CYBERANGELS: AN AESTHETIC PEACE PLAN FOR THE MIDDLE EAST

Mel Alexenberg, 36 Lohamay Hageto Street, Petach Tikvah 49651, Israel.
E-mail: <melalexenberg@yahoo.com>.

Received 16 May 2005. Solicited by Michele Emmer as part of the Artists and Scientists in Times of War project.

This exhibition [1] proposes that peace in the Middle East can emerge from a fresh metaphor in which Arabs are invited to see Israel’s existence as Allah’s will. This metaphor, derived from Islamic art and thought, invites a shift in perception in which the conflict is seen as an aesthetic problem.

The central image shows a geometric pattern from a Damascus mosque superimposed on a map of North Africa and the Middle East (Color Plate C.) The Islamic pattern is painted in green, red and metallic gold on a digital print mounted on canvas. Israel is a tiny sliver with an alternative pattern—blue stripes on a white background, like the Jewish prayer shawl and the flag of Israel. An “angel of peace,” a digitized version of a Rembrandt drawing, is shown emerging from the blue stripes carrying the message of my aesthetic peace plan worldwide through the Internet. In the exhibition, actual rugs woven in Muslim lands were hanging beside my digital artworks.

Islamic art teaches Muslim Arabs to see their world as a continuous geometric pattern that extends across North Africa and the Middle East. Unfortunately, they see tiny Israel as a blemish that disrupts the pattern. From this perspective, Israel is viewed as an alien presence, one that they have continuously tried to eliminate through war, terrorism and political action. Arab television calls Israel a “cancer in the body of the Arab nation.”

Fortunately, the perceptual shift needed to lead to a genuine peace can be found in Islamic art and thought. In Islamic art, a uniform geometric pattern is purposely disrupted by the introduction of a counter-pattern to demonstrate that human creation is less than perfect. Based upon the belief that only Allah creates perfection, rug weavers from Islamic lands intentionally weave a patch of dissimilar pattern to break the symmetry of their rugs to demonstrate that they are not competing with Allah (Fig. 1). In “Anomalies in Kilims” [2] we learn that devout Muslim women who weave kilim rugs would not be so arrogant as to even attempt a “perfect” rug, because such perfection belongs only to Allah. Consequently, they deliberately break the rugs’ patterning as a sign of their humility.

Peace can be achieved when the Islamic world recognizes that they need Israel to realize their Islamic religious values. Israel provides the counter-pattern in the contiguous Islamic world that extends from Morocco to Pakistan. Just as a religious Muslim weaver introduces a counter-pattern in designing a rug as a mark of humility, so Muslim leaders can honor the diversity in all of God’s creations by perceiving Israel as the necessary break in symmetry. The gathering of the Jewish people into its historic homeland in the midst of the Islamic world is the fulfillment of Mohammed’s prophecy in the Koran (Sura 17:104): “And we said to the Children of Israel, ‘scatter and live all over the world…and when the end of the world is near we will gather you again into the Promised Land.’”

References

My career has focused on explorations in science and technology as a distinct feature of contemporary culture—from early work with light, lasers, aviation and space development to scientific exploration, digital imaging and most recently nanotechnology. In my work I aspire to meaningful fine art with a healthy awareness of the mediating role that visual images can play in scientific and public understanding. I have always been intrigued by physics, by looking out on the expanse of space, but would not have imagined taking an interest in chemistry or focusing in on the extremely small, until my science-studies group read Bill Joy’s striking article “Why the Future Doesn’t Need Us” [1].

In my courses on digital imaging, students often wondered, “Will computers take over the world?” I used to laugh, confident in the fact that we build, program and power these helpful tools. Then, slowly, a collection of eminent scientists such as Stephen Hawk- ing began to express similar apprehension. Joy articulated the concerns with a compelling argument about how technology pervades our lives, along with recent advances in nanoscience. He also described how this new research and curiosity was keeping him up late with enthusiasm for his work.

Out of that science-studies group developed a small cross-disciplinary team of scholars—humanists, social scientists and scientists interested in the societal implications of this rapidly emerging technology. Our aspiration was to understand, evaluate and inform ourselves and the public about the possible benefits and liabilities of this emerging science. A few years later, we are working on our third National Science Foundation (NSF) grant totaling close to $3 million in funded research—for Nanotechnology in Society Network Node: Imaging, Scientific Change and Public Understanding of Emerging Nanotechnologies.

The NSF used to tell me that I had my own endowment (the National Endowment for the Arts), and the underlying assumption was that a humanist could not be involved in supported research without an attachment to a principal investigator from the sciences. Now humanists and artists are being embraced as a distinctive asset for the dissemination of scientific information to the public, and there may be hope for more meaningful collaboration between the two cultures. My focus has been on the role of images from the nanoscale and how algorithmic microscopy is changing what it means to see. We have developed a functional typology of images and are working on the establishment of conventions (Color Plate B No. 1) for the way images are altered to assist in seeing/understanding information. These manipulations are so tempting and have become so commonplace that the typical resultant images often mislead more than they inform.

My own studio work involved three-dimensional environments with complicated imagery incorporating multiple generations of past artwork as the surface texture of the objects. The imagery thus became smaller and denser. I am now able to put molecular shapes in the inks that are the same shape as the objects being rendered (Color Plate B No. 2). These molecules then leach off the surface of the image. One not only sees the work and leaves with a visual memory, but physical reassertion of the shapes remains with the viewer as well.

Reference