In this issue of Occupational Medicine

This issue has a respiratory flavour. Occupational asthma accounts for 9–15% of asthma in adults of working age and is the most reported occupation-related lung disease in many countries including the UK. Identifying causative agents is therefore worthwhile if the condition is going to be prevented in the future. Three papers on occupational asthma and reactive airways disease demonstrate three different methods of identifying asthmagenic agents.

Occupational disease reporting schemes are now a proven means of identifying causative agents and their relative frequency. The Shield scheme is a voluntary reporting scheme for occupational asthma in the West Midlands. Diar Bakerly et al. [1] analysed 1461 cases of occupational asthma referred to the scheme over a 15-year period. They found a higher than expected rate of asthma in this part of the UK. Welders and health care-related professions were the most commonly reported occupations and isocyanates were the commonest offending agents, responsible for 21% of reports, but metal working fluids were the next most frequent and are identified as an emerging cause of occupational asthma. The authors also conclude that schemes like Shield can help in identifying outbreaks by linking cases at the workplace.

Using a very different approach, Li et al. [2] carried out a population study in Sweden to investigate possible links between occupation and asthma. In >25 000 hospitalizations for asthma in those aged >30, they found that socioeconomic status (low educational level) and occupation had an effect on the population’s risk of hospitalization for asthma. Some occupations had an increased risk whereas others were associated with a decreased risk, but this may enable a search for specific agents in those occupations that were associated with an increased risk of hospitalization for asthma.

Thirdly, Shakeri et al. [3] carried out a systematic review to identify causes of reactive airways dysfunction syndrome (RADS). Not unusually, they found significant information gaps. The most commonly reported agents were chlorine, toluene di-isocyanate and oxides of nitrogen with most exposures occurring in the workplace and affecting men. Dyspnoea and cough were the commonest symptoms. In light of the general lack of adequate information on exposure, investigation and outcome, they suggest a more structured approach to gathering information and a minimum data set for reporting RADS cases is proposed.

To continue our theme of papers about occupational respiratory disease and asthma, exposure to platinum salts is a well-recognized cause of occupational asthma. The cumulative incidence of sensitization after 5 years has been reported at >50% in some studies. Steinfort et al. [4] investigated a cohort of Australian auto-catalyst workers exposed to tetra-amine platinum dichloride (TPC). None of the 26 subjects followed up described the development of new respiratory or dermatological symptoms and no one developed positive skin reactivity to platinum salts. FEV1 remained unchanged for all subjects over the course of the study period. The authors conclude that TPC is not associated with the development of occupational asthma and that TPC should be used in preference to chloroplatinic acid in catalyst production to minimize the impact of occupational illness due to platinum salt sensitivity.

Considering another unfortunately common occupational respiratory disease, Mastrangelo et al. [5] investigated whether lung cancer screening with CT was effective and acceptable in former asbestos workers. They examined 1119 male asbestos workers. Pleural plaques were found in 375 workers (32%), and 338 workers (29%) were included in the radiological follow-up which led to 25 biopsies and 5 screen-detected lung cancers (0.4%), one in stage I. Screening adherence and frequency of detection were low, while costs and radiation dose were high. In spite of a high cumulative asbestos exposure, lung cancer risk was not increased relative to the general population. The screening programme was not felt to be cost effective from the perspective of the government as a third-party funding agency.

To complete our respiratory theme, Chris Stenton [6] examines the MRC respiratory questionnaire, which has been reliably relating symptoms and lung function for almost 50 years.

Elsewhere in this issue, we have a handful of papers examining carpal tunnel syndrome in Turkish steel workers [7], return to work after carpal tunnel syndrome surgery [8], assessment of hand–arm vibration syndrome [9] and a case report of cold haemagglutinin disease misdiagnosed as hand–arm vibration syndrome [10]. We also start a new series on art and occupation. Mike McKiernan has selected artwork which explores the link between art and occupation, and he commences with Lucas Gassel’s Coppermine. In the accompanying editorial, Mike explains why an interest in the arts and the medical humanities is relevant to practising occupational physicians.

John Hobson
Honorary Editor

References

1. Diar Bakerly N, Moore VC, Vellore AD, Jaakkola MS, Robertson AS, Burge PS. Fifteen-year trends in occupational


