Cancer is a frightening disease. Creating evocative experiences and artwork around the science of cancer can be a challenge. How do you encourage people to engage with a disease that is so scary, a disease that has likely touched their lives and perhaps even stolen their loved ones? At Arizona State University, we have created a new and different kind of artwork/experience to communicate the science of cancer: a garden composed of plants both beautiful and monstrous, whose sculptural aesthetics derive from mutations during growth and development. *Endless Forms Most Beautiful* illustrates two important aspects of the science of cancer: First, the ubiquity of cancer-like processes across all forms of life, and second, the promise of new therapies that aim for long-term control of cancer.

Athena Aktipis first encountered these striking plants (see Fig. 1) during a visit to Arizona almost 10 years ago. Their
elegance and grace despite their apparent deformity has a
certain poetic beauty, and their ability to survive even with
these cancer-like forms was inspiring. Aktipis’s obsession
with these plants began at that point, and it was partly her
aesthetic interest in them that led her to broader questions:
Are these mutated forms cancer? What does cancer look like
across life, from coral to cacti?

Part of being a multicellular organism means having cells
that divide and can mutate during a lifetime. The cacti in
Endless Forms Most Beautiful have mutations in their meri-
stem cells causing uncontrolled growths—which are, by
some definitions, cancer. The mutations cause distinctive
growths, sculptural in form, and these abnormal specimens
are prized as beautiful and rare [1]. They are called crested or
“fasciated” plants, fascination being the more general term for
plants with mutations in their growth tips that cause these
unusual forms.

After moving to Arizona, Aktipis and Carlo Maley worked
with Caspian Robertson, director of the landscape design
company Caspian Gardens, to create a series of drawings that
would eventually end up as the final design for the garden.

Robertson had this to say about the experience:

I was delighted to have been asked to contribute to this
fascinating project and have been amazed by the personal
enthusiasm and care that those involved have given to it.
The great thing about gardens as a medium is that they are
ever adapting over time; just as the caricature of the project
evolves, so too does the planting! This seems all the more
poignant when designing on the theme of change being a
natural and beautiful process, and it is my hope that this
space will continue to transform and provoke thought for
many years to come [2].

The questions about cancer across life, seeded partly by
these crested cacti and their beauty, have grown into a large
research program, which is now a significant part of the Ar-
izona Cancer Evolution Center. The Arizona Cancer Evolu-
tion Center (ACE) is studying cancer across life in sponges,
bats, whales, elephants and many other species.

The name of the garden, “Endless forms most beautiful,”
is based on the end of Darwin’s first 1859 edition of On the
Origin of Species, where he writes: “There is grandeur in this
view of life . . . from so simple a beginning endless forms
most beautiful and most wonderful have been, and are be-
ing, evolved” [3].

The idea for this garden was to represent two critical as-
pects of cancer:
1. Susceptibility to cancer is a fundamental part of all
multicellular life, across the tree of life [4].
2. It is possible to live with cancer and cancer-like
growths [5], as many of these cacti do.

Plants are radically different from animals and yet, as mul-
ticellular organisms, they too are susceptible to cancer-like
phenomena. Plant tumors are characterized by both abnor-
mal proliferation and large cell size, suggesting that not only
are these cells dividing when they are not supposed to, they
are also acquiring more resources than is their due. Some
researchers have argued that plants are particularly resistant
to cancer because their cells do not migrate through their
bodies and are fixed in place with rigid cell walls, preventing
cancerous cells from invading neighboring tissue and me-
tastasizing to distant sites. In fact, plant tumors typically are
not lethal. However, researchers have reported metastasis-
like phenomena in plants, with tumor strands emanating
from primary plant tumors [6]. Bacteria-free tumors have
also been reported at secondary sites without the apparent
presence of tumor strands [7]. So little is known about these
phenomena and the genetic mutations that cause plant tu-
mors that many exciting opportunities for discovery and
await future researchers.

This garden is different from much of the art associated
with cancer, which is usually created by patients and de-
dsigned to have a therapeutic impact, because the aim is to
create a work about the fascinating science of cancer. Art-
works that explore the thinking behind the research are rare.
Many previous artworks simply present the cells themselves
as a beautiful and insidious visual narrative. However, the
science of cancer is filled with fascinating concepts—like the
way that cancer manifests across different forms of life—that
few people have had the opportunity to consider. Engaging
more deeply with the nature of cancer and its relationship to
multicellular life may help cancer patients and their families
see cancer differently and explore a different therapeutic ap-
proach that is aimed at cancer control rather than eradica-
tion [8].

As is true in most public artworks, there are multiple stake-
holders. Because Robertson was not licensed in Arizona, we
hired the MOORE/SWICK partnership, a local landscape
architecture and planning firm that could assist him in adapt-
ing his design to Arizona conditions and design vernacular.
The process was paved with people who had their own
relationship to cancer; Kevin Moore was no exception. He
wore a machine, hanging from his shoulder, that was slowly
leaching chemotherapy poisons into his veins during our
planning meetings.

Ironically, I was going through my own cancer experience
while working on this project. From the outset, I tried to
maintain a positive outlook, refusing to think about my
experience as a “battle” with the need to “beat” anything—
an attitude I saw as too confrontational. I’ve preferred to
understand my cancer for what it was, not a foreign enemy,
but cells in my own body that have “gone rogue” and weren’t
cought by my immune system, that needed to be managed
rather than beaten. I was encouraged to hear the scientists
at the ASU Biodesign Institute talk about their current un-
derstanding and approach to cancer in the same terms [9].

Half of us will be diagnosed with cancer at some point
in our lifetimes, and it is viewed as a devastating diagnosis
[10]. However, there are many ways in which cancer can be
transformative.

We found out that we needed to add yet another layer of

Winfrey et al., Endless Forms Most Beautiful 399
landscape architects, because we planned on installing the garden on the campus of Arizona State University. Lucky for us that layer was Byron Sampson, associate director and university landscape architect at ASU, who had yet another personal story to add to the mix.

Through the course of gaining additional insight [into the] meaning of the garden, I was able to discuss openly my own experiences and see them come to fruition in a beautiful garden. My father had passed away eleven years ago after a long “battle” with oral cancer, my mother is a breast cancer survivor and I am a brain cancer survivor, being diagnosed four years ago. In the ensuing conversations with Todd Briggs, the co-director of the Trueform Landscape Architecture Studio, his lead designer was adamant that she work on the project as she was a cancer survivor as well. This garden brought together many different people, all with similar stories and a unified understanding of the unique aspects of the meaning behind the garden [11].

The installation of the garden coincided with the start of clinical trials to test a strategy for living with, but not dying from, cancer called adaptive therapy [12]. Fittingly, the innovation behind these trials comes from agriculture and the strategies farmers have developed to manage pests. High-dose chemotherapy, like high doses of pesticides, kills most of the cells/pests but leaves behind mutants that are resistant (immune) to the drug. This is why, when a tumor recurs after therapy, it typically no longer responds to that therapy. However, that resistance usually comes at a cost. It either takes some energy to detoxify or expel the drug, or the variant that can avoid the drug is less well adapted to its environment than the sensitive cells/pests in the absence of drug. Farmers have learned that they can capitalize on the cost of resistance by not spraying a part of their fields, and thereby keep some sensitive pests around to out-compete the resistant pests. Typical high-dose chemotherapy kills all the chemo-sensitive cancer cells, leaving nothing to control the chemo-resistant cells. Bob Gatenby translated this insight to cancer therapy with a strategy called “adaptive therapy,” in which the dose of the chemotherapy is reduced or stopped if the tumor starts shrinking so as to preserve sensitive cells. If the tumor regrows, chemotherapy is started again, but now the tumor is mostly composed of sensitive cells, and so it continues to respond to the drug. In mouse experiments, Gatenby and colleagues were able to keep cancers under control indefinitely (with lower and lower doses of chemotherapy over time) [13]. The first pilot clinical trial tested adaptive therapy in castration-resistant metastatic prostate cancer and has been able to keep control of the cancer in 10 out of 11 men for over a median of 27 months, where, under standard therapy, they would have lost control of at least half of the men’s cancers within 16 months [14]. That trial is continuing and expanding. Meanwhile, we at the Arizona Cancer Evolution Center are about to open the first pilot trial of adaptive therapy in breast cancer at the Mayo Clinic Arizona, with Donald Northfelt and Karen Anderson. We see this garden in part as an embodiment of this new approach to cancer—to live with cancer as a normal part of life, pruning it back occasionally and managing it responsibly.

The garden is now installed and is still immature, filled with relatively new cacti; a triangular space (Color Plate B) that, given time, will grow into a fully realized landscape complete with a seating area. Additional cacti will be added as they are identified by the Tucson Cactus and Succulent Society Cactus Rescue Crew, which saves cacti and other native plants that would otherwise be destroyed during the development of Arizona real estate.

Pamela Winfrey, the scientific research curator for the project, developed an opportunity for people to write the names of people they know who have been impacted by cancer onto plant identification tags. These tags are then added to the garden. We are currently developing a sculpture that will house this ever-growing project. This adds to the feeling that this garden is for the community: a place that is theirs, a place of solace, sympathy and solidarity.

We envision the garden as a place where people can engage with the science of cancer while simultaneously having a peaceful and grounding aesthetic experience with the crested cacti and other plants in the garden. As one woman who contributed a tag said, “For me, this is a place of comfort.”

Many voices and collaborations have shaped this garden into an echo of Darwin’s thoughts when he wrote of the “grandeur in this view of life.” Our garden itself had “so simple a beginning” and from it “endless forms most beautiful and most wonderful have been, and are being, evolved” [15].

Acknowledgments

Support for the garden comes from the National Cancer Institute, the Arizona Cancer Evolution Center, ASU Biodesign Institute, ASU’s Frankenstein Bicentennial Project, ASU Office of the University Architect and Facility Management Grounds Department, the MOORE/SWICK partnership landscape architects, TRUEFORM landscape architecture studio, Airpark Signs, ASU’s Lincoln Center for Applied Ethics and Facility Management Grounds Department, the MOORE/SWICK architecture studio, and the Arizona Cancer Evolution Center. Additional support is provided by the Arizona Biomedical Research Commission and NIH Grants U54 CA185138 and R01 CA140657, as well as the National Cancer Institute (grants R01 CA91955, R01 CA149566, and R01 CA170595). The Arizona Cancer Evolution Center is funded by NIH Grant U54 CA217376. This work was additionally supported in part by NIH grants U2C CA233254, PA1 CA42907, R01 CA149566, R01 CA170595, R01 CA185138 and R01 CA140657, as well as the sarcoma Cancer Research Program Award BC132057. The findings, opinions and recommendations expressed here are those of the authors and not necessarily those of the universities where the research was performed or the National Institutes of Health.

References and Notes

2 Personal communication with Caspian Robertson, 9 January 2018.


9 Personal communication with Kevin Moore, 23 April 2018.


11 Personal communication with Byron Sampson, 23 April 2018.

12 Enriquez-Navas et al. [8]; Zhang et al. [8]; Gatenby et al. [8].

13 Enriquez-Navas et al. [8]; Gatenby et al. [8].

14 Zhang et al. [8].

15 If you would like more information about “Endless Forms” please feel free to contact us at: https://cancer-insights.asu.edu/about-ace/contact.
COLOR PLATE B: ENDLESS FORMS MOST BEAUTIFUL:
A GARDEN SHOWS THAT CANCER IS A PART OF LIFE

Planting scheme by Caspian Robertson. An educational garden installation at Arizona State University, second iteration.
© Caspian Robertson) (See the article in this issue by Pamela Winfrey, Caspian Robertson, Carlo Maley and Athena Aktipis.)