A NOVEL SOMATOSTATIN RECEPTOR LIGAND
FOR HUMAN ACTH- AND GH-SECRETING PITUITARY ADENOMAS

Daniela Regazzo, Serena Avallone, Cliona P. MacSweeney, Eugenia Sergeev, David Howe,
Alex Godwood, Kirstie A. Bennett, Alastair J.H. Brown, Matt Barnes, Gianluca Occhi,
Barbot, Diego Faggian, Maria Pia Tropeano, Marco Losa, Giovanni Lasio, Carla Scaroni,
Francesca Pecori Giraldi

Endocrinology Unit & Laboratory Medicine, Dept. Medicine, University Hospital of Padova, Padua;
Sosei Heptares, Cambridge, United Kingdom,
Dept. Clinical and Molecular Science, Università Politecnica delle Marche, Ancona;
Dept. Biology, University of Padova, Padua;
Dept. Neurosurgery, Humanitas Clinical and Research Center IRCCS, Rozzano;
Dept. Neurosurgery, Ospedale San Raffaele, Milan;
Dept. Clinical Sciences & Community Health, University of Milan, Milan Italy.

Short Title: New somatostatin ligand for pituitary adenomas
Keywords: somatostatin, acromegaly, Cushing’s disease, pituitary adenoma, target therapy

Corresponding author
Prof. Francesca Pecori Giraldi
Department of Clinical Sciences & Community Health, University of Milan
Via Commenda 19, Milano, Italy
Tel: +39-02-619113035

© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Endocrinology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Somatostatin receptor ligands have come to play a pivotal role in the treatment of both ACTH- and GH-secreting pituitary adenomas. Clinical efficacy averages 30-50%, thus a considerable number of patients with Cushing’s disease or acromegaly remain unresponsive to this therapeutic approach. HTL0030310 is a new somatostatin receptor ligand selective for subtype 5 over subtype 2, thus with a different receptor profile compared to clinical somatostatin receptor ligands. The aim of the present study was to evaluate the effect of HTL0030310 on hormone secretion in human ACTH- and GH-secreting pituitary adenomas in vitro. Primary cultures from 3 ACTH-secreting and 5 GH-secreting pituitary adenomas were treated with 1, 10 and 100 nM HTL0030310 alone or with 10 nM CRH or GHRH, respectively. Parallel incubations with 10 nM pasireotide were also carried out. ACTH and GH secretion were assessed after 4 and 24 hour incubation; SSTR2, SSTR3, SSTR5, GH and POMC expression were evaluated after 24 hours.

HTL0030310 reduced unchallenged ACTH and POMC levels up to 50% in 2 ACTH-secreting adenomas and blunted CRH-stimulated ACTH/POMC by 20-70% in all 3 specimens. A reduction in spontaneous GH secretion was observed in 4 GH-secreting adenomas and in 2 specimens during GHRH co-incubation. SSTRs expression was detected in all specimens.

This first study on a novel somatostatin receptor 5-prefering ligand indicates that HTL0030310 can inhibit hormonal secretion in human ACTH- and GH-secreting pituitary adenomas. These findings suggest a potential new avenue for somatostatin ligands in the treatment of Cushing’s disease and acromegaly.
Significance statement

Medical treatment plays a significant role in Cushing’s disease and acromegaly, two conditions in which surgery does not always achieve remission, with somatostatin receptor ligands as the foremost target therapy. We developed a novel, somatostatin receptor 5-preferring ligand, HTL0030310, and tested its effects on a pilot series of human ACTH- and GH-secreting adenomas in vitro. Our results show that HTL0030310 inhibits ACTH synthesis and secretion; indeed, blunted basal and CRH-stimulated secretion was observed in all three specimens. The effect on GH-secreting adenomas was less homogeneous, with reduced GH secretion observed in some but not all specimens. This first study on a novel somatostatin receptor ligand offers promise for a new, potentially efficacious drug for Cushing’s disease and acromegaly.

Introduction

Somatostatin receptor ligands have come to play a pivotal role in the treatment of neuroendocrine tumors, with major clinical outcomes reported for gastroenteropancreatic (1) as well as pituitary tumors (2). Somatostatin receptor ligands are first choice agents for medical management of GH-secreting pituitary adenomas, i.e., acromegaly (3), and represent the only pituitary-acting drug approved for use in Cushing’s disease, i.e., ACTH-secreting pituitary adenoma (4). Successful containment of excess hormone secretion is achieved in approximately 50% of patients with acromegaly (5) and slightly less in patients with Cushing’s disease (6). Thus, available somatostatin receptor ligands are ineffective in a substantial proportion of patients and novel compounds are sorely needed. In fact, subtype selective, multi-receptor ligands (ligands acting on different combinations of somatostatin receptor subtypes), somatostatin-dopamine receptor chimeras, i.e., “dopastatin” (7,8), and non-peptidic ligands (9) are being actively pursued.

Design of viable, novel ligands is driven by knowledge of somatostatin receptor
pathophysiology in neuroendocrine tissues and tumors (5,10,11). Several studies evaluating the
expression of somatostatin receptor subtypes in GH-secreting adenomas have revealed high expression
of SSTR2 and lesser amounts for SSTR3 and SSTR5, albeit present to a variable extent in individual
specimens (12-15). Conversely, SSTR5 appeared to be the prevalent receptor subtype in adenomas from
patients with Cushing’s disease (16-18), with individual patients also expressing high levels of SSTR1
(19). Interestingly, SSTR5 expression was linked to distinct corticotrope phenotypes (20,21).

HTL0030310, a somatostatin receptor ligand which is selective for the SSTR5 and SSTR3
subtypes, has recently been developed through computer-aided drug design (22); by comparison,
pasireotide has similar functional and binding activity at human SSTR1, 2, 3 and 5 receptors (23). The
aim of the present study was to evaluate the effect of this novel ligand on GH- and ACTH-secreting
adenomas in order to establish its potential as a medical agent for acromegaly and Cushing’s disease.

Methods

Pituitary adenoma primary cultures

Three ACTH-secreting and 5 GH-secreting adenomas (Table 1) were collected during surgery
and established in culture according to our protocol (24-27). In detail, adenomas were dispersed by
enzymatic digestion and plated at 15x10^3 to 70x10^3 per well, according to specimen abundance. Cells
were attached in DMEM, 10% fetal calf serum and antibiotics for 2-3 days, then washed with DMEM
and 0.1% BSA prior to challenge with 1-100 nM HTL0030310 alone or with 10 nM CRH ot GHRH.
The range of doses used was determined according to availability of wells for testing, starting with the
higher HTL0030310 concentration. Parallel experiments with 10 nM pasireotide and CRH/GHRH were
also carried out. Control wells were incubated with DMEM + 0.1% BSA alone and each treatment was
performed in triplicate. DMEM and antibiotics were purchased from GIBCO (Waltham MA, US), the
remainder from Sigma-Aldrich (St. Louis, MO, US). HTL0030310 and pasireotide were provided by
Sosei Heptares, Cambridge, UK. After 4 and 24 hour incubation, medium was collected for hormone
measurement and cellular RNA extracted.

Hormone assays

Medium hormone concentrations were measured by ELISA assay kits produced by Biomerica, Irvine CA, US for ACTH and by Invitrogen, Waltham MA, US for GH, sensitivity and intraassay coefficient of variation are 0.22 pg/ml and 6.7% for ACTH and 4 pg/ml and 10% for GH. All samples from a given specimen were measured in the same run.

RNA extraction and Droplet Digital PCR

Cells were washed and RNA extracted with TRIzol reagent, Invitrogen, Waltham MA, USA and purified with Direct-zol RNA Microprep (Zymo, Irvine CA, US). RNA (500 ng) was reverse-transcribed by Euroscript M-MMLV RT (Euroclone, Pero, Italy) with random primers (27) or with SensiScript RT Superscript (Qiagen, Hilden, Germany) if limited RNA was available.

Droplet Digital PCR was performed according to Digital MQE Guidelines (28) on QX200 Droplet Digital PCR System (Biorad, Hercules CA, US) for detection of *POMC* (Taqman probe Hs01596743_m1), *GH* (Evagreen chemistry: forward primer ATCCAGGCTTTTGTGACAACG, reverse primer GGAGCAGCTCTAGGTTGGATT), *SSTR2* (Hs00265624_s1), *SSTR3* (Hs00265633_s1), *SSTR5* (Hs00990407_s1) with *HMBS* as housekeeping gene (Taqman probe Hs00609296_g1). Basal expression was calculated and normalized to *HMBS* as previously described (29); confidence intervals were set at 95% applying Poisson’s statistics (QX Manager 1.2 Standard Edition Software, Biorad).

Ethical approval

The study was approved by the Ethical Committee of the University of Padua on 20 June 2020 (#4834/AO/2020, URC1782). Informed consent for secondary use of surgical tissues was obtained at referring neurosurgical centers. Raw data is deposited at https://dataverse.unimi.it/privateurl.xhtml?token=10812feb-ac7e-48ba-af52-d65178e354f3
Analyses

Data are reported as mean ± standard error of the mean with median and interquartile range in parentheses. Gene expression is reported as fold change vs control. Non-parametric tests (Wilcoxon signed rank or Friedman, as appropriate) were used for comparisons between control and treatment(s). Significance was accepted for p<0.05; Bonferroni’s correction for multiple comparisons was applied where indicated.

Results

HTL0030310 exerted an inhibitory effect on spontaneous ACTH secretion in 2 specimens, most evident after 4 hour incubation in specimen CD#2 and after 24 hour incubation in specimen CD#1 (Figure 1). HTL0030310 also reduced POMC expression, as a reduction by 15 to 40% in spontaneous expression was observed in the three specimens after 24 hour incubation with 100 nM HTL0030310 (Figure 3, panel a); on average, POMC expression was ~80% of control (Table 2, p<0.05).

The effect of HTL0030310 on CRH-stimulated ACTH secretion was more evident than on spontaneous secretion, as blunted responses were observed in all three adenomatous specimens (Figure 2). The inhibitory effect of pasireotide – albeit tested a single concentration- appeared less pronounced (Figure 2, Table 2). Of note, the effect of HTL0030310 appeared dose-dependent (Table 2, Figure 2). Further, HTL0030310 markedly blunted CRH-stimulated POMC expression with decreases by 40 to 60% compared to CRH-incubated wells (Figure 3, panel b; Table 2). All specimens expressed SSTR2, SSTR3 and SSTR5 (supplementary Table 1); no clear association between receptor expression and the inhibitory effect of HTL0030310 on basal and CRH-induced response was apparent.

The effect of HTL0030310 was tested in 5 GH-secreting adenomas and revealed variable results across specimens. A clear reduction in spontaneous GH secretion at both 4 and 24 hours was observed in 2 specimens (GH #1 and GH #2); in 2 further specimens (GH #3 and GH #4), the reduction was
apparent either at 4 or at 24 hours incubation, indicating a different time-response range to the receptor ligand. HTL0030310 did not exert a noticeable effect in the remaining adenoma specimens (Figure 4). All specimens expressed \textit{SSTR2}, \textit{SSTR3} and \textit{SSTR5} (supplementary Table 1); no clear relation between \textit{SSTR} expression and the response to HTL0030310 was apparent. On average, GH synthesis and secretion during 10 nM and 100 nM HTL0030310 incubation did not differ significantly from control wells (Table 3).

Our series included both GHRH-responsive and -unresponsive adenomas. During co-incubation, HTL0030310 blunted the GH response to GHRH in one specimen (GH #4) and decreased GH secretion in specimen GH #1, albeit unresponsive to GHRH. Both adenomas proved sensitive to the inhibitory effect of both HTL0030310 and pasireotide (figure 5). HTL0030310 did not exert an appreciable effect in the remaining samples. On average, no significant changes in the GH response to GHRH were observed during co-incubation with HTL0030310 or pasireotide (Table 3). As an ancillary comment, both GH #1 and GH #4 were collected from patients treated with somatostatin receptor ligands prior to removal of the adenoma, although escape from control led to surgery.

\textbf{Discussion}

Somatostatin receptor ligands are the mainstay of medical therapy for neuroendocrine tumors and novel formulations are continuously being developed for patients unresponsive to currently available drugs.

HTL0030310, a potent SSTR5 receptor ligand with high selectivity over SSTR2 (>100-fold), was developed by computer-aided drug design together with optimized homology models of SSTR5 and SSTR2 (22). This is the first report on the effect of HTL0030310 on pituitary adenomas. We tested specimens from patients with acromegaly as well as with Cushing’s disease as these patients are most likely to benefit from somatostatin receptor ligand treatment.
The effect of HTL0030310 proved of particular interest in specimens from patients with Cushing’s disease. We observed a reduction in spontaneous and CRH-stimulated ACTH secretion as well as suppression of POMC expression. Not unexpectedly, sensitivity to HTL0030310, as well as pasireotide, varied among the three specimens, in keeping with the known variability in tumor corticotrope phenotypes (20,26,30). Of note, no study had previously reported on ACTH synthesis in human corticotroph adenomas incubated with somatostatin receptor ligands.

Somatostatin receptors involved in corticotrope regulation are mainly subtype 2, 3 and subtype 5 (31,32) acting through adenylate cyclase and MAPK pathways, as shown in AtT-20 cells (32). Human corticotrope adenomas express several somatostatin receptors with subtype 5 the most abundant isoform and other subtypes present to a variable extent (16-18).

The path to elucidate the effect of somatostatin on ACTH secretion in Cushing’s disease proved complex. Initial studies with somatostatin itself or its first generation receptor ligand, i.e., octreotide, failed to observe consistent inhibition of ACTH secretion (33). Further studies revealed that corticosteroids themselves interfered with inhibition by somatostatin (33), as dexamethasone reduced somatostatin subtype 2 expression (34). Indeed, SSTR2 expression was lower in adenomatous specimens from patients with Cushing’s disease with high urinary free cortisol levels prior to surgery, compared to patients in whom presurgical normalization of cortisol had been achieved with adrenal-acting drugs (35). Conversely, expression of SSTR5 was unaffected by dexamethasone in vitro (34) and hypercortisolism in vivo (35), paving the way to subtype 5-targeting ligands in Cushing’s disease. Several studies, albeit in small series of corticotrope adenomas, revealed that pasireotide inhibits ACTH secretion in roughly half of tested specimens (16-18,35) and appeared mostly superior to octreotide both in terms of potency and efficacy (36). These findings were confirmed in clinical trials, with octreotide proving by and large inefficacious (33,37) whereas pasireotide contains excess...
hormone secretion in some 30% of patients with Cushing’s disease (6). It follows that a considerable proportion of corticotrope adenomas is not sensitive to the multi-receptor ligand.

In GH-secreting adenomas, incubation with HTL0030310 reduced GH secretion to a variable extent. Further, the inhibitory effect of HTL0030310 proved more evident on spontaneous rather than GHRH-stimulated GH secretion but this may reflect the proportion of GHRH-unresponsive adenomas (38,39) in the present series. Interestingly, the inhibitory effect was observed at both 4 and 24 hour incubation in two specimens and only at one timepoint in the remaining two specimens. Most studies on GH-secreting pituitary adenoma primary cultures report on findings at one time point only (40-42), thus our findings provide information also on the time-dependent response to the somatostatin receptor ligand. The study by Hofland et al on long-term primary cultures in GH-secreting adenomas is worth mentioning in this context (43) as the inhibitory effect of octreotide appeared to change over time. Overall, although the average effect of HTL0030310 on GH secretion did not reach statistical significance, a clear-cut reduction was observed in individual specimens. These findings both uphold the importance of developing novel somatostatin receptor ligands and support the concept of precision medicine targeted to individual responsiveness (5).

Somatostatin receptor ligands are the mainstay of treatment for patients with acromegaly (3,5), although resistance to both first (i.e., octreotide, lanreotide) and second (i.e., pasireotide) generation somatostatin receptor ligands represents an enduring problem for long-term disease control. Prediction of the response to somatostatin receptor ligand analogue therapy has been extensively investigated and current knowledge points to somatostatin receptor expression in tumoral somatotropes as the main marker (44-46). In vitro, somatotrope tumor sensitivity to octreotide and SSTR2 selective ligands is correlated with somatostatin receptor subtype 2 expression (46,47). The association between sensitivity to pasireotide in vitro and SSTR2 expression was less clear-cut suggesting a role for other somatostatin receptors (40), in keeping with its multi-receptor profile. In terms of inhibition of GH secretion in vitro,
octreotide and pasireotide were comparable (16,40) although sensitivity to the two ligands varied considerably across specimens (40). In the present series, 2 patients had been treated with lanreotide for several months and surgery performed upon escape from control. Expression of $SSTR2$, $SSTR3$ and $SSTR5$ was detected in all our samples, with variable levels across adenomas; specimens from the 2 patients treated with ligands prior to surgery did not appear markedly different from the remaining samples, although, obviously, the small size does not allow clear comparisons to be drawn. Whether somatostatin receptor expression is affected by treatment or is intrinsic to tumor biology remains to be established.

In conclusion, our study, the first to evaluate the effect of a novel somatostatin receptor 5-preferring ligand, shows that HTL0030310 can restrain hormone synthesis and secretion in human pituitary adenomas. Further studies on modulation of somatostatin receptor gene and protein expression as well as comparisons with additional somatostatin receptor ligands, e.g., octreotide, will shed additional light on the efficacy of this ligand and pave the way to its use in the clinic. Of note, these findings support the development of novel somatostatin receptor ligands to identify new, potentially efficacious drugs for Cushing’s disease and acromegaly.

Compliance with Ethical Standards

Ethics approval: The study was approved by the Ethical Committee of the University of Padua on 20 June 2020 (#4834/AO/2020, URC1782). Informed consent for secondary use of surgical tissues was obtained at referring neurosurgical centers. Study procedures adhered to the tenets of the Declaration of Helsinki.
Conflict of Interest Statement

Funding Sources

This study was supported by Sosei Heptares, Cambridge, UK.

Author Contributions

D.R., F.P.G., C.P.M., E.S., D.H. designed the study. M.B., D.F., M.P.T., M.L., G.L., and C.S., enrolled the patients. D.R., S.A., F.P.G, collected and analyzed data. F.P.G. and C.P.M., wrote and edited the manuscript. All authors revised the manuscript and approved the version to be published.

Data Availability Statement

Raw data is available at https://dataverse.unimi.it/privateurl.xhtml?token=10812feb-ac7e-48ba-af52-d65178e354f3

References

Figure legends

Fig. 1 Effect of HTL0030310 on spontaneous ACTH secretion in ACTH-secreting adenomas. Concentrations at 4 and 24 hours in each specimen are shown. White bar: control wells; gray bar: wells incubated with 10 or 100 nM HTL0030310. Adenomatous specimens are identified by #

Fig. 2 Effect of HTL0030310 on CRH-stimulated ACTH secretion in ACTH-secreting adenomas. Concentrations at 4 hours in each specimen are shown. White bar: control wells; black bar: wells incubated with 10 nM CRH; gray bar: wells incubated with 10 nM CRH and 1-100 nM HTL0030310; striped bar: wells incubated with 10 nM CRH and 10 nM pasireotide. Adenomatous specimens are identified by #

Fig. 3 Effect of HTL0030310 on POMC expression in ACTH-secreting adenomas. Panel A: POMC expression in wells incubated with 100 nM HTL0030310. Panel B: POMC expression in wells incubated with 10 nM CRH (black bar), 10 nM CRH and 100 nM HTL0030310 (gray bar); 10 nM CRH and 10 nM pasireotide (striped bar). Data is shown relative to expression in control wells (dashed line). Adenomatous specimens are identified by #

Fig. 4 Effect of HTL0030310 on spontaneous GH secretion in GH-secreting adenomas. Concentrations at 4 and 24 hours in each specimen are shown. White bar: control wells; gray bar: wells incubated with 10 or 100 nM HTL0030310. Adenomatous specimens are identified by #

Fig. 5 Effect of HTL0030310 on GHRH-stimulated GH secretion in GH-secreting adenomas. Concentrations at 24 hours in each specimen are shown. White bar: control wells; black bar: wells incubated with 10 nM GHRH; gray bar: wells incubated with 10 nM GHRH and 1-100 nM
HTL0030310; striped bar: wells incubated with 10 nM GHRH and 10 nM pasireotide. Adenomatous specimens are identified by #

Table 1. Clinical features of patients with ACTH- and GH-secreting adenomas

<table>
<thead>
<tr>
<th>ACTH-secreting adenomas</th>
<th>specimen</th>
<th>age</th>
<th>sex</th>
<th>adenoma size</th>
<th>UFC nmol/24h (%ULN)</th>
<th>ACTH ng/l</th>
<th>somatostatin analogue treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD #1</td>
<td>40</td>
<td>F</td>
<td>14 mm</td>
<td>1326 (191%)</td>
<td>37</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>CD #2</td>
<td>17</td>
<td>M</td>
<td>7 mm</td>
<td>1663 (989%)</td>
<td>121</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>CD #3</td>
<td>29</td>
<td>F</td>
<td>10 mm</td>
<td>1702 (1013%)</td>
<td>136</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GH-secreting adenomas</th>
<th>specimen</th>
<th>age</th>
<th>sex</th>
<th>adenoma size</th>
<th>GH ng/ml</th>
<th>IGF-I ng/ml (%ULN)</th>
<th>somatostatin analogue treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH #1</td>
<td>35</td>
<td>M</td>
<td>30 mm</td>
<td>2.5</td>
<td>514 (187%)</td>
<td>lanreotide up to 120 mg/3 weeks for 2 years</td>
<td></td>
</tr>
<tr>
<td>GH #2</td>
<td>31</td>
<td>M</td>
<td>15 mm</td>
<td>69.2</td>
<td>788 (291%)</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>GH #3</td>
<td>49</td>
<td>F</td>
<td>10 mm</td>
<td>7.87</td>
<td>485 (159%)</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>GH #4</td>
<td>38</td>
<td>F</td>
<td>15 mm</td>
<td>8</td>
<td>366 (149%)</td>
<td>lanreotide 90 mg/month for 10 months; interrupted due to tumor growth</td>
<td></td>
</tr>
<tr>
<td>GH #5</td>
<td>62</td>
<td>F</td>
<td>8 mm</td>
<td>14</td>
<td>716 (424%)</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

M: male; F: female; adenoma size refers to maximal diameter; UFC: urinary free cortisol; % ULN: percentage of the upper limit of the normal range
Table 2. Average effect of HTL003010 on ACTH secretion and POMC expression in ACTH-secreting adenomas

<table>
<thead>
<tr>
<th>treatment</th>
<th>ACTH (% control)</th>
<th>POMC (% control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4h</td>
<td>24h</td>
</tr>
<tr>
<td>10 nM HTL003010</td>
<td>93.6 ± 6.8</td>
<td>85.8 ± 13.2</td>
</tr>
<tr>
<td></td>
<td>(93.6; 90.8-96.9)</td>
<td>(85.8; 79.2-115)</td>
</tr>
<tr>
<td>100 nM HTL003010</td>
<td>90.4 ± 18.3</td>
<td>90.6 ± 13.3</td>
</tr>
<tr>
<td></td>
<td>(103; 78.5-108)</td>
<td>(112; 76-116)</td>
</tr>
<tr>
<td>10 nM CRH</td>
<td>229.7 ± 25.6*</td>
<td>197.1 ± 31.1*</td>
</tr>
<tr>
<td></td>
<td>(204; 201-242)</td>
<td>(206; 172-226)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTH (% CRH)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nM CRH + 1 nM HTL003010</td>
<td>86.5 ± 1.78</td>
<td>93.9 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>(86.5; 85.6-87.3)</td>
<td>(93.9; 93.1-94.8)</td>
</tr>
<tr>
<td>10 nM CRH + 10 nM HTL003010</td>
<td>74.7 ± 16</td>
<td>90.4 ± 12.1</td>
</tr>
<tr>
<td></td>
<td>(67.4; 59.3-86.4)</td>
<td>(100.3; 83.4-102)</td>
</tr>
<tr>
<td>10 nM CRH + 100 nM HTL003010</td>
<td>59.9 ± 19.2§</td>
<td>86.2 ± 4.8§</td>
</tr>
<tr>
<td></td>
<td>(61.4; 43.6-76.9)</td>
<td>(85.2; 81.8-90.1)</td>
</tr>
<tr>
<td>10 nM CRH + 10 nM pasireotide</td>
<td>83.9 ± 19.3§</td>
<td>94.5 ± 2.6§</td>
</tr>
<tr>
<td></td>
<td>(92.9; 69.8-102.4)</td>
<td>(96.2; 92.8-97.0)</td>
</tr>
</tbody>
</table>

Data are provided as means ± S.E.M. with median and interquartile range in parentheses. * p<0.05 vs control wells; § p<0.05 vs CRH-treated wells.

Table 3. Average effect of HTL003010 on GH synthesis and secretion in GH-secreting adenomas

<table>
<thead>
<tr>
<th>treatment</th>
<th>GH (% control)</th>
<th>GH (% control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4h</td>
<td>24h</td>
</tr>
<tr>
<td>10 nM HTL003010</td>
<td>90.6 ± 21.4</td>
<td>94.9 ± 7.71</td>
</tr>
<tr>
<td></td>
<td>(91.0; 89.2-91.7)</td>
<td>(93.8; 80.0-108)</td>
</tr>
<tr>
<td>100 nM HTL003010</td>
<td>88.7 ± 14.9</td>
<td>90.5 ± 14.2</td>
</tr>
<tr>
<td></td>
<td>(80.0; 72.0-84.1)</td>
<td>(82.0; 80.1-99.4)</td>
</tr>
<tr>
<td>10 nM GHRH</td>
<td>116.4 ± 9.63</td>
<td>140.8 ± 14.6*</td>
</tr>
<tr>
<td></td>
<td>(107; 103-115)</td>
<td>(137; 131-141)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GH (% GHRH)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nM GHRH + 100 nM HTL003010</td>
<td>104.6 ± 20.0</td>
<td>86.8 ± 22.0</td>
</tr>
<tr>
<td></td>
<td>(86.0; 83.5-107)</td>
<td>(64.7; 60.2-113)</td>
</tr>
<tr>
<td>10 nM GHRH + 10 nM pasireotide</td>
<td>142.9 ± 67.1</td>
<td>84.3 ± 16.3</td>
</tr>
<tr>
<td></td>
<td>(91.4; 74.3-160)</td>
<td>(79.8; 60.9-103)</td>
</tr>
</tbody>
</table>

Data are provided as means ± S.E.M. with median and interquartile range in parentheses; GHRH: growth hormone releasing hormone; * p<0.05 vs control wells.
Figure 1
36x28 mm (DPI)

Figure 2
33x28 mm (DPI)

Figure 3
38x16 mm (DPI)