A Decade of Digital Arts and Sciences at the University of Florida

Paul A. Fishwick

OVERVIEW
Digital Arts & Sciences (DAS) represents a set of programs at the University of Florida. DAS degrees were originally implemented in both the College of Fine Arts as well as the College of Engineering starting around 2000. The original mission of the DAS degrees was to explore the mutual influences between arts and computer science (CS). This article briefly describes what has transpired within the DAS degree housed within the Computer and Information Sciences and Engineering (CISE) Department, while suggesting what has worked well and what remains to be tested or retrieved.

The origins of the DAS degree programs can be found in an initiative of the University of Florida president in the late 1990s; the goal was to nurture the interdisciplinary activities that seemed to emanate from the computer gaming and cinematic special effects productions, which at that time were still in a nascent stage [1]. The president of the university had met with a past graduate of the University of Florida, and through this chance encounter and discussions spanning two main colleges (Fine Arts and Engineering), the DAS degree programs were born. The question for the university and its respective departments was how to build degree programs that related to these two topics, while simultaneously retaining the elements of the academy in terms of a liberal arts education needed to train the student for lifelong learning.

PHILOSOPHY
When building a new degree program it is vital to determine the purpose of that degree and to whom the degree caters, as well as to clearly specify the philosophy of the program. At first, it may seem clear that the goal is to create new ties across colleges, faculty, staff and students. While this is indeed paramount, the question for the CISE department was how to build a self-sustaining program that would excite both faculty and students. The philosophy behind this type of degree program depends on whether the goal is to create a new hybrid degree program or to extend computer science into the areas inhab-ited by the intellectual aspects underlying computer games and cinematic special effects.

We chose the latter goal for several reasons: (1) CISE students needed to graduate with a degree that could be widely leveraged outside of cinema and games, (2) students needed a degree program that would be recognized by employers, and (3) degrees are conferred by Colleges, and, specifically, the CISE DAS degree is a product of the CISE department, whose mission is to prepare students for positions related to computer science. A decade later, we feel that these choices were correct. Over the past decade, students have graduated and have assumed a wide range of jobs, from software and human factors engineering to designing special effects and games. However, students have also found positions related to media: design, advertising and mass communications. The common thread among all of these positions is human-centered computing, and thus CISE DAS, while fundamentally a computer science degree program at the core, covers academic subjects that stress the relation of the human to media, catalyzed through digital means.

The terms interdisciplinary and multidisciplinary enter into this discussion, since a truly interdisciplinary degree program would represent a new field of inquiry, much like biomedical engineering, which combines elements of biology, medicine and engineering. A multidisciplinary effort brings discipline-specific elements together while the specific disciplines remain intact (e.g. fine arts and computer science). While forging a brand new discipline is tempting, it isn’t clear that a conceptual, knowledge-based—as opposed to vocational—purely interdisciplinary program is possible at the undergraduate level without placing students at risk in terms of finding employment in an industry that tends to rely on more traditional, and stovepiped, areas of expertise. Industry will generally seek a designer or a software engineer, not a student with hybrid knowledge. As long as employers continue to stress disciplines in their employment practices, we determined that our first step in our multi-decadal quest to create “new Leonards” [2] was to evolve our multidiscipline-specific program—existing along the way a next-generation computer scientist in a world rich with human-media interaction. Thus, while the eventual goal is true interdisciplinary interaction, along with corresponding curricula, we have chosen a multidisciplinary route to get to our destination. During that process, new truly interdisciplinary courses have been created as a direct result of the DAS program. One of them (Aesthetic Computing) is discussed at the end of this article.

© 2012 ISAST

Downloaded from http://direct.mit.edu/leon/article-pdf/45/3/211/1576016/leon_a_00362.pdf by guest on 08 August 2021
Students create a wide variety of creative products during their stay and play different roles in teams, mirroring the sort of large-scale organizations required to build consumer games and cinematic productions. Figure 1 shows four sample products created in the first 2 years.

DEGREE COMPONENTS

Details on the degree are housed on the Web [3], where the reader can review the philosophy of the program, along with the Counseling Sheet (a one-page description of all courses) and the Tracking Sheet (a one-page semester-by-semester schedule for undergraduates). The degree is a 120-hour (minimum) program. The program is described in terms of broad departmental subject area requirements and the minimum number of hours in each category:

- General Education (15 hours): includes composition, social and behavioral sciences, art history, and international and diversity studies
- Mathematics (18 hours): three semesters of analytic geometry and calculus, followed by differential equations and linear algebra
- Physics (8 hours): two semesters of physics with calculus and lab
- Chemistry (4 hours): one semester of chemistry with lab
- Art (6 hours): perceptual drawing and Form & Space (sculpture or ceramics)
- DAS (18 hours): courses unique to the DAS degree, including a media-focused introduction to computing, two courses in 3D modeling and animation, two courses in multimedia computing, and a course in Aesthetic Computing [4]
- Computer Science (22 hours): advanced programming, discrete structures, data and program structures, software engineering, programming language concepts or operating systems, computer organization, numerical analysis, computer graphics, computer simulation and human-computer interaction
- Interdisciplinary Electives (14 hours): courses taken outside of CISE that have a strong media/arts content
- Computer Science Electives (6 hours): additional computing courses
- Senior Project (3 hours): capstone independent study and demonstration course.

EVALUATION OF PROGRAM

What was done right, what needs changing, and how do we assess ourselves over these past 10 years? We divide the assessment process into two parts: qualitative and quantitative.

Qualitative Assessment

The assessment process is a tight feedback loop involving faculty, students, staff and institutional infrastructure. We continually assess the DAS program to ensure that its objectives are being met. Student feedback is obtained through interaction with our Student Services Center, faculty and student-led organizations centered on digital media and the interrelationships between computing and the arts. The department has a biannual Industrial Advisor Board (IAB) meeting in which students, staff, and faculty evaluate whether we are meeting the needs of industry. DAS students have been actively recruited for jobs related to human factors, media, and modeling. The following are examples of significant changes made to the program as a result of student feedback and internal assessments made by faculty:

- DAS students used to have to create a portfolio to enter the program in a way similar to Fine Arts students; however, the department determined that CISE students are less
likely to have basic drawing and art skills, although their interests may be significant in DAS topics such as computer gaming, visualization and the technical aspects of visual special effects. We abandoned the portfolio requirement but also implemented several courses with projects that could be used by students to build portfolios. The senior project in particular is now viewed as the key point at which students can produce a substantial portfolio product. Thus, students have ample opportunity to build portfolios. However, CISE does not require portfolios as a prerequisite to entering the program, since we want to allow for students who have a strong interest in human-centered computing and whose capabilities are indicated by their academic successes in courses (i.e. grade point averages).

• In the early years of the program, DAS students did not have access to a “practicum” course wherein they could learn significant computer animation/design program skills offered by large and complex systems such as Maya, 3D Studio Max or Blender. We have used all three, with a 6-credit (2-course) sequence to allow students to obtain vocational knowledge (required by some employers) while maintaining our mission to provide a conceptually focused and university-oriented education. There is a knowledge/vocation tradeoff of which we are well aware—and while we focus on a curriculum that stresses foundational knowledge, there is room for a small number of courses to teach the mechanics of the more complex modeling and animation software skills. In these courses, we emphasize the conceptual skills common to the software. This approach is similar to a traditional CS class where a programming language such as C++ or Java is taught: The goal is to teach the student about the “language/package” while not losing sight of the need to frame that package within a larger, more conceptual knowledge base.

• Four years ago, a significant pool of students wanted the opportunity to further enhance their advanced Computer Science skills as part of their elective credits, and so we modified the program to allow for students to seek the usual media-focused interdisciplinary courses outside of the department or to choose advanced courses in Computer Science. This flexibility has increased student choice.
would be 100%. The quotient defined in this way serves as an indicator of the degree of gender diversity.

Figure 3 is a trend analysis of total number of students in each of the four programs. Note how, even though DAS has had a relatively small number of students each year, the enrollment has been fairly steady over time compared with the other three degrees.

Figure 4 displays the relative gender ratios captured in Fig. 2, with four pie charts created by totaling years 2003 to 2008. Note the significantly higher percentage of females compared with other undergraduate CISE programs. For example, in 2009, the gender ratio for DAS was 53% compared with 11% for CEN—almost a 5-fold difference.

ACHIEVEMENTS AND IMPEDIMENTS

Achievements

1. Development of an academically strong and stable program (see Fig. 3) that involves a high-quality undergraduate computer science curriculum and the required mathematics, science and computer science electives.

2. An integration with the remainder of the university at the student and faculty levels with regard to blending the arts and sciences.

3. A significantly higher percentage of females compared with other undergraduate CISE programs.

4. Graduation of students who are adequately educated and trained to take on a broad array of occupations from digital entertainment, film, visualization, human-computer interaction, vision-based analysis, simulation and computer-aided design and manufacturing.

Impediments

1. Lack of sufficient faculty to cover required DAS courses with lecturers or tenure-track faculty. This problem is in both the raw number of faculty required to teach the courses as well as a lack of breadth. With regard to the latter, we lack coverage in advanced areas of animation, gaming and audio/music related courses. For music, the University of Florida music department has electroacoustic composition courses that students are encouraged to take. For games, specific classes incorporate games into class projects.

2. Lack of integration in the senior year with other parts of the university to provide our students with an opportunity to team with other non-CISE students. One solution would be an agreement among a small number of departments to offer simultaneous credit for a team-based, cross-college, senior project.

COMPARISON WITH OTHER PROGRAMS

Even though my purpose in this article is a 10-year status report on the DAS program and not to perform a broad survey, we recognize that there are numerous programs that relate the arts to computing. Undergraduate programs that connect computer science with the arts seem to fall into three broad categories by the nature of their curricula: (1) computer-science–centered, (2) arts-centered, and (3) a hybrid of 1 and 2. The CISE DAS program falls into category 1; our effort has been to produce computer scientists first and foremost, with strong interdisciplinary arts and design knowledge and skills. The Digital Arts & Sciences (DA&S) program at Clarkson University [5] is similar in its curricular approach, while the Digital Arts/New Media program at the University of California at Santa Cruz [6], for example, focuses on category 2. The University of Florida hosts a BFA program in Digital Media [7], and the Digital Worlds Institute is renewing the undergraduate BA program [8]. Many arts schools, such as Savannah College of Art and Design [9], Ringling College of Art and Design [10] and Full Sail University [11], offer curricula spanning categories 2 and 3. The University of Pennsylvania’s Digital Media Design [13] program is similar to DAS in its curricular structure. Nation-wide, the number of institutions hosting category 2 and 3 degree programs appears to be significantly higher than for category 1 programs. There are many programs missing from this list, since there are hundreds more in the U.S. and many more outside of the U.S. A properly implemented survey would also be most useful in evaluating the bridge spanning arts and computing; however, that task lies outside of the scope of this
Hybrid curricula traditionally work best at the graduate level, since the student will have achieved a discipline-specific foundation at the bachelor’s level. For example, at UF we have the Master of Science in DAS (CISE) and a Master of Arts in DAS (the Digital Worlds Institute). Carnegie Mellon University has its Entertainment Technology Center (ETC) with a Masters in Entertainment Technology [14]. The MIT Media Lab [15] is degree-granting at the master’s and doctoral levels with a program in Media Arts and Sciences.

SUMMARY

The design of any sort of interdisciplinary/multidisciplinary program depends very much on the skill set range desired at the end of 4 years. In all cases, there will be tradeoffs. Do we skip a semester of calculus or take on more interdisciplinary media credits? Do we focus on games, cinematic effects or web-based media? We have chosen a path that is rooted in computer-science fundamentals but that provides a clear direction for computing into the human interface through foundational courses in media and the arts. As a result, students have graduated with a wide range of career choices centered on computing technologies based on how humans connect to information. The range of jobs our graduates have taken includes (1) software engineer, (2) game designer, (3) HCI and (4) simulation engineer.

There is little question that the fields of art, design and computing have considerable cross-flow and offer each other many benefits. The fields of design and art provide conceptual, publicly relevant and creative products, and computing provides the information-rich, technical foundation on which modern society is based. The academy may move eventually toward a recognized discipline, but this will require the usual formation of institutes, centers and archival journals centered around this concept. The other approach, which we have taken in DAS, is to recognize the importance of the arts to computing and even change our own discipline as a result. One example of this within the CISE Department is the Aesthetic Computing class, where the goal is to produce design- and artistically motivated representations of information—the inverse of “computer art.” Figure 5 shows an immersive representation of a System Dynamics model representing relationships between metabolism, food intake, weight loss, exercise and nutrition.

This “metabolism machine” is an immersive 3D encoding of a more typical 2D diagram defining a set of first-order differential equations relating the system variables. This machine is isomorphic to a System Dynamics model with four levels (i.e. glass cylinders) and rates (i.e. valves). The Aesthetic Computing class takes concepts in design and art and uses these concepts to widen the potential audience (e.g. the general public) for information artifacts normally expressed in equations or flat diagrams. Thus, the bridge connecting the arts and computing becomes bidirectional. The movement of computing devices into the public sphere (e.g. smartphones, mixed reality, ubiquitous and tangible computing) ushers basic questions about human-centered design into the computing discipline.

The Aesthetic Computing course may indicate one possible future for programs that span arts and computing: a growing understanding of how our respective disciplines interconnect at the micro-curricular level. For example, can the arts inform and shape how an example computer science topic (e.g. database systems) is taught? Too often, we may think of the connection between arts and computing as unidirectional, with a computing capability supporting an artistic outcome. However, a more significant and longer-term challenge is the possibility of creating a truly interdisciplinary state of affairs, is to continue to challenge the unidirectional assumption.

The way that database systems is taught in the future, for example, may contain socio-cultural sub-topics and concerns typically addressed in the arts. An example of this cross-fertilization would be in covering new methods of person-alized, or public, data representation in database systems courses rather than assuming a more limited class of user (e.g. technical expert) demographic.

In an age of increased human-centered emphasis within computer science, our field will evolve and be nurtured through the arts.

Acknowledgments

There are a number of people who need to be acknowledged for the development of this academic program: Gerhard Ritter was Department Chair at the DAS program inception, and Sartaj Sahni is currently Chair. They have both actively supported DAS in their administrative roles. I would also like to thank Associate CIS Chair Stephen Thebaut for his advice and continued role within the program. James Ogles from the College of Engineering took considerable time in providing the raw statistics and MS-Access queries needed to create Figs 2–4. Individual faculty who have influenced the program include Georg Esel and current members of the Graphics, Modeling and Art (GMA) faculty group; Benjamin Lok, Jorg Peters and Alireza Entezar. Several faculty inside of CISE have actively taught and supported DAS-specific classes: Pete Dobbins, David Small, Mark Schmaltz and Rong Zhao. I have had numerous, long and frequent discussions with several faculty outside of CISE, including faculty in Music (James Paul Shin), Art (Jack Steiner, Maria Rogal, Kavita Gaddes, Brian Slawson), English (Gregory Ulmer, Terry Harpold), Business (Jane Doughias), Theatre and Dance (Ric Rose) and faculty at the Digital Worlds Institute (James Oliverio, Arturo Sinclair, Patrick Pagano). The CISE Student Advising Center has been at the heart of the day-to-day counseling of DAS students, and many thanks go to the past and current CISE staff based on their tireless counseling efforts, including Denise Atteberry, Todd Best and Paul Rocha for undergraduates and John Bowers and Joan Crisman at the graduate level.

Fig. 5. Zachary Ezzell, The Obesity Machine, 2008. (© Zachary Ezzell)
Call for Papers

ArtScience: The Essential Connection

Guest Editor: Robert Root-Bernstein

What is the value of artistic practices, techniques, inventions, aesthetics and knowledge for the working scientist? What is the value of scientific practices, techniques, inventions, aesthetics and knowledge for the artist? When does art become science and science, art? Or are these categories useless at their boundaries and intersections?

Can an individual excel at both science and art, or is even a passing familiarity with one sufficient to influence the other significantly? Do the arts ever contribute significantly to scientific progress? Where will current scientific innovations lead the arts in the next few decades?

Submissions exploring these questions can be from artistic scientists who find their art avocation valuable; from scientist-artist collaborators who can demonstrate a scientific or artistic innovation; from scientifically literate artists who draw problems, materials, techniques or processes from the sciences; or from historians of art or science looking at past examples of such interactions.

Interested authors are invited to send proposals, queries and/or manuscripts to the Leonardo editorial office: Leonardo, 211 Sutter St., Suite 501, San Francisco, CA 94108, U.S.A. E-mail: <isast@leonardo.info>.

References

Unedited references as provided by the author.

6. University of California, Santa Cruz Digital Arts and New Media: <http://damn.ucsc.edu/>.
15. MIT Media Laboratory: <www.media.mit.edu/>.

Glossary

human-centered computing—aspects of computing oriented toward the human condition, including needs and interactions.
hybrid degrees—academic degrees spanning disciplines.
interdisciplinary—using methods and knowledge from one discipline within another.
multidisciplinary—using more than one discipline.
program assessment—evaluation of academic curricula and programs.

Paul Fishwick is Florida Blue Key Distinguished Professor at the Computer and Information Science and Engineering (CISE) Department at the University of Florida. He is also Director of the Digital Arts and Sciences programs in the Department and is an active practitioner and researcher in areas spanning arts, science and technology.

Manuscript received 3 August 2010.
Leonardo/ACM SIGGRAPH Special Issue Featuring SIGGRAPH 2012 Art Papers and Juried Art Gallery

Art Papers Chair: Mine Ozkar
Art Gallery Chair: Osman Khan

SIGGRAPH 2012, in collaboration with Leonardo/ISAST, honors not only artists and artwork but also the process of making art and its place in society. We are pleased to announce this year’s forthcoming special issue of Leonardo presented in collaboration with SIGGRAPH 2012, which will feature the SIGGRAPH 2012 Art Papers and the SIGGRAPH 2012 Juried Art Gallery, “In Search of the Miraculous.”

Art Papers illuminate and explore the changing roles of artists and the methods of art-making in our increasingly networked and computationally mediated world. They inform artistic disciplines, set standards and stimulate future trends. In addition to the core topics of digital arts and interactive techniques, the 2012 Art Papers will explore the theme of the SIGGRAPH 2012 Juried Art Gallery as well as other topics consistent with the hybrid culture of SIGGRAPH.

The Art Gallery exhibition, “In Search of the Miraculous,” focuses on works that inspire and are inspired by moments of awe, surprise and wonder. The issue will include visual documentation of the works exhibited in the Art Gallery.

Publication of this fourth special issue of Leonardo coincides with the SIGGRAPH 2012 conference in Los Angeles, California, 5–9 August 2012.