Prior robust empirical Bayes inference for large-scale data by conditioning on rank with application to microarray data

J. G. LIAO*
Division of Biostatistics and Bioinformatics, Penn State University, Hershey, PA 17033, USA
jliao@phs.psu.edu

TIMOTHY MCMURRY
Division of Biostatistics, University of Virginia, Charlottesville, VA 22908, USA

ARTHUR BERG
Division of Biostatistics and Bioinformatics, Penn State University, Hershey, PA 17033, USA

SUMMARY

Empirical Bayes methods have been extensively used for microarray data analysis by modeling the large number of unknown parameters as random effects. Empirical Bayes allows borrowing information across genes and can automatically adjust for multiple testing and selection bias. However, the standard empirical Bayes model can perform poorly if the assumed working prior deviates from the true prior. This paper proposes a new rank-conditioned inference in which the shrinkage and confidence intervals are based on the distribution of the error conditioned on rank of the data. Our approach is in contrast to a Bayesian posterior, which conditions on the data themselves. The new method is almost as efficient as standard Bayesian methods when the working prior is close to the true prior, and it is much more robust when the working prior is not close. In addition, it allows a more accurate (but also more complex) non-parametric estimate of the prior to be easily incorporated, resulting in improved inference. The new method’s prior robustness is demonstrated via simulation experiments. Application to a breast cancer gene expression microarray dataset is presented. Our R package rank.Shrinkage provides a ready-to-use implementation of the proposed methodology.

Keywords: Bayesian shrinkage; Confidence intervals; Ranking bias; Robust multiple estimation.

1. INTRODUCTION

Large-scale technologies, which measure many similar entities in parallel, have emerged as an important tool in biomedical research. For example, the expression level of thousands of genes is compared between cancer and normal tissues in microarray experiments. In genome-wide association studies, the log odds ratio of the association of disease status (disease vs. control) and single-nucleotide polymorphism
(SNP) frequency is estimated for thousands or millions of SNPs in a single case–control study. There are two prominent features in large-scale data. First, different parameters (e.g. difference in expression levels between cancer and normal tissues for different genes) are often studied with the same set of subjects and using the same design. Second, a large majority of the underlying parameters are 0. Because of this, the unknown parameters can be profitably modeled as random effects in an empirical Bayes framework. A popular model is to treat the large number of parameters as draws from a spike-and-slab prior distribution that is a mixture of a large mass at 0 and a non-zero component. The parameters in the spike-and-slab prior can be estimated from the many parallel measurements, resulting in an empirical Bayes analysis that borrows information across different genes or SNPs. The empirical Bayes framework automatically adjusts for the large number of hypothesis tests or effect estimates. The application of empirical Bayes to large-scale testing naturally leads to the false discovery rate (FDR) and the local FDR (Benjamini and Yekutieli, 2005; Efron and others, 2001; Newton and others, 2004; Efron, 2008). The application to parallel estimation (e.g. of the log fold changes in expression level) in the microarray context includes Newton and others (2001), Kendziorski and others (2003), and Smyth (2004). There is substantial literature in this area and the reader is referred to Efron (2010) for a summary of the state of the art in the empirical Bayes approach to large-scale inference and for complete references.

This paper focuses on estimating the effect sizes, the log fold change in gene expression level in microarray data, for example. We show that a popular empirical Bayes random effects model can lead to poor performance if the form of the prior is mis-specified; this has important practical implications because in real applications we are never certain of the correct distributional form, especially in the tails of the distribution, which often produce the most interesting observations. Motivated by this sensitivity to the form of the random effects model, we propose a new rank-conditioned inference in which shrinkage and confidence intervals are based on the distribution of the measurement error conditioned on the rank of the data instead of on the data themselves as in a traditional Bayesian posterior. The primary advantage of the rank-conditioned method is that it is almost as efficient as standard Bayesian methods when the working prior is close to the true prior, and it is much more robust when the working prior is not close. In particular, the proposed method provides efficient and valid inference even when the working random effects model substantially deviates from the true model in location. The proposed method can, therefore, substantially improve empirical Bayes inference for microarray studies as well as other large-scale data such as for genome-wide association studies and flow cytometry.

To put the rank-conditioned method in the context of the broader literature, we note the following. First, we condition on rank of the observed data in order to obtain more robust estimation of effect size. This is different from Noma and others (2010), whose aim is to better rank the effect sizes. Second, the idea of combining a Bayes formulation with rank-based likelihood has previously been proposed and studied in other context; for example, Dunson and Taylor (2005) use the idea for estimating quantiles, Gu and Ghosal (2009) for estimating receiver operating characteristic curves, and Hoff (2007) in estimating semi-parametric copula. Large-scale data is an area where this idea can be more profitably used because rank of the observed data and the observed data themselves are closely correlated. We are, therefore, able to take advantage of the robust property of the rank method with little loss of efficiency compared with standard empirical Bayes. Third, improved robustness can also be achieved through a more diffuse prior for the random effects. For example, Do and others (2005) and Kim and others (2009) combine Dirichlet process with spike-and-slab prior in a non-parametric Bayes model for random effects. A more diffuse prior, however, necessarily weakens the effectiveness of shrinkage and information borrowing as seen in the simulation study in Section 4.2.

The paper is organized as follows. Section 2 describes a model for large-scale microarray data analysis. Section 3 presents our proposed ranked-conditioned inference. Section 4 consists of simulation studies assessing the performance of rank-conditioned inference. Section 5 applies the proposed method to a breast cancer microarray dataset. Section 6 is discussion.
2. Empirical Bayes model for large-scale data

For concreteness, throughout the remainder of the paper, we focus on estimating the standardized effect size in case–control microarray experiments; application of our method in other large-scale data, such as genome-wide association studies, is similar.

We begin by describing an empirical Bayes model for the log fold change in gene expression. Let \(y_{ij}^{[1]} \) and \(y_{ij}^{[2]} \) be the log expression level of the \(i \)th gene for the \(j \)th subject in the cancer and normal group, respectively. The total number of genes is \(n \) so that \(i = 1, \ldots, n \). We start with the model

\[
\begin{align*}
y_{ij}^{[1]} &\sim \mathcal{N}(\alpha_i^{[1]}, \rho_i^{2}), \quad j = 1, \ldots, m_i^{[1]}, \\
y_{ij}^{[2]} &\sim \mathcal{N}(\alpha_i^{[2]}, \rho_i^{2}), \quad j = 1, \ldots, m_i^{[2]},
\end{align*}
\]

where \(\rho_i^{2} \) is the variance of the \(i \)th gene expression common for the cancer and normal groups, and \(m_i^{[1]} \) and \(m_i^{[2]} \) are the respective sample sizes. The quantity \(\alpha_i^{[1]} - \alpha_i^{[2]} \) is the average (log) fold change (Guo and others, 2006; Choe and others, 2005). Let \(\bar{y}_{i}^{[1]} \) be the mean of \(y_{ij}^{[1]} \) over \(j \), and similarly let \(\bar{y}_{i}^{[2]} \) be the mean of \(y_{ij}^{[2]} \). It then follows that

\[
z_i \equiv \rho_i^{-1} (\bar{y}_{i}^{[1]} - \bar{y}_{i}^{[2]}) \sim \mathcal{N}(\theta_i, \sigma_i^{2}),
\]

where

\[
\theta_i \equiv \rho_i^{-1} (\alpha_i^{[1]} - \alpha_i^{[2]})
\]

is the standardized log fold change and \(\sigma_i^{2} = (m_i^{[1]})^{-1} + (m_i^{[2]})^{-1} \). Note that \(m_i^{[1]} \) and \(m_i^{[2]} \) typically do not vary much from gene to gene in a microarray experiment so that variance \(\sigma_i^{2} \) should be relatively constant across \(i \).

The first stage of our empirical Bayes model is

\[
z_i = \theta_i + \varepsilon_i, \quad i = 1, \ldots, n, \tag{2.1}
\]

where \(\varepsilon_i \sim \mathcal{N}(0, \sigma_i^{2}) \) independently for \(i = 1, \ldots, n \). In application, the \(\rho_i \) in the definition of \(z_i \) will be replaced by its pooled estimate using \(y_{ij}^{[1]} \) and \(y_{ij}^{[2]} \) and \(z_i \sigma_i^{-1} \) will then follow a \(t \)-distribution. For simplicity, we shall use normal error model (2.1), since the \(t \) degrees of freedom, \(m_i^{[1]} + m_i^{[2]} - 2 = 207 \), is large for the breast cancer data in Section 6. For a smaller \(m_i^{[1]} + m_i^{[2]} - 2 \), a modified version of (2.1) based on a non-central \(t \)-distribution can be used instead. For a genome-wide association study, \(z_i \) can be the estimated log odds ratio from a logistic regression for the association between disease status and the \(i \)th SNP, \(\theta_i \) be the unknown true log odds ratio and \(\sigma_i \) be the standard error of estimate \(z_i \). Next, we will model \(\theta_i \) as independent random draws from a prior \(\pi \). Given prior \(\pi \), the Bayesian inference for \(\theta_i \) is based on the posterior distribution of \(\theta_i \) given \(z_i \) with density

\[
f(\theta_i | z_i, \pi) \propto \pi(\theta_i) \phi_i(z_i - \theta_i), \tag{2.2}
\]

where \(\phi_i \) is a \(\mathcal{N}(0, \sigma_i^{2}) \) density. The posterior mean \(\theta_i^{\text{Bayes}} \equiv \mathbb{E}[\theta_i | z_i] \) is a standard Bayes estimator of \(\theta_i \) and the \(\alpha/2 \) and \(1 - \alpha/2 \) quantiles of the posterior distribution provide the \(1 - \alpha \) confidence limits \(\ell_i^{\text{Bayes}} \) and \(u_i^{\text{Bayes}} \).

The prior \(\pi \), however, is unknown. Empirical Bayes analysis uses a working prior \(\pi_p \) in place of \(\pi \) with the parameters in \(\pi_p \) estimated from data \(z_1, \ldots, z_n \) usually via maximum likelihood (Morris, 1983).
Our parametric working prior π_p is a three-component mixture

$$\pi_p = (1 - \eta_1 - \eta_2)\delta_0 + \eta_1 N(\mu_1, \omega_1^2) + \eta_2 N(\mu_2, \omega_2^2),$$

where δ_0 is the delta function (point mass) at 0, and $N(\mu_1, \omega_1^2)$ and $N(\mu_2, \omega_2^2)$, respectively, model the up- and down-regulated genes. This working prior is the same as that in Noma and others (2010) with one important difference: we use (2.3) to model the distribution of the standardized differences which reflects the fact that the conditional mean of δ_j is θ_j for $j = 1, \ldots, n$. We show in Section 5 that modeling the standardized differences θ_i as draws from a common prior leads to a much better fit to a breast cancer microarray dataset.

An important practical advantage of working prior (2.3) is that the posterior distribution π_p can also be written as

$$\pi_p = p \eta_1 N(\mu_1, \omega_1^2) + p \eta_2 N(\mu_2, \omega_2^2),$$

for any given η_1 and η_2, when the expectation is evaluated with respect to the joint distribution of $\theta_1, \ldots, \theta_n$ and $\varepsilon_1, \ldots, \varepsilon_n$.

3. Rank-conditioned inference

3.1 Rank-conditioned shrinkage

For our basic model (2.1), we have

$$E[\theta_i | z_i] + E[\varepsilon_i | z_i] = z_i.$$

The Bayesian estimate $\hat{\theta}_i^{\text{Bayes}} = E[\theta_i | z_i]$ can also be written as

$$\hat{\theta}_i^{\text{Bayes}} = z_i - E[\varepsilon_i | z_i],$$

which reflects the fact that the conditional mean of ε_i, given the observed z_i, is no longer 0.

For the dataset z_1, \ldots, z_n, let $r(i)$ be the rank of z_i among z_1, \ldots, z_n. Our rank-conditioned inference for θ_i is based on the conditional distribution

$$\varepsilon_i | r(i) = j,$$

where j is the realized value of rank $r(i)$. The rank-conditioned shrinkage estimator is defined as

$$\hat{\theta}_i^{\text{rank}} = z_i - E[\varepsilon_i | r(i) = j],$$

where $E[\varepsilon_i | r(i) = j]$ is the conditional mean of the error ε_i, given that z_i has rank j among z_1, \ldots, z_n. Given prior π, a draw from (3.1), $\varepsilon_i^* | j$, which is error ε_i^* conditional on $r(i) = j$, can be generated using the following three steps:

Step 1: Generate θ_i^* from density π independently for $i = 1, \ldots, n$. Let $z_i^* = \theta_i^* + \varepsilon_i^*$, where $\varepsilon_i^* \sim N(0, \sigma_i^2)$.

Step 2: Let $r^*(i)$ be the rank of z_i^* among z_1^*, \ldots, z_n^*.

Step 3: Repeat Steps 1–2 until $r^*(i) = j$. Then output $\varepsilon_i^* = \varepsilon_i^* | j$.

Theorem 3.1 Let $\theta_i \sim \pi$ and $\varepsilon_i \sim N(0, \sigma_i^2)$ independently for $i = 1, \ldots, n$. Let z_i be defined as in model (2.1). Then $\hat{\theta}_i$ is unbiased in the sense that

$$E[\hat{\theta}_i^{\text{rank}} - \theta_i | r(i) = j] = 0,$$

for any given i and j, when the expectation is evaluated with respect to the joint distribution of $\theta_1, \ldots, \theta_n$ and $\varepsilon_1, \ldots, \varepsilon_n$.

3.1 Rank-conditioned shrinkage

For our basic model (2.1), we have

$$E[\theta_i | z_i] + E[\varepsilon_i | z_i] = z_i.$$

The Bayesian estimate $\hat{\theta}_i^{\text{Bayes}} = E[\theta_i | z_i]$ can also be written as

$$\hat{\theta}_i^{\text{Bayes}} = z_i - E[\varepsilon_i | z_i],$$

which reflects the fact that the conditional mean of ε_i, given the observed z_i, is no longer 0.

For the dataset z_1, \ldots, z_n, let $r(i)$ be the rank of z_i among z_1, \ldots, z_n. Our rank-conditioned inference for θ_i is based on the conditional distribution

$$\varepsilon_i | r(i) = j,$$

where j is the realized value of rank $r(i)$. The rank-conditioned shrinkage estimator is defined as

$$\hat{\theta}_i^{\text{rank}} = z_i - E[\varepsilon_i | r(i) = j],$$

where $E[\varepsilon_i | r(i) = j]$ is the conditional mean of the error ε_i, given that z_i has rank j among z_1, \ldots, z_n. Given prior π, a draw from (3.1), $\varepsilon_i^* | j$, which is error ε_i^* conditional on $r(i) = j$, can be generated using the following three steps:

Step 1: Generate θ_i^* from density π independently for $i = 1, \ldots, n$. Let $z_i^* = \theta_i^* + \varepsilon_i^*$, where $\varepsilon_i^* \sim N(0, \sigma_i^2)$.

Step 2: Let $r^*(i)$ be the rank of z_i^* among z_1^*, \ldots, z_n^*.

Step 3: Repeat Steps 1–2 until $r^*(i) = j$. Then output $\varepsilon_i^* = \varepsilon_i^* | j$.

Theorem 3.1 Let $\theta_i \sim \pi$ and $\varepsilon_i \sim N(0, \sigma_i^2)$ independently for $i = 1, \ldots, n$. Let z_i be defined as in model (2.1). Then $\hat{\theta}_i$ is unbiased in the sense that

$$E[\hat{\theta}_i^{\text{rank}} - \theta_i | r(i) = j] = 0,$$

for any given i and j, when the expectation is evaluated with respect to the joint distribution of $\theta_1, \ldots, \theta_n$ and $\varepsilon_1, \ldots, \varepsilon_n$.

Proof. Theorem 3.1 follows directly from definition (3.2) and (2.1):

\[E[\hat{\theta}_i \text{rank} | r(i) = j] = E[z_i - \varepsilon_i | r(i) = j] = E[\theta_i | r(i) = j]. \]

Theorem 3.1 says that \(\hat{\theta}_i \text{rank} \) corrects the ranking bias, a concept discussed as in Jeffries (2009).

In addition to point estimate \(\hat{\theta}_i \text{rank} \), the proposed method provides a natural confidence interval for \(\theta_i \). Let \(\ell_{i,j} \) and \(u_{i,j} \) satisfy

\[\Pr[\ell_{i,j} \leq \varepsilon_{i,j}^* \leq u_{i,j}] \geq 1 - \alpha. \] (3.3)

It follows that

\[\Pr[z_i - u_{i,j} < \theta_i < z_i - \ell_{i,j}] \geq 1 - \alpha. \]

We have, therefore, shown that the interval

\[(z_i - u_{i,j}, z_i - \ell_{i,j}) \] (3.4)

contains the realized \(\theta_i \) with \(1 - \alpha \) probability, given \(r(i) = j \) when \(\theta_1, \ldots, \theta_n \) and \(\varepsilon_1, \ldots, \varepsilon_n \) are drawn as in Theorem 3.1. \(\square \)

Conditioning on \(r(i) = j \) in the rank-conditioned shrinkage estimator (3.2) and confidence limits (3.4) is in fact closely related to conditioning on \(z_i \) itself in standard Bayes, as a larger \(z_i \) generally corresponds to a higher rank. More specifically, let \(G_n \) be the empirical distribution of \(z_1, \ldots, z_n \). Suppose that \(\sigma_i, i = 1, \ldots, n \), can be modeled as draws from some distribution \(F \). It then follows from Glivenko–Cantelli theorem that \(G_n \) converges uniformly to \(G \), the distribution of \(\theta + \varepsilon \) with \(\theta \sim \pi, \sigma \sim F \), and \(\varepsilon \sim \mathcal{N}(0, \sigma^2) \). In such a case, conditioning on \(r(i) = j \) is almost the same as conditioning on \(z_i \approx G^{-1}(j/n) \) so long as \(j/n \) is not close to 0 or 1 (the difference can be more substantial for \(j/n \) close to 0 or 1). The proposed rank-conditioned inference, however, can be much more robust than standard empirical Bayes against mis-specification of \(\pi \). For this, we have the following result.

Theorem 3.2 Let \(\theta_i \sim \pi \) and \(\varepsilon_i \sim \mathcal{N}(0, \sigma_i^2) \) independently for \(i = 1, \ldots, n \). Let \(z_i \) be defined as in model (2.1). In the case where the \(\sigma_i \) are equal, conditional distribution (3.1) and consequently rank-conditioned estimator (3.2) and confidence limits (3.4) remain the same (and valid) when the true prior density \(\pi(\theta) \) is replaced by density \(\pi(\theta - a) \) for any given constant \(a \).

Proof. The proof is straightforward. Let \(\theta_i^* \sim \pi \) and \(z_i^* = \theta_i^* + \varepsilon_i^* \) as in the three steps above. When the \(\sigma_i \) are equal, the rank of \(z_i^* \) is not changed when \(\theta_i^* \) are all translated by a constant \(a \), so the distribution of \(\varepsilon_{i,j}^* \) does not change. Theorem 3.2 then follows.

For unequal \(\sigma_1, \ldots, \sigma_n \), Theorem 3.2 remains approximately valid so long as the variation in \(\sigma_1, \ldots, \sigma_n \) is small. Section 5 demonstrates that the rank-based shrinkage is in general more robust, not just against location shift. This is a unique feature of rank-conditioned shrinkage: the ranking bias \(E[\varepsilon_i | r(i) = j] \) is negative for lower ranked \(j \) and positive for higher ranked \(j \) even when evaluated under a badly specified prior. In the three steps for generating \(\varepsilon_{i,j}^* \) at the beginning of this section, the prior \(\pi \) determines which \(\varepsilon_{i,j}^* \sim \mathcal{N}(0, \sigma_i^2) \) will be output as \(\varepsilon_{i,j}^* \). As such, the effect of a grossly mis-specified \(\pi \) on \(\hat{\theta}_i \text{rank} \) remains limited. A grossly mis-specified \(\pi \) can, however, have a much larger distorting impact on Bayes shrinkage estimator \(\hat{\theta}_i \text{Bayes} \).

Finally, a confidence interval such as (3.4) that adjusts for ranking \(r(i) \) can be crucial for valid inference; Benjamini and Yekutieli (2005) show that the unadjusted marginal confidence interval of \(\theta_i \) can
have coverage probability that differs substantially from the nominal coverage for top-ranked parameters selected based on the same data. They propose the false coverage rate controlled confidence interval as a solution to this problem. As shown in Efron (2010, pp. 230–233), however, this interval can differ markedly from the corresponding Bayes interval and can be frighteningly wide. Westfall (2005) suggests constructing empirical Bayes confidence intervals centered at the shrunken estimators; the same idea is used and further developed in Qiu and Gene Hwang (2007) and in Ghosh (2009). Our interval is similar, but is instead based on rank-conditioned shrinkage. It is generally very close to the corresponding Bayes interval when the working prior is close to the true prior.

3.2 Non-parametric update of the parametric prior

In Section 2, a parametric working prior π_p is used in empirical Bayes to capture the primary structure of π. For the rank-conditioned method, we propose a non-parametric update of density π_p to density π_{pu} by formula

$$\pi_{pu}(\theta) = \frac{1}{n} \sum_{i=1}^{n} f(\theta|z_i; \pi_p),$$

where the posterior density $f(\theta|z_i; \pi_p)$ is given by (2.2) with π replaced by π_p and with θ_i replaced by a generic θ. The parameters in π_p will take the values of their maximum likelihood estimates. π_{pu} can be interpreted as the average of the posterior densities for θ_i given z_i with prior $\theta \sim \pi_p$. Vardi and others (1985) use a similar update to improve the estimated image density in positron emission tomography. They show that it is one expectation-maximization iteration and therefore always increases the (marginal) likelihood of z_1, \ldots, z_n. See also Eggermont and LaRiccia (1997). The use of π_{pu} in place of π_p does not significantly increase the computational burden for rank-conditioned inference. The density π_{pu} could potentially be further updated but the analytical complexity and computational cost will increase drastically.

3.3 Algorithm and implementation

The three-step algorithm for drawing $\varepsilon_{i,j}^*$ in Section 3.1 is greatly simplified for the special case of $\sigma_i = \sigma$ for all i because the distribution of $\varepsilon_{i,j}^*$ depends only on the rank j and not on i. Under this condition, Steps 2 and 3 become

Let $z_{[1]}^* \leq \cdots \leq z_{[n]}^*$ be the order statistics of z_1, \ldots, z_n. Let $\varepsilon_{[j]}^*$ be the ε_i^* that corresponds to $z_{[j]}^*$. Output $\varepsilon_{[j]}^*$ for $j = 1, \ldots, n$.

In this way, one round of Steps 1–3 generates a complete and independent set of $\varepsilon_{[1]}^*, \ldots, \varepsilon_{[n]}^*$. The $E[\varepsilon_i| r(i) = j]$ in (3.2) is now simply $E[\varepsilon_{[j]}^*]$ and the $\ell_{i,j}$ and $u_{i,j}$ in (3.3) are defined by $\Pr\{\ell_j \leq \varepsilon_{[j]}^* \leq u_j\} \geq 1 - \alpha$ irrespective of the value of i.

For most large-scale problems, the values of error standard deviation σ_i may not be constant but they are not far apart (say within a factor of 3 or 4) because of the inherent common design structure. For the microarray example in Section 2, σ_i for standardized difference θ_i depends only on sample size $m_i^{[1]}$ and $m_i^{[2]}$. Therefore, σ_i does not differ too much unless the number of missing data points varies dramatically between genes. Similarly, in genome-wide association study, each SNP is compared between the same set of cases and controls. For such dataset, we can partition the n observations, z_1, \ldots, z_n, into several sub-groups so that σ_i for observations within each sub-group varies within a factor of 1.5, for example. The simplified algorithm above can then be applied to each subgroup separately as an approximation. Monte Carlo Markov chain type of algorithm is under investigation to efficiently sample from the rank-conditioned distribution (3.1) without requiring σ_i to be constant.
4. Assessing performance of rank-conditioned inference

4.1 Simulation study 1

This example is adapted from Efron (2010, pp. 230–233). Let \(n = 10^4 \) and \(\sigma_i = 1 \) for all \(i \) for model (2.1). The true \(\pi \) for random effects \(\theta_i \) is (2.3) with \(\eta_1 = \eta_2 = 0.1, \mu_1 = -3, \mu_2 = 3, \omega_1 = \omega_2 = 1 \). These parameter values are chosen to have a moderate Bayes shrinkage effect. Monte Carlo simulation is conducted to compare the Bayes shrinkage estimates \(\hat{\theta}_i^{\text{Bayes}} \) and rank-conditioned shrinkage estimates \(\hat{\theta}_i^{\text{rank}} \) under five different specifications of working prior \(\pi_p \). These working priors \(\pi_p \) have the same parametric form of (2.3) but with possibly different values of \(\mu_1 p, \mu_2 p, \omega_1 p, \omega_2 p \) as given in various rows of Table 1. Parameters not listed are the same as in true prior. For example, \(\eta_1 = \eta_2 = 0.1 \) for all the five working priors. Our simulation study is conducted as follows:

Step 1: Generate \(\theta_i, i = 1, \ldots, n, \) from prior \(\pi \). Let \(z = \theta_i + \varepsilon_i \) as in model (2.1).

Step 2: Let \(z_{[1]}, \ldots, z_{[n]} \) be the order statistics of \(z_1, \ldots, z_n \). Let \(\theta_{[j]} \) be the \(\theta_i \) corresponding to \(z_{[j]} \). The \(\theta_{[j]} \) can, therefore, refer to different \(\theta_i \) for different realizations of \(z_1, \ldots, z_n \).

Step 3: Compute empirical Bayes estimate \(\hat{\theta}_{[j]}^{\text{Bayes}} \) under working model \(\pi_p \). Compute the rank-conditioned estimate \(\hat{\theta}_{[j]}^{\text{rank}} \) under working model \(\pi_p \) and its non-parametric update \(\pi_{pu} \), respectively.

Step 4: Let \(S = \{j : j = 1, \ldots, 500, \ j = n - 501, \ldots, n\} \). Calculate the mean square loss

\[
\frac{1}{1000} \sum_{j \in S} \left(\hat{\theta}_{[j]} - \theta_{[j]} \right)^2,
\]

for estimator \(\hat{\theta}_{[j]} = \hat{\theta}_{[j]}^{\text{Bayes}} \) and estimator \(\hat{\theta}_{[j]} = \hat{\theta}_{[j]}^{\text{rank}} \) for both \(\pi_p \) and \(\pi_{pu} \). We only include the 500 lowest and 500 highest \(j \) in \(S \) because these \(\theta_{[j]} \) are most interesting in large-scale data analysis.

Steps 1–4 are replicated 1000 times and the mean square error \(\text{MSE}_{\text{Bayes}} \) for Bayes method and mean square error \(\text{MSE}_{\text{rank}} \) for rank-conditioned inference are estimated by averaging the squared error loss over these replications. The estimated \(\text{MSE}_{\text{Bayes}} \) and \(\text{MSE}_{\text{rank}} \) values are given in Table 1. In row 1, the working prior is the same as the true prior and the standard Bayes is therefore optimal. The rank-conditional inference under both \(\pi_p \) and \(\pi_{pu} \) shows little loss of efficiency with almost the same mean square error. In rows 2 and 3, \(\mu_1 p \) and \(\mu_2 p \) in the working prior are shifted away from \(\mu_1 \) and \(\mu_2 \) in the true prior. The \(\text{MSE}_{\text{Bayes}} \) increases noticeably with this model mis-specification. The rank-conditioned inference, especially under \(\pi_{pu} \), proves robust with a much smaller change in \(\text{MSE}_{\text{rank}} \) from row 1. In rows 4 and 5, \(\omega_1 p \) and \(\omega_2 p \) in the working prior are inflated or shrunk from \(\omega_1 \) and \(\omega_2 \) in the true prior. Again, rank-conditioned inference is more robust.

Table 1. Mean square error of the three methods under different model mis-specification

<table>
<thead>
<tr>
<th>Working prior</th>
<th>(\text{MSE}_{\text{Bayes}}) with (\pi_p)</th>
<th>(\text{MSE}_{\text{rank}}) with (\pi_p)</th>
<th>(\text{MSE}{\text{Bayes}}) with (\pi{pu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as true prior</td>
<td>0.675</td>
<td>0.677</td>
<td>0.677</td>
</tr>
<tr>
<td>(\mu_1 p = \mu_1 + \mu_1/5)</td>
<td>0.763</td>
<td>0.710</td>
<td>0.681</td>
</tr>
<tr>
<td>(\mu_2 p = \mu_2 + \mu_2/5)</td>
<td>0.762</td>
<td>0.685</td>
<td>0.683</td>
</tr>
<tr>
<td>(\omega_1 = 1.25 \omega_1)</td>
<td>0.702</td>
<td>0.686</td>
<td>0.683</td>
</tr>
<tr>
<td>(\omega_2 = 1.25 \omega_2)</td>
<td>0.699</td>
<td>0.681</td>
<td>0.679</td>
</tr>
</tbody>
</table>
4.2 Simulation study

For simulation 2, we continue to let $n = 10^4$ and $\sigma_i = 1$ for all i in model (2.1). The true prior π of θ_i now has the form

$$
\pi = 0.8\delta_0 + 0.1[-\Gamma(k, \beta) - 5 + k\beta] + 0.1[\Gamma(k, \beta) + 5 - k\beta],
$$

(4.1)

where $\Gamma(k, \beta)$ is the Gamma distribution with shape k and scale β. We take $\beta = k^{-1/2}$ so that $-\Gamma(k, \beta) - 5 + k\beta$ always has mean -5 and variance 1 and $\Gamma(k, \beta) + 5 - k\beta$ always has mean 5 and variance 1 for any k. For the simulation study, we generate $\theta_i \sim \pi$ and $z_i = \theta_i + \epsilon_i$, $i = 1, \ldots, n$, as specified by (2.1) and (4.1). Let z_{ij} be the jth order statistic of z_1, \ldots, z_n and let θ_{ij} be the corresponding θ_i. For every dataset z_1, \ldots, z_n, we compute a point estimate and 90% confidence limits for θ_{ij}, $j = 1, \ldots, 100$, using three different methods. Method 1 is Bayes estimate $\hat{\theta}_{ij}^{\text{Bayes}}$ and confidence limits ℓ_{ij}^{Bayes} and u_{ij}^{Bayes} in Section 2 using π_p in (2.3) as the working prior. In accordance with empirical Bayes, parameters $\eta_1, \eta_2, \mu_1, \mu_2, \omega_1^2, \omega_2^2$ in π_p are substituted by their maximum likelihood estimates using data z_1, \ldots, z_n under models (2.1) and (2.3). We shall call this parametric Bayes method. Method 2 is also based on Bayes posterior but with a more diffuse prior using Dirichlet process mixture. Let $\text{DP}(G_{j0})$ be the Dirichlet process with base distribution G_{j0} and scaling parameter 1 and let $f_j \sim \text{DP}(G_{j0})$ be a (random) distribution drawn from this Dirichlet process. Following Do and others (2005) and Dunson (2010), we take the more diffuse prior, π_{DP}, as

$$
\pi_{\text{DP}} = (1 - \eta_1 - \eta_2)\delta_0 + \eta_1 f_1 + \eta_2 f_2,
$$

where f_j, $j = 1, 2$ is generated as

$$
f_j \sim \text{DP}(G_{j0}).
$$

$$
G_{j0}(\mu, \omega^2) = N(\mu|\mu_j, \omega^2)\text{Inv-Gamma}(\omega^2|a_j, b_j).
$$

To be consistent with Method 1, η_1 and η_2 in π_{DP} and μ_j in $G_{j0}(\mu, \omega^2)$ are substituted by their maximum likelihood estimates under models (2.1) and (2.3) as in Method 1. For the inverse gamma distribution, we choose shape parameter $a_j = 2$ and scale parameter $b_j = \hat{\omega}_j^2$, where $\hat{\omega}_j^2$ is maximum likelihood estimate of variance ω_j^2 in (2.3), so that the mean of the inverse gamma equals $\hat{\omega}_j^2$. Note that the prior π_{DP} is considerably more diffuse and less informative than π_p due to the extra variation in $f_j \sim \text{DP}(G_{j0})$. We call Method 2 non-parametric DP Bayes. Method 3 is the proposed rank-conditioned inference under π_{pu}, the non-parametric update of π_p. Again, the parameters in π_p are substituted by their maximum likelihood estimates. Let $\hat{\theta}_{ij}$ be the point estimate and (ℓ_{ij}, u_{ij}) be the confidence limits of θ_{ij} from one of the three methods. Let $1(\cdot)$ be the indicator function. The mean square error and actual coverage rate for parameter θ_{ij}, $j = 1, \ldots, 100$, are estimated by averaging

$$
(\hat{\theta}_{ij} - \theta_{ij})^2 \quad \text{and} \quad 1(\ell_{ij} \leq \hat{\theta}_{ij} \leq u_{ij})
$$

over 1000 replications of z_1, \ldots, z_n.

The simulation study is conducted for $k = 1000$, $k = 8$, and $k = 2$ with prior π given by (4.1); the results are given in Figures 1–3, respectively. In each figure, the left panel shows the estimated root MSE for the lowest 100 ranked genes, θ_{ij} for $j = 1, \ldots, 100$, and the right panel shows the estimated actual coverage rate of nominal 90% confidence intervals for θ_{ij}. Figure 1 shows the case where $k = 1000$; when k is large, the normal distribution in the working prior π_p approximates $\Gamma(k, \beta)$ in true prior π extremely well. As expected, the parametric Bayes performs the best among the three methods with the smallest mean square errors and close (to nominal) actual coverage rates for all θ_{ij}, $j = 1, \ldots, 100$. The non-parametric Bayes with Dirichlet process prior performs poorly as the mean square errors are large and the actual
Fig. 1. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter $k = 1000$. The left panel is the root mean square error for parameter estimate $\hat{\theta}_{(j)}$, $j = 1, \ldots, 100$, and the right panel is the actual coverage rate of confidence intervals for $\theta_{(j)}$ at the 90% nominal level. Parametric empirical Bayes and rank-conditional inference perform similarly in this case with smaller mean square error and correct actual coverage rates. The non-parametric Bayes model with Dirichlet prior performs considerably worse compared with the other two methods in both mean square error and actual coverage rate.

Fig. 2. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter $k = 8$. The rank-conditioned method has the smallest root mean square errors and close actual confidence rates. The parametric Bayes and non-parametric Bayes with Dirichlet prior perform badly due to the large mean square error especially for $j < 10$.

[Graphs and plots showing data and analysis results]
Fig. 3. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter $k = 2$. The rank-conditional inference is the best in terms of MSE and non-parametric Bayes with Dirichlet prior is the close second best. The parametric Bayes is the distant third, with much larger MSE for $j < 10$. For the actual coverage rates, non-parametric Bayes method with Dirichlet prior is the best and the rank-conditioned inference is the close second. The parametric Bayes again is the distant third due to its much lower actual coverage rates.

coverage rates are far off. This is not surprising because an overly diffuse prior π_{DP} does not bring the needed shrinkage. Figure 3 shows the case for $k = 2$, in which the working prior deviates substantially from the true prior. The parametric Bayes performs poorly with huge MSE and far off actual coverage rates, while the non-parametric Bayes is much superior in both MSE and coverage rates. Figure 2 is for $k = 8$, an intermediate case between $k = 1000$ and $k = 2$. Neither of the two methods works well especially for $j < 15$. Our proposed rank-based inference, however, performs well for all the three cases. In particular, it is only slightly worse than the parametric Bayes for $k = 1000$ when the prior is correctly specified. When the prior is mis-specified as in $k = 2$ and $k = 8$, its mean square errors are the smallest among the three methods and its actual coverage rates are not too far off from the nominal 90%. The rank-conditioned inference therefore achieves robustness against mis-specified prior with minimal loss of efficiency under correctly specified prior. While not shown in the graphs, the superior performance of the rank-conditioned inference is similarly observed for the highest ranked θ_i such as $\theta_{[n]}$, $\theta_{[n-1]}$, \ldots, $\theta_{[n-99]}$. The difference between the methods is small for middle-ranked $\theta_{[j]}$ as their inference are primarily determined by the large mass at 0 which is present in both the true prior π and working prior π_p. Finally, our implementation of Method 2 is based on R package DPpackage (Jara and others, 2011). Two additional simulation studies are included in supplementary material available at Biostatistics online.

5. Application to Breast Cancer Microarray Dataset

We now apply our proposed method to the breast cancer data in Wang and others (2005). This was a large Affymetrix-based gene expression profiling study of $n = 22,283$ genes on 286 untreated patients with lymph node-negative primary breast cancer. The data are available at http://www.ncbi.nlm.nih.gov/geo/
as dataset GSE2034. We will compare gene expression level between patients who developed distant metastasis (74 subjects) and patients who were relapse-free at 5 years (135 subjects) among the 209 estrogen receptor positive patients. These data were also analyzed in Noma and others (2010). We use the gene expression model described in Section 2 with \(z_i \) being the standardized sample mean difference in log gene expression level and \(\theta_i \) being the true standardized mean difference for the \(i \)th gene. We have \(m_i^{[1]} = 74 \) and \(m_i^{[2]} = 135 \) for all \(i \) as there are no missing values for any gene. It then follows that \(\sigma_i^2 \) in (2.1) is \(\frac{1}{74} + \frac{1}{135} \) for all \(i \).

The maximum likelihood estimates of the parameters in the working prior \(\pi_p \) obtained by assuming models (2.1) and (2.3) for \(z_1, \ldots, z_n \) are

\[
\begin{array}{cccccc}
\eta_1 & \mu_1 & \omega_1 & \eta_2 & \mu_2 & \omega_2 \\
0.0856 & 0.258 & 0.0426 & 0.315 & -0.159 & 0.0470
\end{array}
\]

which suggests about 40% of non-zero \(\theta_i \) among \(n = 22,283 \) genes. In order to check the fit of the parametric prior \(\pi_p \), we simulated new data from the fitted \(\pi_p \) and compared its distribution to that of the original data through the following algorithm. Let \(z_i^* = \theta_i^* + \varepsilon_i^* \), where \(\theta_i^* \sim \pi_p \) and \(\varepsilon_i^* \sim N(0, 1) \). The percentiles of \(z_1, \ldots, z_n \) and \(z_1^*, \ldots, z_n^* \) are given in the table below, which shows excellent fit of model \(\pi_p \) to data \(z_1, \ldots, z_n \). As comparison, we also fit the model used in Noma and others (2010), which formulates in terms of the unstandardized log fold change \(d_i = \bar{y}_i^[1] - \bar{y}_i^[2] \). Using notation of this paper, their model is

\[
d_i \sim N(\alpha_i^{[1]} - \alpha_i^{[2]}, \rho_i^2 \sigma_i^2), \quad \alpha_i^{[1]} - \alpha_i^{[2]} \sim \pi_p,
\]

where \(\pi_p \) has form (2.3). The discrepancy between the percentiles of the original data \(d_1, \ldots, d_n \) and the simulated new data \(d_1^*, \ldots, d_n^* \) is much larger here. Modeling the standardized log fold change therefore provides much better fit to this dataset.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>0</th>
<th>2.5</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>97.5</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standardized</td>
<td>(z_1, \ldots, z_n) & -0.7248 & -0.3848 & -0.1512 & -0.0325 & 0.0894 & 0.3578 & 0.7569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log fold change</td>
<td>(z_1^, \ldots, z_n^) & -0.6847 & -0.3831 & -0.1528 & -0.0334 & 0.0912 & 0.3639 & 0.8623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unstandardized</td>
<td>(d_1, \ldots, d_n) & -0.9333 & -0.2688 & -0.0796 & -0.0159 & 0.0430 & 0.1959 & 0.7797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log fold change</td>
<td>(d_1^, \ldots, d_n^) & -0.7248 & -0.3848 & -0.1512 & -0.0325 & 0.0894 & 0.3578 & 0.7569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coming back to the model in Section 2 and using the maximum likelihood estimates for \(\eta_1, \mu_1, \omega_1, \eta_2, \mu_2, \) and \(\omega_2 \) obtained above, the standard empirical Bayes estimates \(\hat{\theta}_i^{\text{Bayes}} \) and the corresponding 90% confidence interval for all \(\theta_i \) are then computed under \(\pi_p \). Rank-conditioned estimates \(\hat{\theta}_i \) and 90% intervals are also calculated under both \(\pi_p \) and the non-parametric update \(\pi_{pu} \). Results for \(\theta_i \) that correspond to the five lowest ranked \(z_i \) \((-0.725, -0.715, -0.695, -0.686, -0.654) \) and to the five highest ranked \(z_i \) \((0.700, 0.727, 0.742, 0.752, 0.757) \) are given in Figure 4 for the three methods. We make three observations. First, the three methods have a huge shrinkage effect on the raw estimate \(z_{i[j]} \) for these top genes. For example, \(z_{[1]} = -0.725 \) but \(\hat{\theta}_{[1]}^{\text{Bayes}} = -0.212 \) and \(\hat{\theta}_{[1]} = -0.205 \) (under both \(\pi_p \) and \(\pi_{pu} \)). Second, results from empirical Bayes and rank-conditioned inference under \(\pi_p \) and \(\pi_{pu} \) are very similar although the rank-conditioned confidence intervals are a little wider. The same is true for other \(\theta_i \) not shown in Figure 4. This is not surprising, given the excellent fit of working prior \(\pi_p \) to \(z_1, \ldots, z_n \) as discussed above. The agreement of the three methods and the robustness properties of the rank-conditioned inference should give us more
Fig. 4. Parametric empirical Bayes and rank-conditional inference of $\hat{\theta}_i$ for the five lowest ranked and the five highest ranked z_i for the breast cancer dataset in Section 5.

confidence in the result. Third, an oddity of the rank-conditioned inference is that $\hat{\theta}_1$ can be slightly larger than $\hat{\theta}_2$ even though $z_1 \leq z_2$ by definition. This happens when the difference in rank-conditioned bias for z_1 and z_2 as random variables exceeds their observed difference in the observed z_1 and z_2. The same can happen to estimates of other ranks. This is generally a small peculiarity that is appropriately accounted for by the wide confidence intervals.

6. Discussion

We have proposed a rank-conditioned inference that can substantially improve the prior robustness of empirical Bayes inference with little loss of efficiency. More research is needed, however, to further develop and establish the proposed method. For example, in the simulations presented in Section 4, the actual coverage rates for the rank-conditioned intervals, in spite of being a substantial improvement over standard empirical Bayes, are still below the nominal 90% rate for $k = 2$ and $k = 8$. We expect that it is possible to further improve the actual coverage rate by drawing on similar research in the empirical Bayes literature, such as in Morris (1983), Laird and Louis (1987), He (1992), Qiu and Gene Hwang (2007), and Gene Hwang and others (2009). Second, model (2.1) assumes that errors $\varepsilon_1, \ldots, \varepsilon_n$ are independent, which can be unrealistic in many applications. We are currently working to relax this requirement to accommodate a more general correlation structure. Preliminary results show that the method in this paper continues to work well if the correlation of $\varepsilon_1, \ldots, \varepsilon_n$ is mild. Details will be reported in a future manuscript. We hope this paper will stimulate more research in robust Bayes inference for large-scale data to meet the pressing analytical need in genomics and genetics.

7. Software

Our R package rank.Shrinkage provides a ready-to-use implementation of the proposed methodology. The R code for the simulation studies is available at https://sites.google.com/site/jiangangliao/.
Acknowledgments

We are grateful for the extremely thorough review and suggestions by an anonymous reviewer and an associate editor, which led to a greatly improved manuscript. Conflict of Interest: None declared.

Funding

L.G.L.’s and T.M.’s work was supported by Penn State Cancer Institute internal grant. Berg’s work was supported by Grant Number UL1 TR000127 from the National Center for Advancing Translational Sciences (NCATS). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

References

[Received March 26, 2012; revised July 10, 2013; accepted for publication July 10, 2013]