increase for Q. ilex and decreased for P. halepensis.

The model was initialized with a soil at the field capacity. Then, the model was forced with constant climatic conditions from day to day, but variable diurnally as in (Cochard et al., 2021; Ruffault et al., 2022). The rainfall was set to 0 to explore a desiccation dynamic as in the experiment. Simulations were stopped when the two plants reached total hydraulic failure (defined as 100% loss of conductivity in the stem). The time to reach hydraulic failure (THF) was used as an index of drought stress resistance to compare the species and treatments (mixture and monocultures).

Hypothesis testing using SurEau model sensitivity analysis

1- Benchmark simulations

To test the hypotheses presented in the introduction (illustrated in Figure 1B) we first performed benchmark simulations. Simulations with two individuals in monoculture or mixture competing for the same amount of water, were performed using the default parameters described in the section above (Table 4). The results obtained with these simulations were in accordance with the hypothesis drawn in Figure 1B but departed from the empirical results. Indeed, these simulations were unable to reproduce the relatively constant water potential of the isohydric P. halepensis species during extreme drought. As explained above, the patterns of Figure 1B hold only under the assumptions that (i) there is no significant segregation in soil exploration by the two species (which is reasonably the case of our experiment as we observed that root systems of the two species colonized the full soil volume, which was set low on purpose), (ii) that the two individuals are highly connected to the soil (i.e. large hydraulic conductance between the soil and the fine roots).

Consequently, we performed different types of sensitivity analysis with SurEau in order to explore how changes in soil or root hydraulic conductance could help to represent the observed empirical patterns. The water flow between the soil and inner part of the root being modelled using two different conductance (Ksoil and Kroot, see above), these two conductances were modulated as described below.

2- Testing the “isolation effect” for P. halepensis: Can we explain the relatively constant water potential of P. halepensis with variable root hydraulic conductance (Kroot) and cuticular conductance (gcut)?

For P. halepensis empirical data support that plant water potential can be higher than soil water potential during extreme drought, suggesting that this species can behave independently from the soil and maintain its water potential constant even if soil
water potential decreases. Previous studies suggested that decline in conductance between the soil and root can occur during drought (Cuneo et al., 2016; Duddek et al., 2022; North and Nobel, 1997). This can be represented in the model by decreasing the root symplasmic conductivity when root water potential decreases. Therefore, we implemented a variable K_{root} by assuming a variable gap fraction in the root cortex:

$$K_{\text{root}} = \frac{K_{\text{root symp0}}(100 - \text{Cortex Gap})}{100}$$

(5)

With $K_{\text{root symp0}}$ the initial hydraulic symplasmic conductivity and CortexGap the proportion of gap in the root cortex, which we computed by assuming a sigmoidal dependence to the root symplasmic water potential $P_{\text{root symp}}$:

$$\text{Cortex Gap} = \frac{100}{1 + \exp(\frac{K_{\text{varP2}}}{25}(P_{\text{root symp}} - K_{\text{varP1}}))}$$

(6)

with K_{varP1} the water potential causing 50% of cortex gap and K_{varP2} the slope at the point of inflexion of the sigmoid (Figure S5).

We used this implementation to perform simulation in mixture conditions, still parametrizing $Q. \text{ilex}$ as in benchmark conditions. Such implementation led to an acceleration of hydraulic failure for $P. \text{halepensis}$, which is explained by the fact that there is less water supply from the soil, but still significant cuticular losses that are not anymore be compensated, and thus lead to an excessive plant desiccation. We therefore also tested whether accounting for a concurrent decrease in leaf cuticular conductance during drought stress, a phenomenon already observed on cut branches of $P. \text{halepensis}$, could explain -- alone or in combination with the reduction in root conductance -- the observed pattern (Figure S6 A). To do so, we implemented a linear decrease of the cuticular conductance (g_{cuti}) with the leaf symplasmic relative water content (RWC, Figure S6 B) as observed for $P. \text{halepensis}$ using a drought-box (Billon et al., 2020). We assumed that after turgor loss point, g_{cuti} decreased linearly:

$$\text{if}(\text{RWC}_{\text{leaf}} < \text{RWC}_{\text{tLP}})$$

$$g_{\text{cuti}} = g_{\text{cuti ref}} * (1 - (\text{RWC}_{\text{tLP}} - \text{RWC}_{\text{leaf}}) * \text{RWC}_{\text{sens}})$$

(7)

$$\text{else}g_{\text{cuti}} = g_{\text{cuti ref}}$$

With RWC_{leaf} the leaf symplasmic relative water content, RWC_{tLP} the leaf relative water content at turgor loss point, RWC_{sens} the sensitivity of g_{cuti} to relative water content, $g_{\text{cuti ref}}$ the reference leaf cuticular conductance. We found that combining both, a reduction of K_{root} and a reduction of $g_{\text{cuti ref}}$ led to patterns of water potential consistent with our empirical findings.

3- Testing the potential increase of soil hydraulic conductance through increased root length for $Q. \text{ilex}$ in mixture

Secondly, for $Q. \text{ilex}$, we noticed a lower water stress under mixture which was also linked to a change in the relationship of the soil water potential (Ψ_{soil}) vs plant...
predawn water potential (Ψ_{pd}). Higher plant water potential for a given soil water potential was found under mixture compared to monoculture. Such pattern could be explained by an increase of the soil hydraulic conductance that, as evidenced by equations 3 and 4, can be related to the density of fine roots (L_a and L_v, the length of fine roots per m²/m³ of soil). It is also consistent with the observed increase in root length under mixture conditions (Figure S7). We therefore performed a sensitivity analysis to the density of fine roots under monoculture conditions to test whether this trait changes explains the observed mixture effect on water status.

Supplementary Data

Supplementary Figure S1. Meteorological variables recorded in the greenhouse during the experimentation: relative humidity, photosynthetic active radiation (PAR), and temperature.

Supplementary Figure S2. Mean resistivity of the top and bottom profiles of pots (1/3 and 2/3 of the height of a given pot) at the end of the experiment according to pot modality.

Supplementary Figure S3. Dynamics of leaf transpiration and conductance for *Q. ilex* (QI) and *P. halepensis* (PH), either in monocultures (black dots) or mixtures (grey dots), without (left panel) or with (right panel) root separation.

Supplementary Figure S4. Impact of soil water potential computation uncertainty on the difference between soil and tree water potentials.

Supplementary Figure S5. Relationship between root hydraulic conductance (K_{root}) and root symplasmic water potential implemented in the sureau model simulations to test the hypothesis of soil to root isolation for *P. halepensis*.

Supplementary Figure S6. Relationship between the leaf cuticular conductance (g_{cuti}) and the leaf relative water content used to test the hypothesis of leaf to air isolation for *P. halepensis*.

Supplementary Figure S7. Average root length of *Q. ilex* (grey bars) and *P. halepensis* (white bars) for the different pot composition modalities.

Supplementary Figure S8. Soil water retentions curves obtained on subsamples of soil and used to extrapolate soil water potential (or soil matric potential, h) of the pots.

Supplementary Figure S9. Averages and standard deviations of plant predawn water potentials (Ψ_{pd}) in monocultures.

Supplementary Figure S10. Time to hydraulic failure (THF) of both species relative to monoculture (relative THF = THF mixture/ THF monoculture, a value of 1 - shown by the dashed red line - indicates that mixture and monoculture experience the same water stress) in the soil type given by Carsel & Parrish 1988, and for the Puéchabon soil used for simulation.

Supplementary Table S1. Analysis of variance of the mixed model for tree predawn water potential to test date and species effect.
Supplementary Table S2. Analysis of variance of the mixed models to test the composition effect (monoculture vs mixture), per species and type of pot (with or without root separation), for tree water potential (measured at predawn).

Supplementary Table S3. Water flux estimate between the compartment of the pots at the penultimate and last dates of measurement.

Supplementary Table S4. Parameters of the retention curve for the first ($\Psi_{\text{soil}} < 12.5$ bar) and second ($\Psi_{\text{soil}} > 12.5$ bar) fits of the van Genuchten equation.

Supplementary Table S5. Soil parameters describing the water retention curves according to soil types given by Carsel & Parrish 1988.

Supplementary Method S1. Computation of water fluxes between the two pots compartments of the mixture with root separation modality.

Funding
Myriam Moreno was supported by the French Environment and Energy Management Agency (ADEME) in the form of a PhD scholarship. The experiment was funded by Agence Nationale pour la Recherche (MixForChange, ANR-20-EBI5-0003; TAW-tree, ANR-23-CE01-0008-01) and the Metaprogramme ACCAF Drought&Fire.

Acknowledgments
We would like to thank the ONF-PNRGF (Pôle National des Ressources Génétiques Forestières de l’Office National des Forêts) nursery of Cadarache (13) for caring for the plants two years prior to the experiment. Thanks also to Gilles Vercambre and the greenhouse staff of the PSH unit, for accompanying us during the experiment. Finally, thanks to the URFM and EMMAH inrae staff, in particular to Henri Picot, Denis Portier, Arnaud Jouineau, Marion Parizat, Didier Besombes, Didier Betored, Philippe Petit, Arnaud Chapelet, and to Anouk Brisset and Léo Corridor (students), for their help in the setting up of the experiment and acquiring data.

Author Contributions
M.M., N.K.M-S and H.C designed the research; F.J. and O.M. helped in the setting up of the experiment. In particular, F.J. coordinated the cooperation with the ONF-PNRGF (Pôle National des Ressources Génétiques Forestières de l’Office National des Forêts) nursery of Cadarache (13) and secured a site in the greenhouse. O.M. controlled and installed devices used for the measurements; M.M. and N.K.M-S performed research with the help of C.D, R.D., G.S. and P.F-C; H.C. and N.K.M-S performed the model simulations; M.M. analyzed the data with the help of N.K.M-S, G.S., C.D and H.C.; M.M. wrote the first draft of the manuscript, which was then modified by both N.K.M-S and M.M. All authors contributed to review the manuscript and approved the final version.
Table 1: F statistics and p values of factors in the analysis of variance model of the predawn water potentials of both species according to pot modalities (monoculture or mixture, with or without root separation) and soil water potentials (Ψ_{soil}). Summary of linear mixed effect model of the predawn water potentials of both species according to pot modalities (monoculture mixture with or without root separation) and soil water potentials (Ψ_{soil}) using monoculture as reference.

<table>
<thead>
<tr>
<th>Factors</th>
<th>$Q. ilex$</th>
<th>P_value</th>
<th>$P. halepensis$</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ_{soil}</td>
<td>824.83</td>
<td>< 2.2e-16</td>
<td>707.69</td>
<td>< 2.2e-16</td>
</tr>
<tr>
<td>Pot modalities</td>
<td>30.24</td>
<td>11.38 e-11</td>
<td>1.84</td>
<td>0.1</td>
</tr>
<tr>
<td>Ψ_{soil}: Pot modalities</td>
<td>17.26</td>
<td>2.12e-07</td>
<td>1.89</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 2: Summary of linear mixed effect model of the predawn water potentials of both species according to pot modalities (monoculture mixture with or without root separation) and soil water potentials (Ψ_{soil}) using monoculture as reference.

<table>
<thead>
<tr>
<th>Factors</th>
<th>$Q. ilex$</th>
<th>T_value</th>
<th>P_value</th>
<th>$P. halepensis$</th>
<th>T_value</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td>-1.489</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ_{soil}</td>
<td></td>
<td>25.77</td>
<td>< 2e-16</td>
<td>21.318</td>
<td>< 2e-16</td>
<td></td>
</tr>
<tr>
<td>Mixture with root sep</td>
<td></td>
<td>0.03</td>
<td>0.98</td>
<td>0.06</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Mixture without root sep</td>
<td></td>
<td>0.63</td>
<td>0.53</td>
<td>0.21</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Ψ_{soil}: Mixture with root sep</td>
<td></td>
<td>0.32</td>
<td>0.75</td>
<td>1.77</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Ψ_{soil}: Mixture without root sep</td>
<td></td>
<td>-5.64</td>
<td>9.71e-08</td>
<td>-0.45</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: F statistics and p values of factors in the analysis of variance of the predawn water potentials of $Q. ilex$ (Ψ_{pd} QI) in mixtures according to predawn water potentials of $P. halepensis$ (Ψ_{pd} PH) and root separation modality (with or without root separation) (Ψ_{pd} QI ~ PH*Separation modality)

<table>
<thead>
<tr>
<th>Factors</th>
<th>F_value</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ_{pd} PH</td>
<td>338.1</td>
<td>< 2.2e-16</td>
</tr>
<tr>
<td>Separation modality</td>
<td>10.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Ψ_{pd} PH: Separation modality</td>
<td>5.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 4: Species specific parameters used in the model to describe the water use and drought tolerance strategies of the species.

<table>
<thead>
<tr>
<th>Traits (symbol. units)</th>
<th>P. halepensis</th>
<th>Q. ilex</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water potential causing 10% stomatal closure (Ψgs_{10. MPa})</td>
<td>-1.5</td>
<td>-1</td>
<td>/</td>
<td>Martin-StPual et al 2017</td>
</tr>
<tr>
<td>Water potential causing 90% stomatal closure (Ψgs_{90. MPa})</td>
<td>-2.5</td>
<td>-4</td>
<td>/</td>
<td>Martin-StPual et al 2017</td>
</tr>
<tr>
<td>P50 of the xylem of the vulnerability curve (MPa)</td>
<td>-4.7</td>
<td>-7.1</td>
<td>Constant for all apoplasmic organs</td>
<td>Martin-StPual et al 2017; Sergent et al., 2020; Martin-StPual et al 2017</td>
</tr>
<tr>
<td>Slope of the xylem vulnerability curve (%/MPa)</td>
<td>78</td>
<td>23</td>
<td>Constant for all apoplasmic organs</td>
<td>Martin-StPual et al 2017; Sergent et al 2020; Martin-StPual et al 2017</td>
</tr>
<tr>
<td>Osmotic potential at full turgor (π100. MPa)</td>
<td>-1.26</td>
<td>-1.9</td>
<td>Constant for all symplasmic organs</td>
<td>Martin-StPual et al 2017; M. Moreno, 2022</td>
</tr>
<tr>
<td>Modulus of elasticity of the symplasm (c. MPa)</td>
<td>9.7</td>
<td>16</td>
<td>Constant for all symplasmic organs</td>
<td>Martin-StPual et al 2017; M. Moreno, 2022</td>
</tr>
<tr>
<td>g_{cuti_ref} (mmol.m^{-2}.s^{-1})</td>
<td>1.1</td>
<td>2.38</td>
<td>Targeted for a sensitivity analysis</td>
<td>Billon et al 2020; M. Moreno, 2022</td>
</tr>
<tr>
<td>Leaf area (m²)</td>
<td>0.17</td>
<td>0.14</td>
<td>Constant</td>
<td>This study</td>
</tr>
<tr>
<td>Succulence (gH_{2}O.m^{-2})</td>
<td>300</td>
<td>145</td>
<td>/</td>
<td>Ruffault and Martin-StPual, 2024</td>
</tr>
<tr>
<td>K_{plant} (Leaf_specific. mmol.m^{-2}.s^{-1}.MPa^{-1})</td>
<td>0.8</td>
<td>1.4</td>
<td>/</td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 5: Soil parameters (Puéchabon site) describing the water retention curves and the changes in soil conductivity, used for all three soil layers in Sureau simulations.

<table>
<thead>
<tr>
<th>θ_{sat}</th>
<th>θ_s</th>
<th>α</th>
<th>n</th>
<th>K_{sat} (mol/s/MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.1</td>
<td>0.0005</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 1. Conceptual representation of drought effects on hydraulic risk of monocultures and mixtures, for two species with contrasting water use strategies.

(A) Drought responses of species according the resistance strategy they adopt. During drought, the *isohydric* species (i.e., *Pinus halepensis*, also referred as drought avoidant) close its stomata at a relatively high-water potential (Ψ_{close}, corresponding to the water potential inducing full stomatal closure) and has a low cuticular conductance (g_{cuti}). Also, it has a relatively high P50 (water potential causing 50 %...
loss of hydraulic conductivity), making it more vulnerable to xylem cavitation.
Whereas, the anisohydric species (i.e., Quercus ilex, also referred as drought tolerant),
has a lower Ψ_{close} and a higher g_{cut}, making it consuming more water. Additionally, it
has a lower P50 (water potential causing 50 % loss of hydraulic conductivity), making
it more resistant to xylem cavitation.

(B) Experimental design and hypothesized drought responses for monocultures and
mixtures of an isohydric (drought avoidant) and an anisohydric (drought tolerant)
species. The transpiration, water potentials (Ψ_{soil}: overall pot soil water potential; Ψ_{pd}:
plant predawn water potential) and hydraulic safety margins (HSM) for each situation
and species. HSM represents the risk of hydraulic failure, it generally refers as the
difference between the minimum plant water potential and vulnerability to cavitation
(P50, the water potential causing 50 % of embolism). In the isohydric monoculture,
tree transpiration is expected to reduce rapidly after the onset of drought, limiting the
drop in Ψ_{soil} and Ψ_{pd}, and hence the hydraulic failure risk (positive HSM). In the
anisohydric monoculture, transpiration should decrease later as stomatal control is
expected to be more released than the one of the isohydric species. This should trigger
a steeper decrease of Ψ_{soil} and Ψ_{pd}, thereby increasing the risk of hydraulic failure
(more negative HSM). In the mixture without root separation, transpiration of the
isohydric should decrease earlier than for the anisohydric. This is expected to dampen
overall soil water loss and thus Ψ_{pd} and HSM of the anisohydric species compared to
the monoculture. However, the water consumption of the anisohydric continue
beyond the point of stomatal closure and of cavitation of the isohydric. This triggers a
decrease of steeper decline of Ψ_{pd} and HSM for the isohydric compare to
monoculture. A mixture with root separation illustrates that when each species root
system occupies its proper soil volume, the regulation of the transpiration, the water
potentials dynamics and the HSM are expected to be the same as in monoculture. As
Ψ_{soil} represents the global pot soil water potential, it is here equal to the mean of both
compartment soil water potential.
Figure 2. Drought impact on water potential and hydraulic risk according to species mixture and root separation.

(A) Soil (Ψ_{soil}) and leaf predawn water potentials (Ψ_{pd}) for the different pot compositions at each measurement date. Ψ_{soil} represent average values computed at the pot level from manual weightings (grey points). The average Ψ_{pd} of Q. ilex and P. halepensis correspond respectively to black and white dots. Standard deviations are represented and significant differences between Ψ_{soil} and Ψ_{pd} obtained using Students’ t-tests are indicated (ns, non-significant difference; *, 0.01 ≤ P_value < 0.05; **, 0.001 ≤ P_value < 0.01; ***, P_value < 0.001). For Ψ_{pd}, N = 24 for monocultures (pooling monocultures with and without root separation/two trees per pots) and 6 for mixtures. For Ψ_{soil}, N = 12 for monocultures (pooling monocultures with and without root separation) and 6 for mixtures concerning Ψ_{soil}.

(B) Hydraulic safety margins (HSM) measured at the driest date of the experiment in monocultures (with and without root separation) and the mixture without root separation. HSM were computed as the difference between Ψ_{pd} at the driest date and the P50 (i.e., Ψ_{pd} causing 50% embolism). Significant differences between HSM according species and pot modalities were obtained using Students’ t-tests and are indicated (ns, non-significant difference; *, 0.01 ≤ P_value < 0.05). N = 24 for monocultures (pooling monocultures with and without root separation/two trees per pots) and 6 for mixtures. Boxes represent the median, 25th and 75th percentiles, error bars the 10th and 90th percentiles, and dots outliers.

Figure 3. Mixture effect on the hydric behavior of Q. ilex.

(A) Relationships between soil (Ψ_{soil}) and predawn (Ψ_{pd}) water potentials of Q. ilex and P. halepensis in mixtures with root separation, without root separation and monocultures. Different colors were used for monocultures (white dots), mixture with root separation (grey dots) and mixture without root separation (black dots). The isoline (y=x) is reported in orange. Distinct linear fits between Ψ_{soil} and Ψ_{pd} are depicted for significantly different relationships (see Table 2), and the corresponding equations given. For Q. ilex, fit between Ψ_{soil} and Ψ_{pd} combining both monoculture and mixture is represented in dashed line and in solid black line for mixture without root separation for the latter. For P. halepensis, fit between Ψ_{soil} and Ψ_{pd} combines all three pots modalities. N = 96 for monocultures (with and without root separation) and 24 for mixtures for each root separation category.

(B) Relationships between predawn water potentials (Ψ_{pd}) of Q. ilex and P. halepensis in mixtures with root separation and without root separation. N = 24 for each root separation category. Summary statistics are shown in Table 3.

Figure 4. SurEau model simulations in monocultures and mixture (refer to as Benchmark simulation in the text). Upper panels show the simulated dynamics of transpiration (T_{plant}, in g/h) and the total tree transpiration until hydraulic failure (Total T_{plant}, in g). Lower panels show the leaf (Ψ_{leaf}) and soil (Ψ_{soil}) water potentials. The time to reach hydraulic failure (THF, corresponding to the number of days to reach 100% loss in hydraulic conductivity) is indicated in white and black.
respectively for *P. halepensis* and *Q. ilex* respectively for the different composition treatments.

Figure 5. Sensitivity analysis with the SurEau model to explore the role of K_{root}, g_{cuti}, and K_{soil} (which is modified through the fine root length) on the changes of the relationship between soil water potential (Ψ_{soil}) and plant water potential (Ψ_{leaf}). (A) Test of sensitivity to root conductance (K_{root}) and leaf cuticular conductance (g_{cuti}) parameters for *P. halepensis*. (B) Test of sensitivity to fine root length for *Q. ilex* (fine root length multiplied by ½, 1 and 4 compared to the benchmark). Note that the scales of the x-axis differ between plots. Model parameters are provided in the Tables 4 and 5.

References

Ruffault, J., Martin-StPaul, N., 2024. Ecophysiological and fuel moisture content data from an experimental drought study on Pinus halepensis and Quercus ilex. https://doi.org/10.57745/JTBTTF

Competing Interest Statement

Authors declare no competing interest.
Figure 1. Conceptual representation of drought effects on hydraulic risk of monocultures and mixtures, for two species with contrasting water use strategies.

(A) Drought responses of species according the resistance strategy they adopt. During drought, the *isohydric* species (i.e., *Pinus halepensis*, also referred as drought avoidant) close its stomata at a relatively high-water potential (Ψ_{close}, corresponding to the water potential inducing full stomatal closure) and has a low cuticular conductance (g_{cuti}). Also, it has a relatively high P50 (water potential causing 50% loss of hydraulic conductivity), making it more vulnerable to xylem cavitation. Whereas, the *anisohydric* species (i.e., *Quercus ilex*, also referred as drought tolerant), has a lower Ψ_{close} and a higher g_{cuti}, making it consuming
more water. Additionally, it has a lower P50 (water potential causing 50% loss of hydraulic conductivity), making it more resistant to xylem cavitation.

(B) Experimental design and hypothesized drought responses for monocultures and mixtures of an isohydric (drought avoidant) and an anisohydric (drought tolerant) species. The transpiration, water potentials (Ψ_{soil}: overall pot soil water potential; Ψ_{pd}: plant predawn water potential) and hydraulic safety margins (HSM) for each situation and species. HSM represents the risk of hydraulic failure, it generally refers as the difference between the minimum plant water potential and vulnerability to cavitation (P50, the water potential causing 50% of embolism). In the isohydric monoculture, tree transpiration is expected to reduce rapidly after the onset of drought, limiting the drop in Ψ_{soil} and Ψ_{pd}, and hence the hydraulic failure risk (positive HSM). In the anisohydric monoculture, transpiration should decrease later as stomatal control is expected to be more released than the one of the isohydric species. This should trigger a steeper decrease of Ψ_{soil} and Ψ_{pd}, thereby increasing the risk of hydraulic failure (more negative HSM). In the mixture without root separation, transpiration of the isohydric should decrease earlier than for the anisohydric. This is expected to dampen overall soil water loss and thus Ψ_{pd} and HSM of the anisohydric species compared to the monoculture. However, the water consumption of the anisohydric continue beyond the point of stomatal closure and of cavitation of the isohydric. This triggers a decrease of steeper decline of Ψ_{pd} and HSM for the isohydric compare to monoculture. A mixture with root separation illustrates that when each species root system occupies its proper soil volume, the regulation of the transpiration, the water potentials dynamics and the HSM are expected to be the same as in monoculture. As Ψ_{soil} represents the global pot soil water potential, it is here equal to the mean of both compartment soil water potential.
Figure 2. Drought impact on water potential and hydraulic risk according to species mixture and root separation.

(A) Soil (Ψ_{soil}) and leaf predawn water potentials (Ψ_{pd}) for the different pot compositions at each measurement date. Ψ_{soil} represent average values computed at the pot level from manual weightings (grey points). The average Ψ_{pd} of *Q. ilex* and *P. halepensis* correspond respectively to black and white dots. Standard deviations are represented and significant differences between Ψ_{soil} and Ψ_{pd} obtained using Students’ t-tests are indicated (ns, non-significant difference; *, 0.01 ≤ P_value < 0.05; **, 0.001 ≤ P_value < 0.01; ***, P_value < 0.001). For Ψ_{pd}, N = 24 for
monocultures (pooling monocultures with and without root separation/two trees per pots) and 6 for mixtures. For Ψ_{soil}, N = 12 for monocultures (pooling monocultures with and without root separation) and 6 for mixtures concerning Ψ_{soil}.

(B) Hydraulic safety margins (HSM) measured at the driest date of the experiment in monocultures (with and without root separation) and the mixture without root separation. HSM were computed as the difference between Ψ_{pd} at the driest date and the P50 (i.e., Ψ_{pd} causing 50% embolism). Significant differences between HSM according species and pot modalities were obtained using Students’ t-tests and are indicated (ns, non-significant difference; *, 0.01 ≤ P_value < 0.05). N = 24 for monocultures (pooling monocultures with and without root separation/two trees per pots) and 6 for mixtures. Boxes represent the median, 25th and 75th percentiles, error bars the 10th and 90th percentiles, and dots outliers.
Figure 3. Mixture effect on the hydric behavior of *Q. ilex*.

(A) Relationships between soil (Ψ_{soil}) and predawn (Ψ_{pd}) water potentials of *Q. ilex* and *P. halepensis* in mixtures with root separation, without root separation and monocultures. Different colors were used for monocultures (white dots), mixture with root separation (grey dots) and mixture without root separation (black dots). The isoline ($y=x$) is reported in orange. Distinct linear fits between Ψ_{soil} and Ψ_{pd} are depicted for significantly different relationships (see Table 2), and the corresponding equations given. For *Q. ilex*, fit between Ψ_{soil} and Ψ_{pd} combining both monoculture and mixture is represented in dashed line and in solid black line for mixture without root separation for the latter. For *P. halepensis*, fit between Ψ_{soil} and Ψ_{pd} combines all three pots modalities. N = 96 for monocultures (with and without root separation) and 24 for mixtures for each root separation category.

(B) Relationships between predawn water potentials (Ψ_{pd}) of *Q. ilex* and *P. halepensis* in mixtures with root separation and without root separation. N = 24 for each root separation category. Summary statistics are shown in Table 3.
Figure 4. SurEau model simulations in monocultures and mixture (refer to as Benchmark simulation in the text). Upper panels show the simulated dynamics of transpiration (T_{plant}, in g/h) and the total tree transpiration until hydraulic failure (Total T_{plant}, in g). Lower panels show the leaf (Ψ_{leaf}) and soil (Ψ_{soil}) water potentials. The time to reach hydraulic failure (THF, corresponding to the number of days to reach 100% loss in hydraulic conductivity) is indicated in white and black respectively for $P. \ halepensis$ and $Q. \ ilex$ respectively for the different composition treatments.
Figure 5. Sensitivity analysis with the SurEau model to explore the role of K_{root}, g_{cuti} and K_{soil} (which is modified through the fine root length) on the changes of the relationship between soil water potential (Ψ_{soil}) and plant water potential (Ψ_{leaf}). (A) Test of sensitivity to root conductance (K_{root}) and leaf cuticular conductance (g_{cuti}) parameters for *P. halepensis*. (B) Test of sensitivity to fine root length for *Q. ilex* (fine root length multiplied by $\frac{1}{2}$, 1 and 4 compared to the benchmark). Note that the scales of the x-axis differ between plots. Model parameters are provided in the Tables 4 and 5.

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Google Scholar: Author Only Title Only Author and Title

Ruffault, J., Martin-StPaul, N., 2024. Ecophysiological and fuel moisture content data from an experimental drought study on Pinus halepensis and Quercus ilex. https://doi.org/10.57745/JTBTTF

Competing Interest Statement

Authors declare no competing interest.