Autonomous Selfing Provides Reproductive Assurance in an Alpine Ginger
Roscoea schneideriana (Zingiberaceae)

ZHI-QIANG ZHANG1,2 and QING-JUN LI1, *
1Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan 666303, China and 2Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Received: 19 March 2008 Returned for revision: 1 May 2008 Accepted: 17 June 2008 Published electronically: 5 August 2008

INTRODUCTION

Selfing is common among angiosperms with approx. 20% of species using self-fertilization as their predominant mating strategy (Barrett, 2002). Indeed, the transition from outcrossing to selfing is one of the most frequent evolutionary trends in plants (Stebbins, 1974). Selection for reproductive assurance, where selfing ensures seed production when lack of pollinators or inefficient pollen transfer limits reproductive success, is the most widely accepted hypothesis for the evolution of selfing. Selfing can also be favoured because of gene transmission advantages (reviewed in Lloyd, 1992; Holsinger, 2000; Barrett, 2002; Eckert and Herlihy, 2004). Although selfing has many benefits, such as gene transmission advantage and reproductive assurance, it is also associated with diverse costs, including inbreeding depression, gamete discounting and seed discounting (Lloyd, 1992; Eckert and Herlihy, 2004; Goodwillie et al., 2005; Eckert et al., 2006). Thus a complete understanding of why selfing evolves requires consideration of both its benefits and its costs. Although this transition has been well documented in genetic aspects, i.e. transmission advantage versus inbreeding depression (e.g. Lande and Schemske, 1985; Charlesworth and Charlesworth, 1987), less is known about its ecological fitness consequences and its ecological context (Lloyd, 1992; Kalisz and Vogler, 2003; Kalisz et al., 2004).

The ecological benefits and costs of selfing depend on how and when selfing occurs (Lloyd, 1979, 1992), and its ecological context, e.g. the availability of pollinators (Kalisz et al., 2004). Selfing can occur within flowers (autogamy) or among flowers on the same plant (geitonogamy); geitonogamy can be facilitated by pollinators or occur autonomously in the absence of pollinators. Autonomous selfing can occur before, during, or after opportunities for outcrossing (prior, competing and delayed selfing, respectively) (Lloyd, 1992). In general, geitonogamy and facilitated selfing, which both occur when pollinators transfer pollen, provide little or no reproductive assurance and are not adaptive (Lloyd, 1992). In contrast, all modes of autonomous selfing provide reproductive assurance. When pollen is not limited, delayed selfing incurs no pollen or seed discounting, while prior and competing selfing can cause costs of gamete discounting. Theoretically, strong inbreeding depression can disfavour selfing (Lloyd, 1992).

Since Darwin (1876), reproductive assurance has been proposed as a principal benefit of selfing in flowering plants when seed production is limited by pollen transfer. This can be tested by removing the anthers before they dehisce, and then comparing seed production of emasculated flowers with that of intact flowers. If selfing provides reproductive assurance, emasculated flowers should set fewer
seeds than intact flowers (Schoen and Lloyd, 1992). Despite the widely accepted importance of reproductive assurance, there are few experiments to directly test whether the capacity for selfing increases seed set in natural populations (Eckert and Schaefer, 1998; Eckert and Herlihy, 2004; Goodwillie et al., 2005; Eckert et al., 2006). Even fewer studies estimated the benefit of selfing among populations or across years within populations (Eckert and Herlihy, 2004; Eckert et al., 2006). In addition, costs incurred by selfing should be considered when the benefit of reproductive assurance is evaluated. For example, seed production by autonomous selfing may contribute limited fitness benefit because of strong inbreeding depression (Herlihy and Eckert, 2002). However, few empirical studies have directly quantified this selective advantage of autonomous selfing within a cost–benefit framework and in natural ecological conditions (but see Herlihy and Eckert, 2002; Kalisz et al., 2004; Brunet and Sweet, 2006; Vaughton et al., 2008).

The Zingiberaceae is a large family of animal-pollinated tropical monocotyledons (Endress, 1994). While the family is largely restricted to the tropical lowlands, the Himalayan endemic genus Roscoea, is found at high elevations (1200–4880 m a.s.l.) from Kashmir in the west to south-west China (Cowley, 1982; Ngamriabsakul et al., 2000). Roscoea species have striking orchid-like flowers with a long floral tube, apparently adapted for pollination by specialized long-tongued insects (Fenster et al., 2004). In previous investigations of Roscoea schneideriana (Fig. 1A), it was observed that it had much higher fruit set compared with its sympatric species in natural populations. It was presumed that this alpine ginger has the ability for autonomous selfing. In this study, three specific questions are addressed: (1) Is R. schneideriana capable of autonomous self-pollination? If so, then (2) how and when does self-fertilization occur in R. schneideriana? And (3) why has autonomous selfing been selected for in this alpine ginger?

MATERIALS AND METHODS

Study sites and species

The study was conducted during four flowering seasons from 2004 to 2007. Most of the field work was carried out in the population of Roscoea schneideriana at Ganhaizi (GH population), Lijiang, Yunnan province, SW China (27°05′N, 100°16′E; 3120 m a.s.l.). Flower emasculation experiments were also conducted in three other populations located near Lijiang City: Wenbifeng (WB population) (26°48′N, 100°11′E; 2760 m a.s.l.), Xiangshan (XS population) (26°53′N, 100°14′E; 2500 m a.s.l.) and Lijiang Alpine Botanical Garden (LB population) (27°00′N, 100°1′E; 2830 m a.s.l.). Lijiang region, the core area of Hengduan Mountains, is considered the area of highest diversity of Roscoea species (Cowley, 1982; Ngamriabsakul et al., 2000; Wu and Larsen, 2000). The annual precipitation of Lijiang City (2393 m a.s.l.) is 934.9 mm, and the peak rainy season is from July to August (1951–1981, Meteorological department of Yunnan province, unpubl.data). There is more precipitation at higher elevation of this mountains region with an increasing rate of 103 mm per 100 m (Su and Pu, 1996).

Roscoea schneideriana (Loesener) Cowley (Zingiberaceae) is a small perennial herb that inhabits shady habitats of mixed forest, or open stony slopes and ledges of mountain cliffs, commonly around 3000 m a.s.l. (Cowley, 1982; Wu and Larsen, 2000). Plants are 9–45 cm tall, with annual pseudostem from erect, reduced rhizome; roots are fascicled, tuberous and fusiform. The flowering season of this species is usually from July to August. The inflorescence has a short peduncle. Its slender-tubed flowers are purple or white, comprising an erect hooded dorsal petal, a large labellum which has two erect petal-like staminodes near its base, and two narrow lateral petals; the dorsal petal and two erect leaf-like staminodes form a floral chamber, where anther and style stand (Fig. 1A).

Floral biology

Phenological observations were made in the GH population in the flowering season of 2004. Sixty plants were randomly selected, and the number of inflorescences, flowers per inflorescence, flower longevity, and stigma movement recorded. Flowering phenology of the GH population was also quantified at 1-week or 10-d intervals in 2007. Thirty flower buds were randomly chosen, and the

![Fig. 1](https://example.com/image1.png)

Fig. 1. (A) The plants (about 60 mm in height) and flower of Roscoea schneideriana (Zingiberaceae) in a natural population; (B) variations of sigma morphology of R. schneideriana: from left to right, before anthesis, then 12, 24 and 48 h after anthesis. Petals were removed to reveal the anthers and styles.
anthers and ovaries fixed in FAA solution separately for pollen and ovule counting. A haemocytometer was used to estimate pollen production per flower following the methods of Dafni (1992). The number of ovules in each ovary was also counted under the dissecting microscope. For each flower, the pollen : ovule (P/O) ratio was calculated as the number of pollen grains divided by the number of ovules. If possible, means (±1 s.e.) are given (all data in this paper are presented as means ± 1 s.e., unless otherwise noted).

Capacity for autonomous self-fertilization

Pollinator exclusion combined with hand-self pollination was used to quantify the capacity for autonomous self-fertilization. In the flowering season of 2004, >100 individuals were randomly selected from the GH population, and visitors excluded with nylon mesh bags. Plants were evenly and randomly assigned among three different pollination treatments: (1) flowers were emasculated at the onset of anther dehiscence, hand self-pollinated and bagged; (2) flowers were left intact and unpollinated; (3) flowers were left unpollinated and their anthers were removed before they dehisced. All treated flowers were prevented from receiving visitors with nylon mesh bags for the duration of flowering. Fruits were collected 30 d after pollination, and the full seeds in each fruit were counted. Flowers that did not make a fruit were considered as producing zero seeds. Treatments 1 and 2 were repeated in the flowering season of 2005. To assess the capacity for autonomous selfing, a two-way ANOVA was used to compare seed production in flowers receiving treatments 1 and 2 in two flowering seasons, with treatment and year as fixed factors. An index of autofertility was also estimated as: mean seed production of treatment 2/mean seed production of outcross flowers (Schoen and Lloyd, 1992); these data were used to calculate an index of autofertility (see below). Treatment 3 was included to confirm that autonomous seed set did not occur through either apomixis or accidental pollination by insects that entered the bags.

Timing of autonomous selfing

The proportion of autonomously selfed seed was quantified at different times in the life of flowers in the GH population in 2006. More than 150 plants with buds were selected and prevented from receiving visitors with nylon mesh bags for the duration of flowering. Plants were evenly and randomly assigned among five anther removal treatments (one flower per plant): (1) anthers were removed just prior to the anthesis; (2) anthers were removed 12 h after anthesis; (3) anthers were removed 24 h after anthesis; (4) anthers were removed 48 h after anthesis; (5) anthers were left intact. Seeds per flower were counted after 30 d. To test the relationship between timing of anther removal and mean seed production, polynomial regression analysis was used. Then a one-way ANOVA was used to compare the reproductive output at different anthesis stages.

Flower visitors

Visitors of R. schneideriana were observed continuously from 0930 to 1630 for 3 d in the GH population during the flowering season of 2004 and 2005, and for 2 d in the XS population during the flowering season of 2007. All the observations were conducted on fine sunny days. All types of flower visitors were photo-recorded and preserved in the insect collections of Xishuangbanna Tropical Botanical Garden.

Experiment to quantify reproductive assurance

The extent autonomous selfing increased seed production was determined by removing the capacity for autogamy by emasculating flowers before anther dehiscence. Experimental emasculations were conducted in one population (GH) in 2004, two populations (GH and WB) in 2005, and three populations (GH, XS and LB) in 2006. In each population 60–100 plants with buds were randomly selected. Plants were evenly and randomly assigned for one of the following pollination treatments: (1) anthers of flowers were removed before anthesis; (2) flowers were left intact. It is not possible to remove the whole anther of a flower because like most gingers, the soft styles penetrate through the anther. Fruits were collected after about 30 d and seeds per fruit were counted. Seed production was compared using a two-way ANOVA with population/year and treatment as fixed factors. The increase in seed production was calculated via autogamy for each population as the difference between the mean seed production of intact flowers and that of emasculated flowers (Lloyd, 1992; Schoen and Lloyd, 1992). Reproductive assurance was estimated as: 1 – (mean seed production of emasculated flowers/mean seed production of intact flowers) (Eckert et al., 2006).

Inbreeding depression

To examine inbreeding depression, 60 plants with buds were randomly selected in the GH population used to assess self-compatibility and the performances of selfed and crossed seeds compared. Visitors were excluded from flowers with nylon mesh bags for the duration of flowering. Flowers on these plants received one of two hand-pollination treatments: (1) flowers of 30 plants received pollen from the same flower (selfed); (2) flowers were emasculated and then hand pollinated with pollen from other plants at least 3 m away (outcrossed). Fruits were collected after 30 d and the seeds counted. These seed count data were used to calculate an index of autofertility (see above). To determine seed mass, seeds were mixed from the same treatment and 180 selfed seeds and 180 crossed seeds were randomly selected from each treatment; seeds of each treatment were evenly and randomly divided into six groups. Seeds were dried in a roaster set at 130°C for 24 h, and then weighed. To measure germination rate, 45 selfed seeds and 45 crossed seeds were randomly selected from both self- and cross-pollination treatments, and the seeds placed in a moist germination cabinet set at 25°C.
with a 12-h light:12-h dark photoperiod. The number of germinated seeds was recorded over the next 2 weeks. For seed set and seed mass, a t-test was used to compare the mean values of selfed and outcrossed progenies. For fruit set, seed germination, and seedling survival, 2×2 contingency tables were used to compare values of selfed and outcrossed progenies. Inbreeding depression was estimated at five stages: fruit set, seed set, seed mass, seed germination and seedling survival. Inbreeding depression (δ) was calculated for each stage as $\delta = 1 - (w_s/\bar{w}_o)$, where w_s and \bar{w}_o are the fitness of selfed and outcrossed progeny, respectively. Cumulative inbreeding depression was calculated by multiplying fitness values for each cross-type across all life stages and then applying the formula above.

RESULTS

Floral biology

Phenological investigations of *Roscoea schneideriana* in the GH population indicated that flowering of this species occurs mainly from July to mid-August, which is the peak period of the rainy season in this area. *R. schneideriana* produces one inflorescence per plant with one to four flowers per inflorescence (Table 1); Inflorescences generally flower for 4–15 d and produce one flower after another at intervals of 2–6 d (3–4 d \pm 0.72, $n = 11$). Flowers usually begin anthesis in the early morning and last for 4 d (Table 1). The anthers usually dehisce and stigmas produce stigmatic fluid at the beginning of anthesis. The distance between anthers and hooked stigmas is about 2 mm at that time. The funnel-like stigma progressively elongates and curls towards the erect anther during flowering (Fig. 1B). Of the flowers surveyed, stigmas of 66.7% flowers (30 flowers, $n = 54$) could touch the dehisced anther about 24 h after anthesis and kept curling; 80% of them (36 flowers) could be self-pollinated in this way within 2 d of flowering.

Flowers do not produce nectar and no odour was detected.

The number of pollen grains produced per flower was 5791 \pm 417; the number of ovules was 31 \pm 1. Hence, the P/O ratio of *R. schneideriana* flowers was 195 \pm 16 (Table 1).

Capacity for autonomous self-pollination

Bagged emasculated flowers did not set seeds, suggesting that autonomous seed set did not occur through either apomixis or accidental pollination by insects that entered the bags. Bagged intact flowers set as many seeds as flowers self-pollinated by hand both in 2004 (autonomous selfed: 14.1 \pm 1.5; hand-selfed: 15.4 \pm 2.0; $t = 0.545$, d.f. = 59, $P = 0.59$) and 2005 (autonomous selfed: 13.6 \pm 1.7; hand-selfed: 13.9 \pm 2.0; $t = 0.114$, d.f. = 83, $P = 0.91$), indicating a well-developed capacity for autonomous selfing (Fig. 2).

Timing of autonomous selfing

The timing of anther removal and mean seeds per flower show a significant quadratic line relationship (r^2 = 0.96, $F_{2,2} = 26.3$, $P = 0.03$). One-way ANOVA analysis also shows a significant effect on the number of seeds produced per flower (one-way ANOVA, $F_{4,154} = 20.01$, $P < 0.0001$; Fig. 3). When anthers were removed before flower opening, flowers did not set fruits and seeds, indicating that autonomous selfing did not occur through prior selfing. When anthers were removed about 12 h and 24 h after anthesis, the numbers of seeds produced per flower were 11.3% and 60.0% that of natural control flowers, respectively. Two-day flowers, however, produced as many seeds as natural control flowers (2-d flowers: 12.8 \pm 1.9; control flowers: 13.0 \pm 1.7; $t = 0.081$, d.f. = 65, $P = 0.94$). Because almost all seeds in each fruit were produced during the early life of 4-d flowers, autonomous selfing in *R. schneideriana* most likely occurred during the period of ‘competing selfing’ (Lloyd, 1992).

Flower visitors

Few insects were observed visiting flowers of *R. schneideriana* in natural populations. A small Curculionid beetle *Rhadinomerus* sp. (~3 mm in length) was the most common visitor to *R. schneideriana* with 39 visits recorded during the 56-h observation of 40–50 flowers. These beetles most commonly landed on the labelum or outside of the dorsal petal, before entering the floral chamber. The beetles spent a long time in the chamber eating pollen from the lower part of the anthers. They are not effective pollinators because they occasionally transfer pollen within the same flower when eating the pollen. A visit by a small bee, *Anthophora* sp., was also observed in the XS population, and occasional visits by ants, but they did not collect pollen or contact the sexual organs.

Reproductive assurance

Emasculations were carried out in the GH population during three flowering seasons and in three other populations (WB, LB and XS) during one flowering season.

| Table 1. Floral characteristics of Roscoea schneideriana based on sample from GH population |
|---|------------------|---------------------|-------------------|------------------------|
| No. flowers/inflorescence | Longevity of flower (d) | Pollen grains | Ovules | P/O ratio |
| Mean \pm s.e. | 1.6 \pm 0.1 | 4.0 \pm 0.5 | 5791 \pm 17 | 31 \pm 1 | 195 \pm 16 |
| Range | 1–4 | 3.5–5 | 1333–9967 | 15–45 | 45–344 |
| n | 60 | 60 | 30 | 30 | 30 |
Experimentally preventing autonomous self-fertilization reduced seed production in all the populations of *R. schneideriana* studied (Fig. 4), and the variation in seed set among populations or within populations was very minor compared with the effect of autogamy (Table 3). Reproductive assurance measures (RA) were 0.92, 0.80 and 0.83, respectively, in the GH population for the flowering seasons of 2005, 2006 and 2007. For the WB, LB and XS populations in the flowering seasons studied, the measures of RA were 0.87, 0.80 and 0.84, respectively. The mean RA was 0.84.

Inbreeding depression

Mean values of five traits of self versus outcross progenies were compared, and the results indicated that only seed mass had a significant difference (self: 95.5 ± 1.4; outcross: 73.0 ± 3.3; t = −6.23, d.f. = 11, P < 0.01); fruit set (self: 86.5%; outcross: 85.4%; χ² = 0.02, d.f. = 1, P = 0.89), seeds per fruit (self: 16.0 ± 1.9; outcross: 18.0 ± 1.9; t = −0.7, d.f. = 66, P = 0.49), seed germination (self: 86.7%; outcross: 77.8%; χ² = 1.23, d.f. = 1, P = 0.27), and seedling survival (self: 94.9%; outcross: 91.6%; χ² = 0.38, d.f. = 1, P = 0.56) were not significantly different. Inbreeding depression of fruit set, seed set, seed mass, seed germination and seedling survival were −0.013, 0.111, 0.236, −0.114 and −0.036, respectively; and the cumulative inbreeding depression of *R. schneideriana* was 0.226 (Fig. 5), lower than 0.5.
However, in pollinator-mediated outcrossing in the early floral life-span, the mechanism preventing autonomous selfing and promoting spatial separation of stigmas and anthers appears to be the opening, and few seeds were set when anther removal was effective. No fruits and seeds resulted because anthers dehisced and stigmas produced stigmatic fluid at the beginning of anthesis. No fruits and seeds were set by autonomous selfing, while emasculated flowers set few seeds. The opening of the anther and the curling of the stigma towards the dehisced anther during the early stage of flowering in the alpine ginger suggests that autonomous selfing could ensure reproductive assurance with low costs. These results support the hypothesis that autonomous selfing in Roscoea schneideriana has been selected because it provides reproductive assurance with low costs.

SELECTIVE VALUE OF AUTONOMOUS SELFING

Few visitors were observed in the natural populations of Roscoea schneideriana, suggesting that geitonogamy and facilitated selfing, which both depend on pollen vectors, have little opportunity to occur. The present results indicated that geitonogamy has little chance of occurring in Roscoea schneideriana even when visitors are abundant. This is because (a) R. schneideriana has small fascicled, tuberous, fusiform roots so is not strongly branching (clonal) like other tropical gingers, and (b) its floral display is very small with just a few flowers opening one by one at intervals of about 4 d. Thus the reproductive output of this species is mostly the result of autonomous selfing. Bagged flowers of R. schneideriana, which could set seeds only by autonomous selfing, have the same seed production as opened flowers, corroborating the well-developed capacity for autonomous selfing (Fig. 2). These results suggested that autonomous selfing could ensure seed production when pollinators are scarce or absent. By comparing emasculated and intact flowers under natural pollination conditions, it was found that outcross pollen was limited and autonomous selfing strongly boosted seed production (Fig. 4). The mean reproductive assurance of the populations studied was 0.84, which was greater than for most other taxa for which reproductive assurance has been quantified in previous studies (Eckert et al., 2006).
Inbreeding depression is a major selective cost that prevents the evolution of selfing (Charlesworth and Charlesworth, 1987). Theoretically, if \(0.5 < \delta < 1\), selfing will lose the benefit of transmission advantage; if \(\delta = 1\), then the reproductive assurance is negated (Lloyd, 1992; Vaughton et al., 2008). Inbreeding depression throughout the entire life cycle is expected to be higher, especially under natural field conditions. Although inbreeding depression was measured only up to seedling survival stage in relatively benign growth chamber conditions, the inbreeding depression (0-226, Fig. 5) in R. schneideriana should not be high enough to counteract selfing benefits. The early arrival of selfing pollen may usurp ovules that could be outcrossed, producing lower-quality inbred seeds, and reducing the number of outcrossed and higher-fitness seeds. Because visitors to flowers were chronically scarce, there was little or no gamete discounting cost for autonomous selfing in R. schneideriana (Lloyd, 1992).

Pollen limitation and autonomous selfing

Roscoea species have showy orchid-like flowers with a long, slender corolla tube, suggesting specialized pollination by long-tongued insects, but the present results clearly show that R. schneideriana has a well-developed capacity for autonomous self-fertilization (Fig. 2). Fenster and Martín-Rodríguez (2007) suggested that the ability for autonomous self-pollination can evolve independently of pollination specialization. When pollen limitation reduces plant reproductive success, selection could favour reproductive strategies that make plants less dependent on pollinators to reduce pollen limitation (Totland and Sottocornola, 2001; Ashman et al., 2004). Several studies documented that even in plants with showy floral structure and display, autonomous selfing can be selected for under poor pollination conditions (e.g. Wang et al., 2004; Zhang et al., 2005). Using floral emasculation, the present results show that an inadequate quantity of outcross pollen strongly limits reproductive output in all the populations studied (Fig. 4). Thus, reproductive assurance is likely to drive the evolution of autonomous modes of selfing in R. schneideriana, such that this species is not dependent on insects for reproductive success.

It seems that pollinator failure is the reason for pollen limitation in R. schneideriana. Here, two possible causes which may account for the unreliable pollinator service are assumed. First, pollinator failure in the natural populations of R. schneideriana in this area may be caused by too much rain during the flowering season. Based on 30 years (1951–1981) of meteorological data, the flowering seasons of R. schneideriana were found to be exactly coincident with the peak of the rainy season. Rainy weather may be the cause of the chronic pollinator limitation in these populations because insects are highly dependent on their environment. The other explanation for pollinator failure is that the principal pollinator of the genus Roscoea may be lost in the Chinese Himalayas. According to floral morphology, flowers of most Roscoea species require long-tongued, nectar-foraging pollinators for successful pollination. Fletcher and Son (1931) and Dierl (1968) described how a long-proboscid fly Corizoneura longirostris visited flowers of Roscoea species for nectar in the Nepal Himalayas. However, in the present study this or similar insect visitors were not found on R. schneideriana and several other Roscoea species over many years of observations (Z. Q. Zhang, unpubl. data). Breakdown of mutualism can occur if pollinators are lost in highly specialized pollination systems (Bond, 1994). One recent study also demonstrated that long-proboscid pollinators were absent from long-corolla-tubed Pedicularis flowers in Chinese Himalaya (Huang and Fenster, 2007). Collapse of a pollination mutualism may have caused R. schneideriana and its related species in the Chinese Himalayas to have become dependent on autonomous selfing or generalist visitors to achieve successful pollination. It is speculated that the nectarless flowers may have released this species from the selective constraint associated with long-proboscid pollinators, and, more importantly, the low cost and substantial benefit of reproductive assurance was responsible for the selection of autonomous selfing in R. schneideriana in the harsh environment of the Chinese Himalayas.

ACKNOWLEDGMENTS

We sincerely thank W.-J. Xie for field assistance; C. R. Herlihy, C. H. Cannon and two anonymous reviewers for their valuable suggestions; X.-S. Chen, S. Sun and G.-Y. Hao for comments on earlier versions of the manuscript; D.-R. Yang for identifying insects; and Y.-J. Luo for helping with the statistics. We give special thanks to Professor S. Hiscock for his constructive suggestions and very detailed help in revising our use of the English language. This research was supported by National Basic Research Program of China (973 Program) 2007CB411603, and the Fund for Top One Hundred Young Scientists of Chinese Academy of Sciences.

LITERATURE CITED

