LETTERS TO THE EDITOR

RE: “ESTIMATION OF RISK OF CANCERS BEFORE OCCURRENCE OF ACQUIRED IMMUNODEFICIENCY SYNDROME IN PERSONS INFECTED WITH HUMAN IMMUNODEFICIENCY VIRUS”

Studies linking acquired immunodeficiency syndrome (AIDS) and cancer registries can examine whether the risk for particular cancers increases over time with respect to AIDS onset. Such a finding suggests that increasing immunosuppression related to human immunodeficiency virus (HIV) plays a causal role. In these studies, estimating cancer risk among persons with asymptomatic HIV infection during the period before AIDS onset is challenging. AIDS registries identify only those persons who have actually developed AIDS. Because some HIV-infected persons with cancer do not survive their cancer diagnosis to develop AIDS, linkage with AIDS registries will underascertain cancers for the pre-AIDS period. This problem will be serious for cancers with a high mortality rate.

We were thus surprised by the results reported by Li et al. (1), who compared registry-based methods for estimating cancer risk in Australians with asymptomatic HIV infection. These authors found that standardized incidence ratios for cancers arising during the 5-year pre-AIDS period, estimated retrospectively from a linkage of AIDS and cancer registries, were similar to those calculated prospectively from a linkage of HIV and cancer registries. They concluded that survival adjustment of the prospectively derived standardized incidence ratios was not needed.

In the United States, we previously conducted a match of 11 AIDS and cancer registries (2). Our study included more than 300,000 persons with AIDS and thus was much larger than the Australian study (1), which included 8,118 AIDS cases. In deriving standardized incidence ratios for pre-AIDS periods in our study, we used cancer survival rates to adjust downward the expected counts of cancers because many HIV-infected persons with cancer die before developing AIDS (2).

Lung cancer is a good example. By using expected rates adjusted for survival, we previously reported a significant trend in standardized incidence ratios across time relative to AIDS onset (2), with standardized incidence ratios increasing from 1.23 (in the period –60 to –25 months relative to AIDS, based on 31 cases) to 2.59 (–24 to –7 months, 80 cases) to 2.63 (4 to 27 months, 239 cases). This trend was difficult to interpret, and, because there are few other data to support a link between immunosuppression and lung cancer, it may not have arisen from progressive HIV-related immunosuppression (2). Nonetheless, this trend would have been much more exaggerated if we had not adjusted the pre-AIDS standardized incidence ratios for survival. For instance, we roughly calculate that the unadjusted standardized incidence ratio for the period –60 to –25 months (midpoint, –42 months) relative to AIDS would have been 1.23 × 0.14 = 0.17 because the 42-month survival rate for lung cancer patients is only 14 percent (3). We argue that this is a gross underestimate, since it is improbable that HIV-infected persons have a lower risk than the general population given their high prevalence of smoking (4).

We are uncertain why Li et al. (1) found that survival adjustment of pre-AIDS standardized incidence ratios was unnecessary. For many cancers in their study (e.g., lip and anal cancers, Hodgkin’s disease), mortality is relatively low, while there were few data for individual cancers with high mortality. For example, the study included only two lung cancers. The small numbers for high-mortality cancers make it difficult to examine the impact of survival adjustment where it is most relevant. Finally, Li et al. suggest that cancer treatment accelerates HIV progression, which might counterbalance losses from cancer-related deaths. While we agree that treatment could have this effect, we know of no data to indicate that the effect would be of the same magnitude as cancer-related mortality.

In summary, survival adjustment of expected rates during the pre-AIDS period is necessary to avoid underestimating the pre-AIDS risk of cancer and drawing false conclusions about the effects of HIV-associated immunosuppression, especially for high-mortality cancers.

REFERENCES

Eric A. Engels1, Morten Frisch1,2, Robert J. Biggar1, and James J. Goedert1
1 Viral Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
2 Department of Epidemiology Research, Danish Epidemiology Science Center, Statens Serum Institut, DK-2300 Copenhagen, Denmark

TWO AUTHORS REPLY

There has been a great deal of methodological debate about studies linking acquired immunodeficiency syndrome (AIDS) and cancer, especially about whether the pre-AIDS period can be used in calculating rates. We were in a unique...
position to address this issue using real data because of the existence of both human immunodeficiency virus (HIV) and AIDS registries in Australia. Overall, our results suggest that pre-AIDS linkage data can be used (1).

Regarding the specific issues expressed by Engels et al. (2), we share their concern that estimating risks during the pre-AIDS period in AIDS–cancer registry linkage studies may be biased downward by the increased mortality of people diagnosed with cancer before AIDS. This bias can be accounted for by adjusting for cancer survival rates in the linkage population, as we did in our study (1) and a previous one (3). We did not present estimates of survival-adjusted relative risks in our most recent report (4) but referenced the current report demonstrating that adjustment did not materially affect the results (1). Investigators who do not have access to HIV-cancer linkage will not be able to perform this comparison. As Engels et al. acknowledge, estimated risks may also be biased upward by potential increased rates of progression to AIDS among people diagnosed with cancer. However, because of a lack of information on the magnitude of any such association in HIV-positive people, it is not possible to adjust for this bias. For this reason, in our paper we concluded the following: “We would recommend that in publications both adjusted and unadjusted analyses are presented” (1, p. 155).

We did not conclude (1), as stated by Engels et al. (2), that survival adjustment is unnecessary. Rather, our belief that both adjusted and unadjusted data be presented allows for the possibility of bias in either direction. Engels et al. are almost certainly correct in their supposition that, for rapidly fatal tumors, such as lung cancer, downward bias is likely to dominate. However, for many other tumors that occur commonly at this age and that have been hypothesized to be related to HIV-associated immunodeficiency, such as testicular cancer, Hodgkin’s disease, and anal cancer, survival is much better, and successful therapy for these conditions, or the diagnostic work-up for these conditions, may lead to substantial upward bias; thus, the association between Hodgkin’s disease and immunodeficiency may have been understated because of this potential bias.

Of course, other important biases may affect the use of pre-AIDS data in AIDS–cancer registration linkage studies. A major potential bias for data on cancer occurrence since the mid-1990s is that, as a result of the use of effective antiretroviral therapy, people with AIDS now constitute an increasing minority of people who have HIV. People diagnosed with AIDS are increasingly unlikely to represent people with HIV. Factors that influence access to therapy, particularly in countries without universal health care such as the United States, are likely to be important in this selection.

In this new era of effective HIV therapy, AIDS–cancer registry linkage studies are increasingly unrepresentative of the total population of HIV-infected persons. Although our HIV-cancer linkage study (1) showed that the relative risks of cancer in the 5 years prior to AIDS diagnosis could reliably estimate cancer risk in HIV-infected persons, this finding may change as an increasingly smaller proportion of persons with HIV are diagnosed with AIDS. In the future, studies of cancer risk among HIV-infected populations at all stages of immunodeficiency will be needed to define prospectively the risk of cancer associated with HIV-related immunodeficiency.

REFERENCES


Andrew E. Grulich and Matthew G. Law
National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney NSW 2010, Australia